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Opinion statement

Intracranial stereotactic radiosurgery (SRS) is an effective and convenient treatment for
many brain conditions. Data regarding safety come mostly from retrospective single
institutional studies and a small number of prospective studies. Variations in target
delineation, treatment delivery, imaging follow-up protocols and dose prescription limit
the interpretation of this data. There has been much clinical focus on radiation necrosis
(RN) in particular, as it is being increasingly recognized on follow-up imaging. Symptom-
atic RN may be treated with medical therapy (such as corticosteroids and bevacizumab)
with surgical resection being reserved for refractory patients. Nevertheless, RN remains a
challenging condition to manage, and therefore upfront patient selection for SRS remains
critical to provide complication-free control. Mitigation strategies need to be considered
in situations where the baseline risk of RN is expected to be high—such as large target
volume or re-irradiation. These may involve reduction in the prescribed dose or hypo-
fractionated stereotactic radiation therapy (HSRT). Recently published guidelines and
international meta-analysis report the benefit of HSRT in larger lesions, without compro-
mising control rates. However, careful attention to planning parameters and SRS techni-
ques still need to be adhered, even with HSRT. In cases where the risk is deemed to be high
despite mitigation, a combination approach of surgery with or without post-operative
radiation should be considered.

Introduction

The delivery of conformal radiation in one (SRS) or 3–5
fractions (HSRT) has been used in brain lesions for 9 50
years. It is proven to be effective and convenient and is
being increasingly adopted worldwide. This is exempli-
fied in the setting of brain metastases (BM), where the
use of whole-brain radiotherapy (WBRT) is decreasing
and the use of SRS is increasing [1]. Other conditions
commonly treated with SRS include non-malignant
tumours (meningioma, pituitary adenoma, vestibular
schwannoma) and malignant (recurrent glioma)
tumours, arteriovenous vascular malformations (AVM)
and functional disorders (trigeminal neuralgia and
movement disorders). The principles of SRS/HSRT

involve accurate target localization, meticulous treat-
ment planning with multiple beam angles allowing for
conformal dose distribution around the target and
image-guided treatment delivery. Multiple commercial
platforms are currently available including Gamma
Knife, CyberKnife or linear accelerator (LINAC), which
are all able to produce a sharp dose fall-off outside the
target. However, due to the physical properties of mega-
voltage radiation, the peri-lesional areas are invariably
exposed to low-intermediate doses of radiation, result-
ing in treatment-related imaging changes which can be
indistinguishable from tumour recurrence. These
changesmay represent radiation necrosis (inflammation

57 Page 2 of 18

Published online: 7 June 2021



Curr. Treat. Options in Oncol. (2021) 22: 57

from tissue death), which can lead symptomatic oede-
ma and a decline in the patient’s quality of life.

In this focused review, we will elaborate on the path-
ophysiology, diagnosis and contributing factors for

radiation necrosis. In addition, since established treat-
ments are limited, we will outline mitigation strategies
to avoid RN.

Search strategy

We performed a search on MEDLINE using the MESH headings “radiosurgery”
and “necrosis” on September 10, 2020. Eighty four citations were retrieved, and
relevant studies have been included in this narrative review.

Incidence of RN

The incidence of RN is probably between 5 and 26%, with roughly 1/3–1/2
being symptomatic [2–7]. This large variation exists, in part, due to the varying
definitions of RN (some based on radiological changes while others requiring
pathological confirmation). The incidence is likely higher amongst contempo-
rary cohorts owing to improved quality of diagnostic imaging, increased aware-
ness of RN and longer survival of patients given improved oncological treat-
ment. The largest series from Cleveland Clinic, assessing 1650 patients with
2843 brain metastases, report a radiographic RN rate (per lesion) of 8% with
half being symptomatic [7•].

Pathophysiology of RN

Early animal experiments, using single fractions ranging from 10 to 25 Gy,
indicated that the radiation tolerance of brain parenchyma was dependent on
radiation dose, irradiated volume and time elapsed post-radiation [8, 9]. Post-
mortem analysis demonstrated reduction in vasculature and myelin in the
irradiated areas. In addition, these pre-clinical experiments demonstrated that
the necrosis free-interval shortens with higher doses.

