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Opinion statement

Medulloblastoma (MB) is the most common pediatric brain malignancy, with a 5-year
overall survival (0S) rate of around 65%. The conventional MB treatment, comprising
surgical resection followed by irradiation and adjuvant chemotherapy, often leads to
impairment in normal body functions and poor quality of life, especially with the increased
risk of recurrence and subsequent development of secondary malignancies. The develop-
ment and progression of MB are facilitated by a variety of immune-evading mechanisms
such as the secretion of immunosuppressive molecules, activation of immunosuppressive
cells, inhibition of immune checkpoint molecules, impairment of adhesive molecules,
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downregulation of the major histocompatibility complex (MHC) molecules, protection
against apoptosis, and activation of immunosuppressive pathways. Understanding the
tumor-immune relationship in MB is crucial for effective development of immune-based
therapeutic strategies. In this comprehensive review, we discuss the immunological
aspect of the brain, focusing on the current knowledge tackling the mechanisms of MB
immune suppression and evasion. We also highlight several key immunotherapeutic

approaches developed to date for the treatment of MB.

Introduction to medulloblastoma

Definition and epidemiology

Brain and other central nervous system (CNS) tumors
are the most common form of solid tumors in infants
and children [1] and are the leading cause of cancer-
related deaths in childhood [2]. Medulloblastoma (MB)
is the most common malignant childhood brain tumor,
accounting for around 20% of all pediatric CNS tumors
[3], and 63% of childhood embryonal tumors [1]. MB is
a heterogeneous group of embryonal tumors that affect
children more frequently than adults, with an incidence
of 0.55 per 100,000 population in children aged 0-4
years and 0.16 per 100,000 population in adolescents
aged 15-19 years [4]. Most MBs are known to arise from
the cerebellar vermis in children; however, the cerebellar
hemispheres are more common sites of origin among
adults [5]. Males are more frequently diagnosed with
MB than females in the children populations, with no
racial or ethnic predisposition [6]. The 5-year overall
survival (OS) rate of MB patients is 64.7%, although
the prognosis varies greatly among the different tumor
subgroups [4].

Classification of MB
In its most recent update of tumor classification, the
WHO recognized four main histologic types of MB,
namely classic MB, large cell/anaplastic MB (LC/A-
MB), desmoplastic/nodular MB (D/N-MB), and MB
with extensive nodularity (MBEN) [7], which are differ-
entiated according to cellular and histological criteria [8,
9]. Nevertheless, this update requires the integration of
histological classification with molecular classification
in MB diagnosis [7].

Four main molecular subtypes of MB were identified
based on genotyping results: WNT-activated, sonic
hedgehog (SHH)-activated and TP53-mutant, SHH-

activated and TP53-wildtype, and non-WNT/non-SHH
MB [7]. Wnt-activated subtype comprises about 10% of
all MB cases, and is characterized by mutations render-
ing the Wnt pathway constitutively active [3, 10]. Almost
all WNT-activated MB cases exhibit classic histology
[11], and patients have the most favorable prognosis,
with nearly 90% surviving more than 5 years [12, 13].
SHH-activated MB is the most common subtype in in-
fants and adults. It exhibits a favorable prognosis (77%
10-year OS rate in infants) that worsens with the in-
crease in age [11]. This subtype is associated with muta-
tions in genes critical for the SHH pathway [14]. This
subtype is further subdivided according to the presence
of mutations in TP53 gene, which has profound prog-
nostic implications [7]. TP53-mutant subtype is associ-
ated with a 5-year OS rate of 41% as compared to 81%
in TP53-wildtype subtype [15]. Non-WNT/non-SHH
subtype comprises Group 3 and Group 4 MB, which
affect males twice as often as females, and have no
identified alterations in specific signaling pathways.
Group 3 has the highest metastasis frequency and the
worst prognosis among all subtypes, with a 5-year OS
rate of 45% and 58% in infants and children, respective-
ly [11]. On the other hand, Group 4 MB represents the
most common subtype overall among the different age
groups, with an intermediate prognosis (50% 5-year OS
rate in infants and children) [11].

Treatment strategies in MB

The current standard of care for MB includes surgical
resection followed by craniospinal irradiation and adju-
vant chemotherapy. However, although 5-year OS is
approximately 80% for patients older than 3 years with
no metastasis and with gross total tumor resection, it
declines to around 60% in children with metastatic
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disease and/or having subtotal tumor resection [16-19].
Moreover, treatment options in MB have been shown to
be neurotoxic especially on infants, with studies dem-
onstrating a decrease in intellectual functions among
this patient group [20, 21], besides deficits in processing
speed, broad attention, and working memory [22, 23]
and increased risk of postoperative cerebellar mutism
syndrome [24]. Therefore, there is a dire need for im-
proving the conventional therapy and introducing safer

Brain-immune interaction

and more effective alternatives. Recently, immunothera-
py has gained much attention as an attractive approach
to target cancer cells while sparing the adjacent non-
tumor tissues. Clinical evidence has shown benefits of
immunotherapy in many cancers including melanoma
and leukemias among others [25-27]. Nevertheless, to
develop safe and effective immunotherapies for MB, we
need to better understand the normal and tumor immu-
nology of the brain.

