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Opinion statement

Chimeric antigen receptor (CAR) T-cell therapy has become the standard of care for
children and young adults with relapsed and refractory B-cell acute lymphoblastic leuke-
mia (B-ALL), and it is a highly promising therapy under investigation for adults with
relapsed disease. Despite having potentially life-threatening toxicities, such as cytokine
release syndrome and immune effector cell-associated neurotoxicity syndrome, the bene-
fits of CAR T-cell therapy far outweigh these risks, particularly as increased experience and
improved supportive care measures are mitigating these toxicities. CAR T cells can result in
complete remission for significant proportion of patients with relapsed and refractory B-
ALL and permit them to proceed to potentially curative allogeneic hematopoietic stem cell
transplantation (allo-HSCT). CAR T cells may also be curative by themselves. Herein lie the
greatest challenges and questions for clinical investigators, specifically, how are CAR T
cells best employed and how do we overcome mechanisms of resistance to them? The
primary clinical question is the timing and even the necessity of allo-HSCT. Relative to
resistance, we know that target antigen loss, specifically CD19, is a major contributor to
resistance. However, current investigations of alternative targets, such CD22, and CAR T
cells expressing dual targeting antigen receptors have demonstrated encouraging initial
results and provide a high degree of optimism that the efficacy and the broader applica-
tion of CAR T-cell therapy will gradually increase in B-ALL. That optimism is not as high and
the challenges are increased for the application of CAR T cells in T-cell leukemias and acute
myeloid leukemia due to the relative lack of suitable leukemia surface targets that are not
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also expressed on normal hematopoietic progenitors. Despite these significant challenges,
considerable research is being conducted into the development of CAR T cells for these
diseases utilizing unique technologies, which may be applicable to other diseases.

Introduction

Leukemia is the most common oncologic diagnosis in
pediatric patients and remains a significant cause of
mortality in adult patients, particularly within the young
adult population [1]. Although overall survival rates for
acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML) have surpassed 90% and 70%, respec-
tively, even with the use of risk-stratified chemotherapy
regimens, children with relapsed or refractory disease
continue to have poor outcomes [2, 3]. Similarly, the
survival rates of adults with leukemia are suboptimal,
ranging from 40 to 50%, with increasingly dismal out-
comes for those patients with relapsed disease [4, 5].

Over the past several years, the urgent need for novel
treatments in these high-risk populations has led to the
development of immunotherapies including chimeric
antigen receptor (CAR) T-cell therapy. Anti-CD19 CAR
T cells have revolutionized the treatment of B-cell ma-
lignancies, and ongoing studies seek to expand the ap-
plication of CAR T-cell therapy by identifying new tar-
gets, improving efficacy, and reducing toxicity. We
aimed to review the current status of therapeutic CAR
T-cell options for both pediatric and adult patients with
leukemia and identify treatment challenges associated
with manufacturing and toxicities.

CAR T-cell therapy for acute lymphoblastic leukemia

Early clinical trials of anti-CD19 CAR T-cell therapy in B-cell ALL (B-ALL)
demonstrated outstanding response rates, with complete remissions noted in
up to 90% of patients and 6-month event-free survival up to 70% [6–9]. These
studies were among the first to comprehensively report the efficacy of second-
generation CAR T cells manufactured with co-stimulatory domains from either
the 4-1BB [6••, 8] or CD28 [7, 9••]. These studies were also the first to define
diagnostic criteria for post-CAR T-cell infusion toxicities, including cytokine
release syndrome (CRS) and immune effector cell-associated neurotoxicity
syndrome (ICANS). The efforts of these studies, and in particular the ELIANA
and JULIET trials which evaluated the efficacy and safety profile of anti-CD19
CAR T-cell therapy in children and young adults with relapsed or refractory (r/r)
B-ALL and in adults with r/r diffuse large B-cell lymphoma (DLBCL), respec-
tively, led to the first FDA-approved CAR T-cell product, tisagenlecleucel [10].