There are two main theories regarding the pathophysiology of RN:

& Vascular injury theory
Large fraction sizes (typically 9 8 Gy) can activate acid sphingomyelinase

and cause upregulation of ceramide, leading to endothelial apoptosis [10].
Kamiryo et al. have reported that endothelial changes precede frank necrosis
[11]. These changes include reduction of capillary density, increase in capillary
diameter and thickening of the capillary basement membrane. In addition,
radiation can lead to a pro-inflammatory milieu (involving TNF-alpha, IL-
1beta, VEGF, ICAM-1) eventually leading to fibrinoid necrosis of small vessels,
resulting in ischemia and cell death of brain parenchyma [12–16].

& Glial cell theory
Both oligodendrocytes and astrocytes can be affected by radiation, with the

former being more sensitive [17]. Direct damage to oligodendrocytes and their
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precursors (oligodendrocyte type2 astrocytes) may lead to white matter demy-
elination and necrosis [18]. Radiation has been shown to cause activation of
astrocytes (reactive astrogliosis), contributing to the inflammatory environment
which is seen in RN [19].

Diagnosis of RN

The diagnosis of RN can be notoriously challenging, which is amajor limitation
when interpreting the literature. There lacks a current gold standard, although
histopathological confirmation is preferred. In many situations, there can be a
co-existence between radiation changes and residual tumour with the relative
proportion influencing the final diagnosis [20, 21].
1. Histopathological changes: Endothelial cells are highly susceptible, with

morphological changes including fibrinoid necrosis, haemorrhage, hyali-
nisation and thrombosis of the blood vessels. The necrotic area has scant
cellularity, surrounded by gliotic brain tissue containing GFAP-reactive
astrocytes demonstrating prominent cytoplasmic ramification. Foamy
macrophages and hemosiderophages can be seen, with occasional dystro-
phic calcification. Radiation-induced cytologic atypia may be
encountered—with features of cytomegaly and bizarre-looking bubbly nu-
clei. In the setting of tumour recurrence with superimposed RN, immuno-
histochemical staining may be helpful (dependent on the primary pathol-
ogy) to highlight viable tumour cells.

2. Radiological investigations

& Magnetic resonance imaging (MRI) is usually the initial investigation for
patients with suspected RN. Unfortunately, both RN and tumour recur-
rence show contrast enhancement and peri-lesional oedema [22, 23].
Temporal changes (e.g. increase in lesion size) are not specific to either
diagnosis. Characteristic enhancement patterns seen with RN, such as
“swiss cheese” and “soap-bubble”, have a low positive predictive value
[24]. Lesion-quotient (LQ) values below 0.3, referring to the ratio of
nodule on T2 sequence to the total enhancing area on T1 sequence, have
been suggested, but are not uniformly reproducible in other studies [24,
25]. The low predictive value of conventional MRI alone has prompted
many groups to explore advanced imaging modalities to improve the
diagnostic confidence of RN [26]. For example, serial radiomic changes
and time-dependent contrast changes seenwith conventionalMRI imaging
have shown potential to improve the diagnostic accuracy [27–29].

& MRperfusion: Recurrent tumour has increased vasculature, resulting in higher
perfusion and blood volume, compared to RN. An increased relative cerebral
blood volume (rCBV) on dynamic susceptibility weighted MRI has been
proposed to differentiate recurrent tumour from RN [30, 31]. However, the
interpretation can be subjective. Hu et al. reported that rCBV G 0.71 of having
a 92% sensitivity and 100% specificity for RN [31]. Other authors have
suggested a higher rCBV cut-off of 2.1 (100% sensitivity and specificity) [32].
Acknowledging the significant overlap in rCBV cut-off values, Barajas et al.
proposed using percentage of signal-intensity recovery as ametric for RN [22].
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Intravoxel incoherent motion (IVIM) provides quantitative diffusion and
perfusion readouts based ondiffusion-weighted imaging and has been shown
to be superior to rCBV for the diagnosis of RN [33].