Aspects of immunity in the brain

The brain was originally described as an immune-privileged site, due to the
restriction of immune cell entry by the blood-brain barrier (BBB), the absence of
conventional lymphatic vessels, the inability of microglia to present antigens to
T cells, and the low expression of major histocompatibility complex (MHC)
molecules [28]. Nevertheless, it is now accepted that the brain shows persistent
immune surveillance. Trafficking of immune cells across the BBB has been
observed to be low and tightly controlled under normal physiological condi-
tions, which increases when neuroinflammatory reactions develop [29, 30]. The
cerebral-spinal fluid (CSF), which drains in the cervical lymph node, is also
considered as a pathway for trafficking immune cells and macromolecules,
providing a continuous and highly regulated communication between the
brain and the immune system [31-34]. Moreover, functional lymphatic vessels
have been recently discovered to line the dural sinuses, assisting in the drainage
of macromolecules and enabling immune cells to enter the cervical lymph
nodes [35-37].

Another unique feature of the brain-immune microenvironment is the
unique population of immune cells. The brain immune cell population is
composed of microglia (80% of brain immune cells), dendritic cells (DCs),
macrophages, T cells, B cells, and natural killer (NK) cells [38]. Microglia are
considered as the first line of response to pathological insults by which they
show morphological [39] and molecular changes [40], exhibit phagocytic
ability, express MHC molecules (although at low levels), release proinflamma-
tory cytokines, and activate other immune cells [41-43]. On the other hand,
DCs, which are the antigen-presenting cells (APCs) of the brain, have the ability
to capture, process, and present foreign antigens, and also express different
molecules such as CD11¢, CD205, and MHC class IT molecules. In the cervical
lymph nodes, they encounter naive lymphocytes and induce T cell activation
and recruitment into the brain [44-46]. Recent studies have shown that B cells
as well migrate to the infected brain area and aid in functional recovery after a
focal stroke [47, 48].

Immunity in brain tumors

Brain tumors have evolved multiple mechanisms to escape and inhibit the
antitumor activity of immune cells [49]. Brain tumor cells secrete a number of
chemokines, cytokines, interleukins, and growth factors that stimulate the
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infiltration of immune cells such as microglia, macrophages, myeloid-derived
suppressor cells (MDSCs), and T cells [50-54] into the tumor niche. Neverthe-
less, this microenvironment reprograms attacking immune cells by releasing
cytokines and interleukins such as interleukin (IL)-10, tissue growth factor
(TGF)-p, prostaglandin E2 (PGE2), and vascular endothelial growth factor
(VEGF) that promote anti-inflammatory responses [55-57|. Furthermore, mi-
croglia acquires an M2-like phenotype by the influence of IL-4, IL-10, and IL-13
released by glioblastoma (GB) cells. In turn, microglia promotes glioma growth
and survival by secreting growth factors such as TGF-g [58], VEGF, and members
of fibroblast growth factor (FGF) family [59]. Besides, NK cells are functionally
suppressed by the inflammatory molecules secreted by glioma cells such as
cyclooxygenase (COX2), PGE2 [60], and TGF-p [61]. Furthermore, glioma stem
cells have been shown to secrete cytokines that are known to reprogram tumor-
associated macrophages (TAM) to become immunosuppressive [62].

Lymphocyte apoptosis is another immune-escape mechanism. GB cells were
shown to contribute to lymphocyte apoptosis via interaction of CD70 expressed
on glioma cells with CD27 expressed on T- and B-lymphocytes [63]. T cell
apoptosis is also mediated by Fas-Fas ligand (FasL) interaction, which directly
induces T cell apoptosis [64]. Another study revealed that FasL-positive microg-
lia also mediate apoptosis of Fas-positive T cells [65].

Furthermore, intracranial tumors frequently display low numbers of tumor-
infiltrating lymphocytes (TILs). Instead, naive T cells are sequestered in large
numbers in the bone marrow [66]. TILs that successfully infiltrate are exposed
to further suppression [67]. This “cold tumor” phenotype is usually associated
with immune checkpoint molecules [68, 69], such as programmed cell death-
ligand 1 (PD-L1). Binding of PD-L1 with PD-1 on lymphocytes mediates T cell
inactivation. Studies showed that the expression of PD-L1 on glioma cells and
PD-1 on T cells is correlated with tumor progression into high-grade glioma
[70]. Microglia also express PD-L1 and impede T cell activation [71].