Since US Food and Drug Administration (FDA) approval of tisagenlecleucel
in August 2017 for patients up to 25 years of age with B-ALL that is refractory or
in second or later relapse, the Center for International Blood and Marrow
Transplant Research and others have evaluated its “real-world” safety and
efficacy in patients compared to those treated on clinical trials. Over 500
patients have been treated with the FDA-approved product for both B-ALL
and r/r DLBCL, and data show that response rates and CRS and ICANS inci-
dences are equivalent to patients treated on study. Notably, real-world use has
expanded tisagenlecleucel access to pediatric patients less than 3 years of age,
raised the median adult age by nearly 10 years, and led to less restrictive use of
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CAR T-cell therapy with regard to those with decreased organ function or lack of
prior hematopoietic stem cell transplantation (HSCT) [11–13, 14•]. Addition-
ally, more patients have been treated with tisagenlecleucel considered to be out
of specification (OOS) per clinical trial standards due to lower viability, total
nucleated cell count, or time from collection to infusion, and studies indicate
that both safety and efficacy remain largely unaffected by OOS use [14•, 15].
Such conclusions have recently been extended by the Pediatric Real World
Consortium to include evaluation of 38 patients who received tisagenlecleucel
via the Managed Access Program, which provides tisagenlecleucel to patients
with an initial product that is OOS and for whom leukapheresis is not feasible,
as well as patients who received it as a single-patient Investigational New Drug
application [15]. Neither the efficacy nor incidences of CRS or ICANS in these
patients were different than those who received an in-specification product.

While the FDA approval of tisagenlecleucel has made CAR T-cell therapy
more widely available to patients with B-ALL, ongoing clinical trials continue to
investigate different variables affecting outcomes, including CAR T cell con-
struct, T cell origins, other target antigens, and presence or site of disease burden
(Table 1). Studies have demonstrated that CAR constructs with 4-1BB co-
stimulatory domains lead to improved persistence of CAR T cells, while con-
structs with CD28 co-stimulation result in rapid proliferation and early anti-
leukemia effects post-infusion [16, 17]. Additionally, a recent meta-analysis of
clinical trials utilizing anti-CD19 CAR T cells suggests that products with 4-1BB
co-stimulatory constructs may lead to improved minimal residual disease
(MRD) negativity when compared to products with CD28 co-stimulation, but
that progression-free survival rates at 1 year do not differ between constructs
[18]. This analysis also noted superior CR rates in patients treated with autol-
ogous CAR T cells compared to those who received CAR T-cell products made
from allogeneic T cells. However, the relatively low number of studies utilizing
allogeneic CAR T cells makes it difficult to draw definitive conclusions with
regard to efficacy. While commercialization has allowed for the delivery of
tisagenlecleucel without disease-specific clinical study limitations, it remains
unclear if the amount of disease or the site of disease affects overall efficacy. A
retrospective analysis of 200 patients who received tisagenlecleucel off-study
suggests that patients with documented high disease burden (9 5% bone
marrow lymphoblasts, peripheral blood lymphoblasts, CNS3 status, or non-
CNS extramedullary disease) have lower CR rates early post-CAR T infusion and
lower overall survival at 6 and 12 months compared to those patients with low
disease burden [19]. Additional studies are currently underway to determine
how the anatomical site, molecular characteristics of disease, and timing of CAR
T-cell infusion during upfront treatment impact survival following anti-CD19
CAR T-cell treatment (Table 1).

Despite the outstanding response rates in B-ALL patients treated with anti-
CD19 CAR T-cell therapy, relapses can still occur in over 60% of patients within
the first 12months post-infusion [9, 20]. Up to 40%of these relapses are CD19-
negative with associated immune evasion due to antigen loss or decreased
antigen expression post-infusion [7–9, 21–23]. Whether this is from escape
variants of CD19-negative cells with other oncogenic mutations (e.g., TP53),
outgrowth of preexisting CD19-negative clones, or from induced CD19 ac-
quired mutations is an area of active investigation. This clinical scenario has
led to the pursuit of alternate targets, such as CD22, as well as bivalent CAR T
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cells. As with CD19, the majority of B-cell lymphoblasts express CD22, making
it a promising target [24]. A recent phase 1 study of children and young adults
treated with a CD22-targeted CAR T-cell product resulted in potent anti-
leukemic effects in patients with CD19dim or CD19− relapse, even though the
majority had already been treated with previous anti-CD19 CAR T-cell therapy
[25]. Complete remissions were seen in 70% of patients, and the median
relapse-free survival was 6 months [25, 26]. However, relapses post-CD22-
CAR T cells were associated with decreased CD22 expression, again raising
concerns for immune evasion and long-term efficacy of monovalent CAR
therapy. Recent studies have used dual expressing CAR T cells targeting both
CD19 and CD22, hypothesizing that a bivalent product could reduce relapses
in which antigen downregulation or loss occurs. Anti-leukemic activity and CR
rates with this construct have been comparable to monovalent CAR T-cell
therapy, and patients experiencing relapse have blasts that retain antigen pos-
itivity, indicating that poor CAR T cell persistence, rather than immune evasion,
may be the cause of disease recurrence in these patients [27, 28]. Similar studies
using bispecific CAR T-cell therapy against B-ALL are ongoing and will require
long-term follow-up to determine the efficacy of these products as compared to
monovalent CAR T cells.