& MR spectroscopy: Intra-lesional metabolite composition may help with
the diagnosis of tumour recurrence versus RN. For example, Zeng et al.
have found that when both choline creatinine and choline-N-acetyl as-
partate values were above 1.71, sensitivity, specificity and diagnostic ac-
curacy were 94.1%, 100% and 96.2% respectively for tumour recurrence
[34]. In contrast, an elevated lipid-lactate peak and low levels of metabo-
lites would favour RN [35]. In addition, utilizing multi-voxel spectroscopy
has been shown to bemore accurate than single voxel [36]. However, MRS
is limited by voxel size, requiring the lesion to be larger than 1 cm3, and is
subject to sampling errors in heterogeneous tumours. Chemical exchange
saturation transfer (CEST) imaging is a novel method looking at endoge-
nous mobile peptides and has been shown to be differentiate RN from
tumour recurrence with high accuracy in a small cohort [37].

& Functional imaging: The main drawback of FDG-PET is the high physio-
logical glucose metabolism in the normal brain parenchyma, which may
mask tumour recurrences. Amino acid tracers such as carbon-11 methio-
nine (MET), fluoro-1-thymidine (FLT) and fluroethyltyrosine (FET) have
shown promise, as there is selective localization within the tumour, in
contrast to normal brain parenchyma [38–41]. However, in a meta-
analysis by Li et al., sub-group analysis comparing amino acid tracers and
FDG had similar diagnostic accuracy in differentiating recurrent brain
metastases from RN [42]. Apart from PET, thallium-201 SPECT has been
shown to be useful to distinguish tumour recurrence from RN in brain
metastases and high-grade gliomas [43].

Figure 1 shows the various imaging modalities which can be used to diag-
nose RN.

Contributory factors for RN

A direct cause effect relationship can be challenging, as the development of RN
is likely multifactorial. The underlying condition for which SRS is being used
should also be considered. Counter-intuitively, the risk of RN in patients with
AVM undergoing SRS is lower than patients with BM, despite the shorter
survival seen in patients with metastatic disease [44••].
1) Dose-volume interplay: The radiation dose contributes to RN. SRS at doses

above 24–25 Gy are at higher risk of causing RN [45]. Shehata et al. reported
that in patients treated with prior WBRT, prescription doses exceeding 20 Gy
(for brain metastases G 2 cm) increased the risk of Grade 3 or higher (G3+)
toxicity [46]. In addition, the volume effect exists within the brain, where small
targets can be safely treated to a higher dose, and a dose reduction is needed as
the tumour volume increases. A stepwise reduction of safe SRS prescription
doses, based on maximum tumour diameter, was determined by early RTOG
trials [47]. In a multi-variable analysis from RTOG 90-05, tumour diameter
was significantly associated with G3+ neuro-toxicity with tumours between 2
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Fig. 1. a Tumour recurrence: (i) T2-weighted, (ii) post-contrast T1 and (iii) rCBV (relative cerebral blood volume) MR perfusion
sequence of a lesion within the left temporal lobe. The lesion quotient of 0.71 and increased rCBV is suggestive of tumour
recurrence. b Tumour recurrence: (i) rCBV and (ii) post-contrast T1 showing increased blood flow within the periphery of the lesion,
which was histology proven to a tumour recurrence. Radiation necrosis: (iii) rCBV and (iv) post-contrast T1 showing no increase in
blood flow. c Mixed picture of radiation necrosis and tumour recurrence: (i, ii) MR spectroscopy and (iii) post contrast T1 showing a
growing pericallosal lesion post-WBRT. High lipid-lactate peak seen in radiation necrosis at the right cingulum while increased
choline:creatine and choline:N-acetyl-aspartate ratios suggestive of tumour recurrence in the left cingulum. d Tumour recurrence:
(i) F-18 FET PET showing amino acid tracer uptake within the enhancing lesion, with (ii) demonstrating the lesion on post-contrast
T1 (adapted from Vellayappan B, Tan CL, Yong C, Khor LK, Koh WY, Yeo TT, Detsky J, Lo S, and Sahgal A. Diagnosis and Management
of Radiation Necrosis in Patients With Brain Metastases. Front Oncol. 2018 Sep 28;8:395.doi: 10.3389/fonc.2018.00395. PMID:
30324090; PMCID: PMC6172328)
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and 3 cm having a 7.3-fold higher risk and tumours 3 and 4 cm having a 16-
fold higher risk (in comparison to tumours G 2 cm) [45].