Mechanisms of immunosuppression and resistance in MB

Tumor microenvironment (TME) is a specialized niche in which dynamic
interactions between malignant cells and host cells occur [72, 73]. These inter-
actions are mediated by junctions, receptors, secretions, and signals of different
cell types encased in a three-dimensional (3D) extracellular matrix (ECM),
which promotes tumor progression and invasion [74]. MB exhibits a cold
immune microenvironment which is largely attributed to the low levels of
pro-inflammatory cytokines and T cell infiltration [75]. Besides MB cells, the
main players in this malignant tumor are the innate and adaptive immune cells
along with stromal cells including fibroblasts and vascular endothelial cells
[76]. Immune cells within the MB TME include immunosuppressive cells such
as TILs [77], TAMs [73, 75, 78], MDSCs [79], regulatory T (Treg) cells [80],
tumor-associated astrocytes (TAA) [81], as well as NK cells [76] (Fig. 1). To
enhance the aggressive impact of MB TME, MB cells secrete immunosuppressive
molecules including cytokines such as TGF-p [82], ILs [83], chemokines [84],
PGE2 [85], VEGF [86], immune checkpoint inhibitors [87], and gangliosides
[88], to evade the immune recognition and promote tumor progression [89]
(Fig. 2).
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Fig. 1. MB microenvironment and immunotherapeutic strategies. MB exhibits an immunosuppressive microenvironment that
involves the extracellular matrix including fibroblast and collagen as well as the immunosuppressive cells such as NK cells
(NKs), tumor infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), regulatory T cells (Treg), and tumor-
associated astrocytes (TAA). MB is targeted via several immunotherapy approaches including the chimeric antigen receptor
(CAR) T cell therapy, oncolytic virotherapy, immune checkpoint inhibitors, and cytokine inhibitor/administration.

Immunosuppressive cells in MB microenvironment

Tumor-infiltrating lymphocytes (TILs)

In MB, T-lymphocytes can only migrate to TME by the influence of a plethora of
secretions. Once they migrate to TME, T-lymphocytes known as tumor infiltrat-
ing lymphocytes (TILs) play a critical role in promoting the survival and the
progression of tumor cells as well as sustaining the tumor niche [77]. Notably,
MB is characterized by a higher neutrophil-to-lymphocyte count ratio which
reflects a poor prognosis in patients and is considered a feature of immuno-
suppression [76]. Several studies showed that MB induces the systemic immune
suppression in the patients due to significant reduction in the absolute lym-
phocyte count and elevation in the neutrophil-to-lymphocyte count ratio in
different MB subgroups [90e, 91].

|
Tumor-associated macrophages (TAMs)

Macrophages in TME exhibit the anti-inflammatory M2 phenotype [92]. Recent
studies showed that monocyte-derived TAM2 are immunosuppressive cells
responsible for suppressing the anti-tumor immunity within the TME and
mediating poor clinical prognosis [92, 93]. In this context, TAMs are considered
as a major player in the MB microenvironment, where they modulate the
immune response through the secretion of cytokines, chemokines, and growth
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Fig. 2. Schematic representation of major immunosuppressive mechanisms of MB. Key mechanisms of MB immunoresistance
are briefly described in the figure, including immunosuppressive cells, secretion of immunosuppressive molecules, impair-
ment of adhesive molecules, inhibition of immune checkpoints, downregulation of HLA molecule, protection against apoptosis, and
activation of immunosuppressive pathways. These mechanisms are also involved in chemoresistance and radioresistance.

factors [75] to promote tumor progression, survival, invasion, metastasis, an-
giogenesis, and inflammation [94], as well as resistance to chemotherapy [92].

Myeloid-derived suppressor cells (MDSCs)

MDSCs are immature myeloid cells that act as a potent suppressor of anti-tumor
immunity within the TME [79]. Under pathologic conditions, MDSCs promote
tumor growth and invasion [95] through the suppression of T cells within MB
TME in response to secreted IL-6 cytokines [79]. A recent study showed that the
activation of CD200R on MDSCs by its ligand (CD200) leads to the negative
regulation of immune response and promotes tumorigenesis [96].

|

Regulatory T (Treg) cells
Treg cells are a subgroup of CD4+ T-lymphocytes which serve as potent inhib-
itors of anti-tumor immunity through the suppression of T cell activation and
progression by the production of nitrogen-oxygen species (NOS) under the
control of MDSCs [97], downregulation of IL-2, and induction of the cytokine
secretion by T-helper type 2 (Th2) cells. Several studies revealed the role of
STAT3 in myeloid cells to maintain the Treg populations in MB [79].
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Tumor-associated astrocytes (TAAs)

In the normal brain, astrocytes are responsible for maintaining homeostasis,
however, in the pathological state, they adapt the “reactive state” through a
specialized transition called “astrogliosis” to impact the immune surveillance
and promote inflammation [98, 99]. In MB, TAAs enhance MB cell proliferation
and growth through the expression and secretion of the mitogen SHH in the
TME in response to nestin expression [100]. Moreover, TAA-derived C-C ligand
2 (CCL2) chemokine has been shown to trigger the stemness in MB stem cells
(MBSCs) through the activation of the Notch signaling pathways, in addition to
inducing necroptosis (programmed necrosis) [101].

Secreted immunosuppressive molecules

Cytokines

Transforming growth factor (TGF-f3)

TGEF-p is a pleiotropic cytokine [102] secreted by MB cells. It is considered
as a potent immune suppressive factor that helps evade the cytotoxicity of
the T cell populations [82] and mediates the negative effect on NK cells
[103] either directly through the disruption of IFN-vy secretion, or indirectly
through the inhibition of IL-12 production by DCs [104]. Previous studies
showed that the expression of TGF-g1 and TGF-32 promotes autoregula-
tion in MB [105].