T-cell leukemias, while not as common as B-cell leukemias, are seen in both
pediatric and adult populations and have limited treatment options for re-
lapsed disease [29, 30]. The urgent need for novel therapeutics for these diseases
has raised the question of translating CAR T-cell therapy to a treatmentmodality
for r/r T-cell malignancies. However, many challenges arose during pre-clinical
studies. Selecting an antigen with minimal off-target expression remains a
limiting factor in the development of immunotherapies for this disease entity,
as many T-lymphoblast antigens are also found on healthy T cells, making
prevention of long-term T-cell lymphopenia challenging [31]. Sparing normal T
cells is essential, as a resulting T-cell aplasia would be detrimental to full
immune reconstitution and prevention of infections, leading to life-
threatening immune deficiency. Additionally, CAR T cells and normal T cells
share common antigens, which can lead to product contamination with leuke-
mic cells, as well as CAR T fratricide [32, 33]. Early phase trials extended from
patients with T-cell lymphomas are targeting antigens expressed predominantly
on malignant cells, including CD30, TRBC1, and CCR4 [34–37]. Other open
trials are evaluating outcomes in patients treated with CAR T cells directed at
pan-T-cell antigens, such as CD5 and CD7. Pre-clinical studies have shown that
anti-CD5 CAR T cells can downregulate their own CD5 expression, thus limit-
ing fratricide, with off-target toxicity that is restricted to a minor population of
immune cells including thymocytes and peripheral T cells [38]. Anti-CD7 CAR
T cells can be engineered to prevent self-destruction by genomic disruption of
the CD7 gene, thus allowing for robust expansion. Although CD7 is expressed
on healthy T cells, the CAR T cells themselves appear to retain antiviral activity
[39]. Other such examples are increasingly being tested such as CAR T cells
directed to CD1a, which is restricted to developing cortical thymocytes along
with T-ALL blasts, have shown promising pre-clinical results against patient-
derived primary T-ALL blasts and because CD1a is not expressed on mature T
cells, appear to be fratricide resistant [33]. Lastly, donor-derived T cells would
represent an ideal T cell source for CAR T-cell therapy, such as those from
patients following allogeneic HSCT (allo-HSCT) or through the use of “off
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the shelf” allogeneic-tolerant cells. Preliminary results have shown potential
using genetically edited fratricide-resistant allogeneic CAR T cells directed
against human T-ALL [40, 41]. Results of these phase 1 clinical trials and
long-term follow-up of patients will be critical for determining outcomes and
the effects on T-cell-mediated immunity.

CAR T-cell therapy for acute myeloid leukemia

Relapsed and refractory AML remains a difficult clinical scenario. Allo-
HSCT, which preferentially requires that patients are in remission, is the
standard of care and only potentially curative option for this group of
patients, highlighting the need for additional therapeutics. The develop-
ment of CAR T-cell therapy for use in AML faces many of the same
challenges as T-ALL, if not more, particularly due to the lack of an AML-
specific targetable antigen not expressed on normal myeloid progenitors.
Currently, there are several clinical trials studying the safety and efficacy
of CAR T cells targeting CD33, CLL-1, or CD123 antigens expressed on
most myeloblasts. CD33 has proved an effective target for immunother-
apy against AML, perhaps highlighted best with the FDA approval gem-
tuzumab ozogamicin, an anti-CD33 antibody-drug conjugate [42]. Pro-
pelled by these results, pre-clinical studies have showed potent anti-
leukemic effects of 3 different anti-CD33 CAR T cells using differing
constructs [43]. Early reports have shown responses in 2 patients, one of
whom had a CR with the use of a dual anti-CD33/CLL-1 CAR T-cell
product prior to proceeding to transplant [44, 45]. Another potential
AML-targeted antigen, CD123, while expressed by normal hematopoietic
cells and endothelial cells, is also overexpressed on leukemic myelo-
blasts in comparison to healthy myeloid cells. Pre-clinical data support-
ing in vivo anti-leukemic activity of anti-CD123 CAR T cells led to a
first-in-human clinical trial using second-generation CAR T-cells with a
CD28 co-stimulatory domain [46]. Early results showed upfront
responses in 5 out of 6 patients with refractory AML following allo-
HSCT, 3 of which experienced CR [47]. In an effort to mitigate long-
term severe myelosuppression, another trial utilized “biodegradable”
anti-CD123 CAR T-cells that were manufactured using T cells that were
electroporated with anti-CD123 CAR mRNA and administered as multi-
ple infusions in patients with r/r AML. While the off-target myelosup-
pressive effects were minimal, the lack of product expansion provided a
poor anti-leukemic effect, and the trial was halted due to lack of efficacy
[48]. However, the positive safety profile of this product supported the
development of a more traditional lentiviral transduction approaches
using anti-CD123 CAR T cells with either 4-1BB or CD28 co-
stimulatory domains [49]. These and additional clinical studies using
CD33 and CD123-specific CAR T cells are ongoing (Table 2).