2) Volume of uninvolved brain parenchyma exposed to intermediate-high
dose: This has been shown to be an independent risk factor in some studies
[3, 5, 48, 49]. The V12 (volume of brain receiving 12 Gy or higher) metric
has been commonly reported to correlate with RN [5, 48]. However, the
cut-off values suggested by studies have varied, depending on the underly-
ing condition and how the volumes were defined. It remains unclear if the
gross target volume (GTV) should be subtracted from V12 when assessing
this metric. This is an important consideration, especially with larger
lesions. The recently published HyTEC report suggests a more conservative
approach, where the tissue V12 is utilized (i.e. without subtracting GTV)
[44••]. Based on their normal tissue complication probability (NTCP)
modelling, the risk of RN is approximately 10% or less when V12 G 5 cc.
SRS for AVM was associated with lower rates of RN, compared to brain
metastases, for equivalent V12 values. With the increasing use of HSRT,
many single institutional cohorts have reported the rates and dose-volume
metrics associated with RN [50–54]. Inoue et al. and Peng et al. have
suggested that the volume received by the single fraction equivalent dose of
14 Gy (SFED V14) is to be computed [51, 52, 54]. Assuming an alpha/beta
value of 2, this translates to V23 (for 3 fractions) and V29 (for 5 fractions).
The probability of G3+ toxicity (requiring surgical intervention) approxi-
mates 4% if these values exceed 20 cc [44••].

3) Single versus multiple lesion SRS: Recent trials, and guidelines, have sug-
gested SRS to be used in patients with multiple brain metastases [55–57].
Although there is no head-to-head comparison suggesting that the risk of
RN is higher in patients withmultiple BMundergoing SRS, the intermediate
dose spillage to the brain parenchyma is expected to be higher than for a
patient undergoing SRS to a single lesion. Previous studies have found the
V12 metric to have a linear correlation with total tumour volume, rather
than the number of targets [58]. With multiple targets, it remains unclear if
the V12 metric should be assessed per lesion, or in totality for the patient
(i.e. composite plan). Minniti et al. analysed that patients with 910 targets
treated with LINAC-SRS report that the V12 per lesion predicts for post-
treatment changes, rather than V12 from the composite plan [59].

4) Prior radiation exposure: Re-irradiation, especially with previous SRS,
increases the risk of RN significantly [60••]. The largest series from UCSF
report a 1-year risk of 20% with re-SRS [4]. In situations where WBRT is
used prior to or in conjunction with SRS, the risks of RN range between 4
and 8%, respectively [4]. These findings are not much higher than the rates
seen with SRS alone.