Interleukins (ILs)

In the early stage of tumorigenesis, the elimination of cancer cells is mediated
by the activation of pro-inflammatory and Th1-associated factors including
IL-1, IL-12, and IL-15. However, in the advanced stages of tumor progression,
the prolonged inflammatory state in the TME promotes the activation of the
suppressive response of Th2-associated factors such as 11-4, IL-5, IL-8, IL-10,
and I1L-13 [83].

IL-6 is a paracrine growth factor that triggers development, proliferation [106],
inflammation, and immune regulation of MB cells [106, 107]. In MB cells, IL-6
activates the oncogenic JAK/STAT pathway [107-109], leading to MB
cell viability, proliferation, glycolysis, clonogenicity [107], as well as the
chemoresistance in Group 3 of MB cell lines [108]. In addition, Th17 cells
produce a repertoire of interleukins that promote tumor growth and impair
immune surveillance. Accumulated evidence revealed the high levels of Th17
and IL-17 both in the patients’ peripheral blood and among MB-infiltrating T
cells [109, 110]. Besides, IL-8 has been attributed to the survival, growth, and
immunosuppressive and pro-angiogenic properties of MB cells [111].

Chemokines

Chemokines are chemoattractant cytokines that control the migration
of immune cells via the interaction with their cell surface receptors [84].
C-C motif ligand 2 (CCL2), is one of the chemokines that is highly expressed



83 Page 8 of 28

Curr. Treat. Options in Oncol. (2021) 22: 83

in MB and considered as a pro-inflammatory mediator that has the potency
to promote the spreading and proliferation of the tumor cells and is sufficient
to drive the leptomeningeal dissemination through the interaction with its C-
C chemokine receptor type 2 (CCR2) [112, 113]. To add, the overexpression
and activation of the chemokine receptor CXCR4 may be essential for the
maximal growth of the SHH-driven MB [114].

Prostaglandin E2 (PGE2)

Prostaglandin E2 (PGE2) is bioactive lipid compound [115] that plays a role in
many human cancers including MB [85, 116]. It mediates cellular proliferation,
angiogenesis, inhibition of apoptosis, invasion, and suppression of immune
responses via the interaction with four distinct G-protein coupled receptors
(EP1, EP2, EP3, and EP4). Notably, MB cells express high levels of PGE2 and
its receptors in a way that promotes their proliferation [85].

Vascular endothelial growth factor (VEGF)

VEGF is a pro-angiogenic growth factor that serves as one of the most potent
mitogens in CNS malignancies [86, 117] Among the immunosuppressive
factors released by malignant cells, VEGF-A plays an essential role in the
induction of immunosuppressive microenvironment through a cascade of
events including the impedence of DCs maturation and differentiation, aggre-
gation of MDSC, and induction of Treg cells proliferation [118].In MB, VEGF-A
mediates the invasion and metastasis through the CSF and reflects a poor
prognostic status [119, 120]. Besides, the soluble and receptor isotypes of VEGF
are found in most MB patients [121].

Gangliosides

HLA class I defect

Gangliosides are sialic acid-containing glycosphingolipids [122] and one of the
tumor cell surface molecules. They contribute to the immunosuppression in
MB cell lines through the inhibition of the leukocytes’ response, enhancement
of platelet activation, angiogenesis, and tumor cell invasion. MB cell lines are
characterized by a rapid shedding rate of gangliosides in CSF [123], which
serves as a prognostic factor in MB patients [88].

HLA class I molecules play a pivotal role in anti-neoplastic immune response
[124] by either presenting a range of self and foreign antigens to cytotoxic T-
lymphocytes (CTL), or serving as ligands for killer immunoglobulin-like recep-
tors (KIRs) on NK cells [125]. Nevertheless, MB tumor downregulates the HLA
class I molecules to evade T cell-mediated immunity and NK cell recognition
[89]. This deregulation and structural alteration in the MHC class I antigen
presenting machinery results in facilitating MB expansion, aggression, and
metastasis. Furthermore, several studies reported the co-expression of the neg-
ative prognostic markers such as c-MYC and HLA class I molecules in MB [126].
They have shown the interaction of 32 microglobulin (p2m) that is produced
and secreted into the extracellular matrix of MB tissues with the MHC class I
molecules on adjacent cells leading to the enhancement of the migratory
potential and invasiveness of MB cell lines [126, 127].
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Impairment of adhesive molecules

Extracellular matrix (ECM) proteins

The key proteins in the ECM include fibronectin, collagen, tenascin, and lam-
inin, which bind to integrins [128]. Integrins are multifunctional cell surface
heterodimers, expressed in tumor cells and are responsible for promoting
tumor growth, stemness and metastasis. [129]. In vivo and in vitro studies
reported the interaction of cell surface integrins with ECM tenascin mediating
the adhesion, survival and proliferation of MB cells [128]. Another ECM pro-
tein, known as type I collagen, plays a role in MB angiogenesis and vasculature
[130].