In the race to manufacture an effective and minimally toxic CAR T-
cell therapy for AML, the primary limiting factor remains lack of a
leukemia-specific antigen. Unlike anti-CD19 CAR-T therapy, which
results in a relatively benign and manageable toxicity of B-cell aplasia,
the destruction of healthy myeloid precursors could lead to profound
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neutropenia, anemia, and thrombocytopenia. One strategy to mitigate
these potential toxicities, while still allowing for expansion and an anti-
leukemic effect, is to incorporate a “safety switch.” An example of this is
a current phase 1 study is using anti-CD19 CAR T cells that co-express
EGFRt, which can be targeted with the EGFR-specific monoclonal anti-
body, cetuximab [50]. Other approaches that have been used in CAR T
cells targeting B-cell antigens include the use of suicide genes such as
iCasp9, HSV-TK, and TMPK, but this technology has yet to be translated
over to anti-AML CAR T cells [51, 52]. Despite these mechanisms for
reducing off-target toxicity and other barriers that limit the use of CAR T
cells against AML such as its inherent heterogeneity and immunosup-
pressive microenvironment, a continued search for tumor-specific anti-
gens remains of utmost importance.

Treatment challenges

An expanding myriad of challenges have emerged regarding the use of CAR T-
cell therapies against leukemias as the use of CAR T cells against B-ALL has
expanded through clinical studies and real-world experiences. We highlight
some of these challenges and current exploration of solutions to address them
below.

Challenges in manufacturing CAR T cells

Collection of adequate T cells from heavily pre-treated patients continues to
be a barrier to the production of CAR T cells. The exact number of peripheral
lymphocytes (absolute lymphocyte count; ALC) and CD3+ T cells needed for
in-specification expansion remains unclear, as most patients have an ALC
that is skewed towards the normal range [53]. Experience of Shah and
colleagues at the National Cancer Institute suggests that collection of patients
with CD3+ cell counts as low as 150 cells/μL is feasible for generating CAR T-
cell products [26]. Expanding CAR T cells has also proven difficult from
certain patients. Chemotherapies commonly used to treat leukemias, such
as clofarabine, doxorubicin, cyclophosphamide, and cytarabine, appear to
lead to poor-quality CAR T cells and selective reduction of early lineage T cells
in the product [54, 55]. In fact, the optimal ratio of CD4+ and CD8+ T cells
and their developmental lineage remain questions that are currently under
investigation. Expansion protocols, timing, and cytokines used for produc-
tion also appear to alter the potency of anti-leukemic CAR T cells. For
instance, early work found that anti-CD19 CAR T cells made from patients
with CD19+ malignancies were preferentially expanded using a combination
of IL-7 and IL-15 rather than IL-2 [56]. This and other work has also shown
that anti-CD19-CAR T cells derived from long-lived, self-renewing, multi-
potent Tmemory stem cells (TSCM)mediate superior anti-leukemic responses
compared to those generated frommore terminally differentiated T cells [57,
58•]. Continual optimization of tisagenlecleucel production from clinical
trials to real-world experiences highlights the importance of these issues and
how such production challenges are likely to be different and must be
tailored for CAR T cells directed at dissimilar leukemic targets [59].
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Mechanisms of resistance to CAR T-cell therapy