5) Use of concurrent systemic therapy (including immunotherapy, targeted
therapy and chemotherapy): Controversy exists regarding the risk of RN
with concurrent immunotherapy. Lehrer leads an individual patient data
meta-analysis for patients with brain metastases treated with SRS and
immunotherapy [61]. The overall incidence of RNwas low at 5.3% (95%CI
0.3 to 15.7%), with ipilimumab being implicated with all cases [62–64].
This is much lower than single institutional studies, predominantly in
patients withmelanoma brainmetastases, reporting RN to range from 14 to
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37.5% when combining immunotherapy with SRS [65–68]. Martin et al.
reviewed single institutional data and reported an increased risk of symp-
tomatic RN with the use of ipilimumab and checkpoint inhibitors, for
which only ipilimumab retained statistical significance [69]. Data regarding
the safety of concurrent targeted therapy is sparse. In a study by Kim et al.,
the use of concurrent targeted therapy (defined as administration within
five biological half-lives) increased the 12-month cumulative incidence of
radiological RN (8.8 vs 5.3%, p G 0.01) [7•]. This was particularly pro-
nounced with VEGFR tyrosine kinase inhibitors (TKI) and EGFR TKIs.
Based on the ECOG consensus guidelines, the use of concurrent BRAF
inhibitors do not seem to increase the risk of neuro-toxicity [70]. The use of
concurrent chemotherapy, with SRS, has not been shown to increase the
risk of RN, ranging from 4 to 17% [7, 71].

6) Location of lesion: Certain brain locations may be more prone to devel-
oping RN (such frontal and occipital cortex, eloquent brain areas including
thalamus, basal ganglia), whereas other locations (e.g. brainstem) are more
resistant [72]. Superficial lesions may have a lower risk of RN, as the dose
spillage happens within non-brain tissue (such as skull bone, skin) com-
pared to deeper lesions [73].

7) Planning target volume (PTV)margin: A larger gross-tumour-volume (GTV) to
PTVmarginwould include a larger volume of normal brain parenchyma in the
prescription isodose and therefore predispose to RN [74]. This has been
investigated in a randomized controlled trial, comparing 1- and 3-mm GTV-
PTV margins [75]. Local control was similar in both groups; however, the 3-
mm PTV margin group had a higher incidence of RN.

8) Intrinsic radiosensitivity of the patient: Studies from patients undergoing
SRS for AVM suggest that the patients who developed RN were more
sensitive to radiation [76]. This was shown using in vitro survival curves
from skin fibroblasts obtained frompatients who ultimately developed RN.

9) SRS platform: SRS can be delivered by LINAC-based platforms (using dynamic
conformal arcs or VMAT) or dedicated units including Gamma Knife or
CyberKnife (using multiple non-coplanar beams). The risk of RN does not
appear to vary between SRS platforms despite inherent differences in PTV
margin and prescription practices. The frame-based Gamma Knife platform
typically uses a 0-mm PTVmargin and prescribes the dose to the 50% isodose
line. This results in a higher maximum dose/prescription dose ratio (≥ 2),
which has been associated with increased neuro-toxicity [47]. LINAC-based
platforms, which often use relocatable masks, typically apply a 1–2-mm PTV
margin. The dose is usually prescribed to the 60–80% isodose line, leading to
less dose heterogeneity. For LINACSRS, the dose gradientmay be related to the
prescription isodose line, with steeper gradients (less spillage to normal tissue)
seenwhen the dose is prescribed to the 60–70% isodose line, in comparison to
the 90% isodose line [77]. Dose heterogeneity (i.e. hot spots) has been
suggested to contribute to RN, in particular if they occur within the GTV-PTV
margin where normal brain parenchyma is located [78••]. Between platforms,
the Gamma Knife appears to have less dose spillage, in comparison to LINAC,
when treating multiple targets [79, 80].
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10) Lack of a quality assurance program: SRS is a technologically intensive
treatment, and the potential for error is a major concern in view of the
highly conformal nature, steep dose gradients and large dose per fraction.
The lack of a robust end-to-end quality assurance program (i.e. simula-
tion, target delineation, planning, delivery) does increase the risks of
treatment-related complications, including RN [81].