Cadherins

Cadherins are Ca**-dependent hemophilic cell-cell adhesion molecules [131]
that maintain homeostasis [132] through the interaction with p-catenin. In this
sense, the dysfunctional expression of these classical cadherins seems to be
related to cell differentiation, proliferation, tumor invasion, and metastasis.
Moreover, mutations in 3-catenin have been associated with MB development.
Accumulated evidence has shown the immunoreactivity of most MBs and high
grade-gliomas for N-cadherin and {3-catenin, which are responsible for dissem-
ination, proliferation, and poor prognosis [131].

Immune checkpoint molecules

Protection against apoptosis

B7-H3 is an inhibitory immune checkpoint ligand [87], which plays a critical
role in promoting MB angiogenesis, progression, tumor cell signaling and
chemoresistance [133]. Notably, B7-H3 is highly expressed in MB tumor tissues
compared to other immune checkpoints, like the PD-1/PD-L1 and the cytotoxic
T-lymphocyte antigen (CTLA)-4 [87]. Besides, the persistent expression of PD-
1/PD-L1 immune checkpoint in MB shows a worse prognosis in patients [89].

Apoptosis is induced in response to different anti-neoplastic agents [134, 135e,
136-139]. Notably, MB mediates the resistance to apoptosis [140] through the
expression of intracellular apoptotic inhibitor (IAP) and the caspase inhibitors
to escape from death receptors-induced apoptosis and granzymes-mediated
killing pathways [89, 141]. Besides, MB cells undergo a high mitotic activity
under the cIAP1 expression [142]. In addition, MB has the potency to express
the anti-apoptotic genes including Bcl-2 and ¢-FLIP, resulting in the resistance to
TNF-related apoptosis-inducing ligand (TRAIL) [141]. Another anti-apoptotic
molecule, known as microRNA 21 (miR-21), is widely upregulated in all MB
subgroups [143]. Moreover, glioma transcription factor (Glil) binds directly to
the Bcl-2 promoter, resulting in the regulation of the MB cell survival [144].

Novel immunosuppressive pathways in MB

Several studies have demonstrated the role of tumor’s intrinsic signaling path-
ways in mediating the resistance to the immune aggression including the
activity of STAT [145], PI3K/Akt/mTOR [146], MAPK [147], and ERK pathways
[148]. In MB, PI3K/Akt/mTOR pathway is activated to trigger cell development,
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proliferation, migration, angiogenesis, and chemoresistance [146-153]. Fur-
thermore, STAT3 is a master cell survival protein that plays an important role
in anti-apoptosis, angiogenesis, and cell evasion of the immune cells in many
brain tumors, but its elevated level is noticed mainly in MB for its maintenance
and development [145]. Recent studies reported the implication of cyclin-
dependent kinase (CDK) inhibitor, known as P27, in MB cell migration [154].

Subgroup-specific immune microenvironment in MB

Understanding the immune microenvironment of MB subgroups is essential in
order to develop strategies for immunotherapies in pediatric populations. These
subgroups have distinct immune profiles that exploit several mechanisms to
facilitate immunosuppression and evasion [155]. Recent studies showed a
significant difference in immune and stromal cell populations that reside in
the MB subgroups-related microenvironment except for NK cells and B cells.
First, SHH-derived MB is characterized by more macrophages, DCs, T cells and
myeloid cells compared to Group 3 MB, which reflects a better prognosis |76,
89, 155]. On the other hand, SHH-derived MB expresses high levels of
inflammation-related genes including TAM-related genes such as CD163 and
colony-stimulating factor-1 receptor (CSF1R) and the inhibition of this receptor
can arrest the protumor effects in the TME [94].

Moreover, SHH- and Wnt-derived MBs exhibit a monocytic/macrophage
and Treg supported pro-tumorigenic microenvironment, while most Group 3
and Group 4 MBs belong to a pattern of tumors that suppresses the infiltration
of lymphocytes by immunosuppressive cytokines and checkpoint pathways.
Such differentiation of immunological characteristics among the different MB
subtypes supports the development of subtype-specific immunotherapeutic
strategies [76].