Most data regarding CAR T-cell resistance come from patients treated with anti-
CD19 CAR T cells against B-ALL and r/r DLBCL. There are two patterns of post-
CAR T-cell relapse, antigen positive (i.e., CD19+) or antigen negative (i.e.,
CD19−). The key mechanisms leading to antigen positive leukemic relapse lies
in poor in vivo persistence and limited potency of CAR T cells. There are many
putative mechanisms for such impotent CAR T-cell products, some of which
have been discussed above. They range from the co-stimulatory domain used,
with that from 4-1BB showing greater persistence than those from CD28, and
starting T cell phenotype and exhaustion characteristics [16, 17, 60•]. Long-term
follow-up analysis of patients treated with anti-CD19 CAR T cells for B-ALL also
suggests that children and young adults have longer event-free survival than
adult patients, implying that T cell age may play a role [20]. There are now a
number of pre-clinical and early phase clinical trials testing the ex vivo addition
of small molecules targeting T cell signal transduction pathways, such as BTK
and PI3K, to alter differentiation, exhaustion, and metabolic status of CAR T
cells against ALL and AML [61–63].

Approximately 10–20% of patients with B-ALL will experience CD19-negative
relapse following anti-CD19 CAR T treatment [64]. There are various known
mechanisms responsible for B-ALL antigen loss following CAR T-cell therapy
including, most commonly, CD19 gene mutation and RNA splice variants [23,
65]. Interestingly, in contrast to CD19, downregulation of CD22 appears to be a
major mechanism of escape following anti-CD22 CAR T-cell therapy [25]. As
detailed above, in an effort to overcome such antigen loss, dual expressing anti-
CD19/CD22CAR T cells have been developed against B-ALL. However, recent data
suggest that anti-CD22 CAR T cells induce both CD19 and CD22 downregulation
and that a method to combat such generalized immune evasion may be through
concomitant treatment with epigenetic modifying agents [66]. Heterogeneity of
CD19 andCD22 expression on leukemic cell surface exists pre-CAR therapy aswell
and likely impacts responses to such targeted therapies and is responsible for
outgrowth of antigen dim/loss minor leukemic populations [67]. Lastly, genetic
instability from leukemic driver mutations also leads to antigen downregulation
following mono- or dual-specific CAR T-cell treatment, as was recently detected in
TP53-mutated B-ALL in children treated with anti-CD19 CAR T cells followed by
either allo-HSCT or anti-CD22 CAR T cells [68]. It is all but certain that we will
discover additional mechanisms of resistance in the future following CAR T-cell
therapy against different leukemic targets given what we have learned regarding
those responsible for anti-CD19 and anti-CD22 CAR T-cell failure.

Toxicities associated with CAR T-cell therapy

A number of significant toxicities have been associated with CAR T-cell therapy
for leukemias. Early toxicities include CRS, ICANS, and hemophagocytic lym-
phohistiocytosis and toxicities directly associated with lymphodepleting che-
motherapy [69]. Later toxicities include prolonged cytopenias and hypogam-
maglobulinemia. The incidence, onset, severity, and duration of these toxicities
are dependent on the target antigen, the CAR construct, the specific disease
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being treated, and disease burden. The incidence and severity of both CRS and
ICANS have been higher in anti-CD19 CAR T-cell therapy for B-ALL, as com-
pared with other diseases.

CRS is the most common toxicity reported with CAR T-cell trials for leuke-
mia. Pathophysiologically, CRS results from high levels of inflammatory cyto-
kines (e.g., IL-6 and IFN-γ) following T-cell activation and proliferation. Clin-
ically, it is manifested by development of fever, headaches, myalgias, hypoten-
sion, and hypoxia. The reported overall and ≥ Grade 3 incidences of CRS in the
ELIANA trial were 77% and 47%, respectively [9••]. In adult B-ALL trials, the
incidences of overall and ≥ Grade 3 CRS have been 85–93% and 26–93%,
respectively [20, 70]. A high leukemic burden, higher doses of CAR T cells, and
CAR constructs containing a CD28 co-stimulatory domain have been associated
with an increased risk and severity of CRS. In early CAR T-cell trials, CRS was
primarily managed with tocilizumab, as corticosteroids were generally avoided
over concerns that they may impede CAR T-cell efficacy. However, subsequent
studies demonstrated that these concerns were relatively unwarranted, and
corticosteroids are utilized earlier in the course of CRS, particularly if there is
lack of early response to tocilizumab. There is generally complete resolution of
CRS symptoms, and it is rare for CRS symptoms to persist beyond the first
month after CAR T-cell infusion.