Management of RN

In general, asymptomatic RN can be observed closely. Unlike tumour recur-
rence, RNmay resolve spontaneously, with up to 76%of lesions resolving by 18
months [82]. First-line medical therapy for symptomatic patients involves
corticosteroids (e.g. dexamethasone). Corticosteroids provide an anti-
inflammatory effect and reduce the leakiness of the blood-tumour barrier
[83]. Commonly used is a start dose of 4–8 mg/day, with a gradual reduction
in dose. Patients may require steroids for prolonged periods of time being
subject to steroid toxicities including myopathy, gastritis and immune suppres-
sion. Bevacizumab (anti-VEGF monoclonal antibody) can be used as a steroid-
sparing agent. A pooled analysis has shown that bevacizumab causes radio-
graphic and clinical improvement in majority of patients [84]. A small double-
blinded randomized controlled trial and a multicentre prospective trial have
both shownmajority of patients having radiographic and clinical improvement
with bevacizumab [85, 86]. The duration of effect was durable (median 10
months). Although bevacizumab is promising, the drug-related toxicities in-
cluding haemorrhage, thrombosis and impairing wound healing must be con-
sidered [87]. Other therapies such as anti-coagulants and vitamin E/pentoxifyl-
line have been explored but are yet to be considered mainstream [88, 89].
Hyperbaric oxygen therapy (HBOT) has shown to have potential in the pro-
phylaxis of RN [90]. The use of HBOT to reverse established RN is equivocal
with most studies being limited to case reports [91, 92].

Patients who remain symptomatic despite conservative management, or
patients with neurological deterioration frommass effect, should be considered
for surgical resection [93].

Surgical resection aids in confirming the diagnosis and allows rapid relief of
mass effect and a quicker reduction of steroids [94]. However, surgical resection
may only be possible for medically fit patients and for readily accessible cortical
lesions.

For lesions which are less surgically accessible, a novel intervention using a
laser-emitting diode placedwithin the centre of the lesion called laser interstitial
thermal ablation (LITT) has been increasingly used [95]. It is considerably less
invasive than an open craniotomy and manages to obtain a tissue diagnosis.
Interestingly, LITT has been shown to be effective for both recurrent metastatic
lesions and RN [96, 97]. A prospective multicentre study investigated the utility
of LITT for lesions which are progressing after SRS. Patients who underwent
total ablation for RN (n = 4) and recurrence (n = 4) had a 3-month control rate
of 100% and 75% respectively [98••]. Approximately one in three patients is
able to reduce, or stop, steroid use within 3 months of the procedure. Although
the sample size is small, these results appear promising.
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Mitigation strategies for RN

The diagnosis andmanagement of RN are challenging. Strategies to prevent and
mitigate RN should be considered upfront in the clinical management of
patients. Our proposed mitigation strategies have been outlined in Table 1.
Notably, multifraction SRS (or HSRT) is being increasingly used. Multiple
authors have reported the use of HSRT in large lesions to reduce the risk of
RN while maintaining control rates [51–53, 99, 100]. Lehrer published an
international meta-analysis of 24 trials studying the effects of fractionation
and tumour volume [101••]. Fractionation reduced the risk of RN significantly
for lesions 9 3 cmdiameter (7.3% vs 23.1%, p = 0.003). There was no significant
difference, with fractionation, for lesions G 3 cm (6.5 vs 11.7%, p = 0.29). The
recently published HyTEC paper confirms the use of HSRT to reduce the risk of
RN in larger lesions [44••]. However, the exact cut-off to be used for what is
considered large varies from 9 2 to 9 3 cm in diameter.

Clearly, large brain lesions being treated with single fraction SRS place
patients at higher risk of RN. As such, HSRT should be considered. If acceptable
dose constraints are not attainable, upfront surgical resection followed by cavity
radiation should be considered. Regarding the dose constraints, the HyTEC
paper has summarized the available evidence, reporting that if tissue V12 (i.e.
including target volume) exceeds 5, 10 and 915 cc, the risk of symptomatic RN
approximates 10, 15 and 20% respectively [44••]. This corroborates with
QUANTEC recommendation of V12 to be G 5–10 cc and the UK SABR consor-
tium guidelines of V12 G 10 cc [102, 103]. In the setting of HSRT, the HyTEC
paper recommends that SFED 14Gy to be G 20 cc (which corresponds to V23 in
3 fractions and V29Gy in 5 fractions) to limit G3+ toxicity to G 4% [44••].
Clearly, caution should be exercised in patients who have undergone prior SRS
[4]. The recovery of brain parenchyma from prior radiation, or the preferred
time interval, is still unclear. Using the smallest possible PTV margin, by
optimizing the patient setup and the use of image guidance, reduces the volume
of normal brain parenchyma exposed to high doses of radiation [75].