Immune biomarkers in MB

To identify the heterogeneous phenotypes of distinct MB subtypes, several
studies highlight the characterization of novel cell surface markers expressed
by these tumor cells. Based on the cancer stem cell (CSC) theory, some tumors
including MB contain a subpopulation of cells that exhibit stem cell-like
properties, responsible for tumor initiation and maintenance [134, 135e,
156-159e¢]. CSCs in brain tumors express neural precursor cell surface markers
such as CD133 (promininl) which is responsible for the resistance against
apoptosis, drugs, and ionized radiations, and for enhancing the self-renewal
capacity [156, 160, 161]. Another cell surface marker, CD271, is a member of
the tumor necrosis factor receptor family and is commonly referred to as p75 or
p75NTR. It plays a critical role in neurodevelopment including growth cone
elongation, axon guidance, cell survival, and cell death depending on
neurotrophin ligands as NGF, BDNF, NT-3, and NT-4 [156, 160]. Furthermore,
MB exhibits an inverse relationship among the cells that express both cell
surface markers (CD133 and CD271). Higher self-renewing cells capacity ex-
hibits an increased expression of CD271 and a decreased expression of CD133
to maintain tumorigenesis, while the opposite expression pattern of these cell
surface markers exhibits a highly motile displayed cell [160]. To add, matrix
metalloproteinase (MMP) triggers the MB invasion. MB tissues express MMP-9
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and membrane type-1 (MT1)-MMP, which is likely responsible for invasion,
radio-resistance, and triggering the hypoxic status [161]. Moreover, tumor
propagating cell (TPC) expresses another marker, known as CD15, which was
found on progenitors and stem cells in the embryonic and adult CNS, plays an
essential role in the maintenance and growth of human MB [162]. Interestingly,
recent studies highlight a critical immune marker that mediates the immune
response in both normal brain and brain tumors, known as MHC class I. In
addition, aggressive types of MB are associated with a negative prognostic
marker which is c-myc gene. As a result, MHC class I is expressed in aggressive
MB with poor prognosis, which in turn induces ERK1/2 phosphorylation and
mediates MB metastasis [126]. Besides, all MB cells express a potent CD146
marker, which is responsible for the growing tumor rate and metastasis in the
pediatric population [163].

Immunotherapy in medulloblastoma

MB patients usually benefit from different therapeutic paradigms of maximal
safe resection, radiation, and adjuvant chemotherapy [18, 164] that can lead to
long-term limitations in behavioral, social, cognitive, and physical functions
[165, 166]. In the last few decades, there has been a significant progress in the
field of immunotherapy that aimed to improve the host immune response
against tumor cells [167, 168]. In MB, various experimental approaches in
immunotherapy have highlighted the increasing potential for MB treatment

(Fig. 1).

Adoptive cellular therapy/cellular immunotherapy

Adaptive cellular therapy involves the direct isolation and modification of host
immune cells to enhance their cancer-fighting capabilities, followed by their
subsequent infusion back into the host for direct targeting of cancer cells [169].
This approach can be deployed in different ways: NK cell therapy, chimeric
antigen receptor (CAR) T cell therapy, engineered T cell receptor (TCR) therapy,
and TIL therapy.

NK cells therapy

NK cells can effectively target MB cells mainly through activation of different NK
cell receptors (NKG2D, DNAM-1, NKp30, and NKp46) upon the binding of
specific MB cell ligands [163]. Blocking of NKG2D receptors on the NK cells and
specific ligands expressed on HTB-186 MB cell line, major histocompatibility
complex class I-related chain A (MICA) and UL16 binding protein (ULBP-2),
have increased the resistance to NK cells lysis in vitro [170], indicating the
impact of appropriate stimulation of NK cells for potential targeting of MB
cells. However, blocking of HLA class I on MB cells and stimulation of NK cells
with IL-15 increased the cytotoxicity against MB cells in vitro [170]. Accordingly,
stimulation of NK cells via IL-15 could be a valuable strategy for MB treatment,
as has already been suggested for other pediatric solid tumors [171]. Modifica-
tion of cord blood NK cells to express a dominant negative TGF- receptor II
(DNRII) by retroviral transduction proved an effective therapeutic intervention
for brain tumors through evading TGF-$3 [172]. An in vitro study reported that
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MB cells were rendered susceptible to NK cells expressing DNRII receptors and
also suggested that DNRII can restore the function of NK cells by neutralization
of TGF-p [103]. Another study showed that the intracranial injection of human
NK cells resulted in a remarkable regression of orthotropic human MB xeno-
grafts in NOD/SCID mice, suggesting that NK cells alone were able to signifi-
cantly delay MB growth [173]. One clinical study has shown the safety of
autologous NK cell therapy in patients with recurrent malignant gliomas
[174]. A phase I clinical trial conducted on children with recurrent MB and
ependymoma showed no dose-limiting toxicities of the intraventricular infu-
sion of autologous ex vivo expanded NK cells, with one out of nine patients
showing a stable disease for one month at the end of study follow-up [175].
Another phase I clinical trial has focused on the side effects and the accurate
dose of NK cell in pediatric patients with recurrent/ refractory brain tumors
including MB, but the results have not been released yet (ClinicalTrial.gov;
Phase I clinical trial; NCT02271711) (Table 1).

Chimeric antigen receptor (CAR) T cell therapy

CAR T cell therapy represents a new era of personalized cellular cancer
therapy. It is based on genetically engineering patient’'s own T cells to
express a particular receptor that specifically binds a tumor antigen
[176]. CAR T cell treatment holds great promise in the treatment of
brain malignancies [177, 178]. It has also been translated clinically and
showed an effective therapeutic potential in GB patients [179]. Since
HER2 is overexpressed in MB, it can be targeted by CAR T cell therapy.
HER2 CAR T cells were able to proliferate and secrete IFN-y and IL-2 in
a HER2-dependent manner. They recognized and attacked MB cell lines
and autologous primary MB cells ex vivo and reduced the growth of MB
in the orthotopic xenogenic SCID mouse model [180]. Nellan et al.
showed that HER2-BBz-CAR T cells therapy effectively cleared MB that
was implanted in the posterior fossa of NSG mice via both regional and
intravenous delivery in a xenograft mouse model without causing any
considerable treatment-related toxicity [181]. Similar results were obtain-
ed for NKG2D-specific CAR T cells (KD-025) where KD-025 eliminated
MB xenograft in NSG mice without any noticeable safety issues [182].
Another study showed a remarkable antitumor activity B7-H3 CAR T
cells in vivo where they mediated MB regression in NSG mice model
[183]. Given these data, advances in CAR T cell therapy allow this
approach to be translated clinically into patients with MB. Two phase
I clinical trials, (ClinicalTrial.gov; Phase I clinical trial; NCT03500991)
and (ClinicalTrial.gov; Phase I clinical trial; NCT03638167), are currently
evaluating the feasibility, safety, and tolerability of CAR T cell therapy in
CNS tumors including MB (Table 1).