The second most common complication of CAR T-cell therapy for leukemia
is ICANS, which presents clinically as confusion, delirium, expressive aphasia,
weakness, tremor, headache, seizures, altered level of consciousness, and the
most serious manifestation, cerebral edema. Cerebral edema can occur relative-
ly suddenly and has been lethal in most cases. ICANS generally does not occur
without CRS preceding it, and increased severity of CRS correlates with the risk
of developing ICANS. Although generally occurring shortly after CRS and
resolving in most cases within 2–4 weeks, ICANS can occur beyond a month
after infusion and can persist for several weeks to months. Corticosteroids have
been successfully used for the management of ICANS.

Early and late infections have been observed in a significant proportion of
leukemia patients treated with CAR T-cell therapy. In the ELIANA trial alone, 43%
of patients experienced an infection including 24% experiencing ≥ Grade 3 infec-
tions. Early infections can be partially attributed to the immuno- and myelosup-
pressive effects of lymphodepleting chemotherapy given prior to CAR T-cell infu-
sion, resulting primarily in bacterial infections. Late infections, primarily viral and
including CMV, have been attributed to delayed T- and B-cell recovery. The latter is
a result of ongoing effects against cells expressing CD19, resulting in clinically
significant hypogammaglobulinemia. Bacterial, fungal, and viral prophylaxis has
become standard, and intravenous immunoglobulins are commonly employed in
patients with hypogammaglobulinemia and recurrent infections. With growing
experience, the toxicities associated with CAR T-cell therapy have increasingly
become manageable; however, they can be life-threatening and require careful
monitoring, adequate supportive care measures, and clinical expertise.

A bridge to transplant or stand-alone therapy?

Despite relatively high remission rates in patients with r/r B-ALL following anti-
CD19 CAR T-cell therapy, relapses remain common. In fact, up to 50% of
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patients will eventually relapse, most within the first 12 months following
infusion [9••, 20]. This begs the question if long-term survival of patients with
leukemia would be improved with post-CAR consolidation with allo-HSCT or
followed by treatment with alternatively specific CAR T cells. While allo-HSCT
is the only established curative treatment for aggressive leukemias to date, there
is no consensus on its role following CAR T-cell therapy, and its use as a
consolidative treatment remains institutionally specific andmay differ between
pediatric and adult patients and dependent upon the CAR T-cell product. Ten
percent of patients with negative MRD in the initial phase 1 clinical trial of the
anti-CD19/4-1BB CAR T product underwent allo-HSCT, and in the extended
ELIANA trial, this rose to 14% [9••, 71]. However, in another phase 1 study
using a different anti-CD19/4-1BB product, median duration of B-cell aplasia
was shorter, and 28% of patients underwent allo-HSCT [53]. Consistent with
CD28-based anti-CD19 CAR T cells, two phase 1 studies using such products
found relatively shorter periods of B-cell aplasia and thereby a larger percentage
of patients underwent allo-HSCT, 75% and 83%, respectively [8, 72, 73].
Published phase 1 data in adults is somewhat similar with 39% of patients
infused with an anti-CD19/CD28 product and 45% of those infused with an
anti-CD19/4-1BB product having undergone allo-HSCT following CAR T-cell
infusion [20, 74]. Not surprisingly, one observation from these trials is that
patients with shorter periods of B-cell aplasia (~3–6 months) generally do
better following allo-HSCT than those who do not undergo transplant. Because
shorter periods of B-cell aplasia are found following CD28-based anti-CD19
CAR T-cells, some investigators have proposed that such products should be
used to place patients in deep remission prior to allo-HSCT. Conversely, there
exists some controversy on what to do following infusion of 4-1BB-based anti-
CD19 CAR T-cells and when to “pull the trigger” on allo-HSCT based on
surveillance bone marrow detection of hematogones or peripheral B-cell recov-
ery. There currently are no risk stratifications or timeline to B-cell recovery
guidelines for pediatric or adult patients who may benefit from allo-HSCT.
Until these are determined, the decision to use CAR T cells as a bridge to
transplant will remain patient specific and institutional. Regardless of CAR T-
cell product, risk stratification should be based upon if patients have a prior
history of allo-HSCT, the biology of their disease, their age, and if future CAR T-
cell products that target different leukemic antigens show efficacy post-initial
CAR T cell failure. Firm establishment of disease risk factors and outcomes of
ongoing clinical trials and evidence provided by real-world data will be key to
answering these questions moving forward.
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