Novel approaches, which are currently investigational, such as angiotensin
receptor blockers (single institutional retrospective cohort) and ultra-high dose
rate (FLASH) radiation (pre-clinical), have shown some signals in reducing the
radiation-induced inflammatory responses [104, 105].

Summary

Symptomatic RN tends to be permanent and continues to be challenging to
manage—as such the premise lies in mitigation and, if possible, prevention.
Clearly, rigorous SRS techniques (including immobilization, target visualiza-
tion, treatment planning and delivery) and adherence to known dose limits are
important. Additional mitigation strategies will need to be considered in sit-
uations where the baseline risk of RN is expected to be high—such as large
target volume or re-irradiation. These may involve reduction in the prescribed
dose or employing strategies such as surgery with or without radiotherapy or
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Table 1. Mitigation strategies to reduce the risk of RN

Contributing factor Mitigation strategy Reference
Dose-volume interplay SRS dose should be lowered for larger volume lesions.

However, tumour control is compromised as a result

Large volume targets should be considered for the following
1) Surgical resection, in addition to SRS. Both pre-operative and
post-operative SRS approaches are valid options
2) HSRT in preference to SRS

[45]
[99]

[106, 107]

[44, 99]

Volume of uninvolved brain
parenchyma exposed to
intermediate-high dose

Attention should be given to the intermediate dose spillage
(e.g. 80% and 50% isodose volumes)

This is especially important when multiple isocentres are used to
treat multiple targets
Dedicated SRS platforms seem to perform better at reducing
dose-gradient index, compared to VMAT
A reduction in prescription dose (of 1–2 Gy) may be required when
multiple targets are being treated simultaneously

[108, 109]

[110]

[111]

Prior radiation exposure In the setting of recurrent tumour, alternatives should be explored
(surgery resection, chemotherapy/targeted therapy)

If re-SRS is attempted, a fractionated approach is favoured
Use of concurrent systemic therapy Caution should be exercised with certain agents such as

ipilumumab, VEGFR TKI and EGFR TKI
Admittedly, the data regarding increased neuro-toxicity is unclear
and may be partially related to the target volume
If possible, a washout period of 5 half-lives should be allowed before
SRS (approximately 5–7 days for common agents such as sorafenib,
pazopanib and gefitinib)
There are no guidelines when these agents can be restarted. A period
of 2–4 weeks may be sufficient to ascertain that there are no acute
side effects from SRS

[7•]

[112]

Large PTV margin End-to-end testing should be undertaken at each SRS centre to
determine the minimum PTV margin

Technologies which allow a smaller PTV should be preferentially used [113]

Planning parameters A dedicated SRS team builds experience and is recommended
A higher degree of variation is to be expected with LINAC-based
platforms, especially with smaller targets
Parameters such as conformity index, dose gradient index and
conformity/gradient index should be assessed during plan
evaluation

[114–118]

Lack of quality assurance (QA) program A protocolized and evergreen quality assurance program is needed
at both the departmental level and a patient-specific level

For patient-specific QA, target volume delineation should ideally
undergo peer review prior to treatment (especially for complex
targets such as resection cavities), and pre-treatment verification
using film dosimetry is highly recommended

[119]

[120–123]

Non-modifiable factors including
1) Intrinsic radiosensitivity
2) Location of lesion

It is challenging to determine intrinsic radiosensitivity prior to
treatment. Alternatives to SRS can be considered such as surgical
resection or systemic therapeutics

A gentler approach with HSRT may be warranted in these cases

[124]
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fractionated approach. Notably, the vast majority of reported RN is retrospec-
tive in nature, typically from single institutional series. Multi-institutional
prospective registries with clear, consensus-based, endpoints would be useful
to guide clinical practice.
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