|
Engineered T cell receptor (TCR) therapy
Like CAR T cell therapy, engineered TCR therapy involves targeting tumors via
new T cell surface receptors. However, in engineered TCR therapy, the artificial
receptor relies on the TCR-peptide/ MHC to mark cancer cells with recognizable
antigens [184]. MB cells are characterized by a high expression level of several
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immunogenic antigens that belong to an expanding family of immunogenic
cancer testicular antigens (CTAs) [185-187]. PRAME, an immunogenic CTA, is
frequently expressed in various cancers including MB with a limited expression
in normal tissues [186, 188]. Orlando et al. targeted MB by using genetically
modified T cells with PRAME-specific TCR (SLL TCR T cells) [189]. Engineered
SLL TCR T cells have effectively destroyed MB HLA-A*02" Daoy cells. Besides,
orthotopic MB NSG mice showed a dynamic tumor regression after injection of
SLLTCRT cells [189]. These data suggest that engineered TCR therapy could be
an effective strategy for targeting MB and should be tested in early-stage clinical
trials for MB patients.

TIL therapy

TIL therapy depends on harvesting naturally occurring lymphocytes that
have already infiltrated into the tumor site, followed by their activation,
expansion, and subsequent infusion back into patients. This approach
was initially established by Eberlein et al. in which the injection of
lymphocytes expanded in IL-2 has mediated the cure of mice with
syngeneic lymphoma [190]. Regarding MB, tumor-reactive T cells were
generated and adoptively transferred into MB-bearing mice. These TIL
clones have retained their antitumor activity against MB and exhibited a
considerable in vivo clonal expansion and persistence within the periph-
eral blood [191].

Immune checkpoint inhibitors

Immune checkpoint inhibitors have been approved for the use in vari-
ous types of cancers due to their potential in producing durable tumor
regression [136, 137, 192, 193]. These drugs are predominantly mono-
clonal antibodies that are developed to block immune checkpoints on
the surface of immune cells, preventing the interaction with the respec-
tive checkpoint ligands, reducing the suppression of T cells, and thereby
restoring the function of immune cells [138]. Several studies have
discussed the activity of checkpoint inhibitors on MB. Pham et al.
demonstrated that the molecular subtypes of murine MB possess distinct
immunologic profiles that differentially respond to immune checkpoint
inhibitors in mice bearing intracranial MB tumors [155]. Murine group
3 MB contained a higher percentage of PD-1" CD8" cells than the SHH
MB group, whereas no appreciable difference was detected for the CTLA-
4" CD4" T cells between the two MB groups. This further suggested that
group 3 MB has a more pronounced response to PD-1 blockade [155].
However, another study has demonstrated a complete absence of PD-L1
expression in pediatric MB, and correspondingly PD1/PD-L1 blockers
might be inappropriate for MB treatment [89]. While Vermeulen et al.
has recognized limited PD-L1 level in MB [89], Martin et al. showed
higher PD-L1 expression level in SHH compared to group 3 and 4 MB
[139]. The uncommon PD-L1 expression and rare PD-1" T cell tumor
infiltration inferred that MB may not be a suitable candidate for im-
mune checkpoint inhibitors [194]. Several clinical trials, (ClinicalTrials.
gov; Phase II clinical trial; NCT03173950), (ClinicalTrials.gov; Phase I
clinical trial; NCT02359565), (ClinicalTrials.gov; Phase II clinical trial;
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NCT03130959), (ClinicalTrials.gov; Phase I clinical trial; NCT00089245),
(ClinicalTrials.gov; Phase I clinical trial; NCT02502708) and
(ClinicalTrials.gov; Phase I clinical trial; NCT04049669) are investigating
checkpoint inhibitor drugs in MB patients (Table 1). However, many of
those results have not been released yet.

Vaccination

The expression of tumor-specific antigens holds immunotherapeutic potential, as
they have been successfully targeted by vaccination for cancer patients [195, 196]. A
series of tumor-specific antigens could render MB amenable to vaccine therapy
[197]. Monocyte-derived DCs were generated to be used as a source of tumor-
associated antigens. DC-based vaccination showed a more favorable response in
high-grade glioma and atypical teratoid-rhabdoid tumors than that in MB patients
[198]. Nair et al. have investigated the potential to generate DCs to evaluate ex vivo-
generated DCs-RNA based vaccination approach in MB patients [199]. This study is
currently in phase I and II clinical trial (ClinicalTrials.gov; Phase I and II dinical
trial; NCT01326104). Another autologous DC vaccination based on targeting
peptides derived from NY-ESO-1, MAGE-A1, or MAGE-A3, was administrated to
MB patients (ClinicalTrials.gov; Phase I and II clinical trial; NCT02332889). How-
ever, the study was terminated due to a serious adverse event and disease progres-
sion. Furthermore, a Phase I clinical trial was organized for patients with malignant
brain tumors incduding MB using vaccination with brain tumor stem cells-loaded
DC. Nevertheless, this trial was terminated without any posted results
(ClinicalTrials.gov; Phase I clinical trial; NCT01171469) (Table 1). The use of MB
vaccines seems, at least at present time, to be limited and not considered as a
therapy of choice mainly for MB patients.

Oncolytic virotherapy

Oncolytic viruses (OVs) are biotherapeutics that have been genetically engineered
to selectively infect and kill tumor cells, gaining attention for the treatment of
several types of cancers [200-202]. An in vitro study has reported the ability of
rhinovirus, a recombinant form of poliovirus, to inhibit the proliferation and
subsequently kill MB cells [203]. The oncolytic virotherapy with myxoma virus
was also studied in MB where it prolonged the survival of tumor-bearing mice. The
combinational therapy with rapamycin further enhanced the oncolytic potential of
the myxoma virus and reduced tumor metastasis [204]. Another study has reported
that the intracerebellar MB xenograft was eliminated after a single intravenous
injection of picornavirus SVV-001, resulting in a significant increase in survival
[205]. Studebaker et al. evaluated the oncolytic therapeutic potential of herpes virus
eRp450 using orthotopic xenograft group 3 and 4 MB, in which eRp450 therapy
displayed a significantly prolonged survival following a single intratumoral injec-
tion. It also revealed the enhanced efficacy of rRp450 upon the combination with
chemotherapeutic drug cyclophosphamide [152]. This is in-line with another study
supporting the role of engineered herpes simplex virus therapy for infecting and
killing pediatric MB cells [153]. These results underline the potent preclinical
antitumor activity of oncolytic virotherapy against MB. To date, various oncolytic
viruses are currently under clinical evaluation, (ClinicalTrials.gov; Phase I clinical
trial; NCT02962167), (ClinicalTrials.gov; Phase I dlinical trial, NCT03615404),
(ClinicalTrials.gov; Phase I dlinical trial; NCT03299309), (ClinicalTrials.gov; Phase
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I clinical trial; NCT03043391), (ClinicalTrials.gov; Phase I clinical trial;
NCT02444546) and (ClinicalTrials.gov; Phase I clinical trial; NCT03911388)
(Table 1).

Cytokine inhibitors/administration

Targeting cytokines and their receptors have been investigated in many studies
due to their critical role in several aspects of cancer biology. An in vitro study
demonstrated that the blocking of pro-inflammatory IL-6 signaling by the FDA-
approved drug bazedoxifene inhibited cell proliferation and colony formation,
and decreased cell viability and glycolysis in Daoy and UW288 MB cell lines
[107]. Another study reported that targeting IL-13 receptors by IL-13 cytotoxin
induced cytotoxicity in UW228 MB cell lines [206]. Additionally, CXCR4
inhibitors (AMD3100 and AMD3465) have shown significant antitumor effects
by inhibiting MB cell line growth and migration, inducing apoptosis in MB
tumors, and reducing MB allograft growth in mice [114, 207, 208].

In contrast to the therapeutic role of cytokine inhibition, contradictory
results have been obtained upon chemokines and ILs administration. Zhou
et al. reported a considerable reduction in MB growth in IL-17-injected mice
suggesting its antitumor properties [109]. Regarding chemokines, treatment
with chemokine CXCL3 elicited a complete disappearance of MB lesion, and
further forced the migration and differentiation of pre-neonatal precursor cells
(pGCPs) in Ptchl */- |Tis217" mice [209]. These results were consistent with other
findings that confirmed the role of CXCL3 in reducing lesion size and promot-
ing pGCPs migration [210].

Conclusions

Medulloblastoma is one of the most devastating pediatric tumors in which long-
term survival is achievable nonetheless with significant morbidity from current
therapeutic strategies. There has been a great advance in the knowledge of MB
immunology over the last few decades. Substantial research work focused on the
immunosuppressive mechanisms of MB has been performed providing an initial
understanding of how MB can improve its own immunosuppressive mechanisms
and evade the immune responses. Standard chemotherapy and radiotherapy are
both profoundly immunosuppressive regimens. On the other hand, numerous
studies concentrated on the promising potential of various immunotherapeutic
approaches to target MB. However, intrinsic immunosuppressive properties, anti-
genic heterogeneity, physical barriers, the most suitable immunotherapeutic strat-
egy, the dose for each case, and the route of drug delivery are some of the challenges
for successful immunotherapy. Novel immunotherapeutic strategies including
combination therapy should be developed to overcome the aforementioned ob-
stacles and to achieve the most favorable results.
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