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Opinion statement

T1-weighted post-contrast and T2-weighted fluid-attenuated inversion recovery (FLAIR)
magnetic resonance imaging (MRI) constitute the gold standard for diagnosis and re-
sponse assessment in neuro-oncologic patients but are limited in their ability to accu-
rately reflect tumor biology and metabolism, particularly over the course of a patient’s
treatment. Advanced MR imaging methods are sensitized to different biophysical process-
es in tissue, including blood perfusion, tumor metabolism, and chemical composition of
tissue, and provide more specific information on tissue physiology than standard MRI. This
review provides an overview of the most common and emerging advanced imaging
modalities in the field of brain tumor imaging and their applications in the care of
neuro-oncologic patients.

Introduction

T1-weighted (T1W) post-contrast and T2-weighted
(T2W) fluid-attenuated inversion recovery (FLAIR) mag-
netic resonance imaging (MRI) sequences are most com-
monly used to diagnose central nervous system (CNS)
tumors and assess treatment response in neuro-
oncologic patients. However, despite providing excellent

anatomical contrast, they lack sensitivity and specificity
for the underlying tumor biology. This is illustrated by
the similar MRI appearance of tumor progression and
treatment-related inflammation (“pseudoprogression”)
and the apparent decrease of contrast enhancement and
FLAIR hyperintensity after provision of anti-angiogenic
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therapy which creates the false impression of improved
tumor burden (“pseudoresponse”) [1]. In addition, stan-
dard anatomic MRI sequences do not unequivocally dis-
tinguish between low- and high-grade tumors. In most
cases, high-grade neoplasms demonstrate enhancement
on T1W post-contrast sequences due to malignancy-
induced breakdown of the blood-brain barrier (BBB)
and extravasation of contrast into the extravascular space.
However, 9–45% [2, 3] ofmalignant gliomas—primarily
WHO grade III tumors—do not enhance, while 47% of
low-grade gliomas can demonstrate enhancement [3],
particularly low-grade oligodendrogliomas where the
proportion can exceed 50% [4].

In contrast to standard anatomic MRI sequences,
advanced MRI modalities detect different physiologic
processes which provide more accurate information
about tumor behavior. These functional MRI methods

include diffusion-weighted MRI, perfusion-weighted
MRI, and MR spectroscopy. Some of these are now
routinely included into standard MRI acquisition proto-
cols at many centers. However, full implementation has
been hampered by the lack of standardized acquisition
and post-processing techniques, particularly in the case
of perfusion-weighted MRI.

Another functional MRI method is positron emis-
sion tomography (PET) imaging: In addition to the
traditional tracer 18F-fluorodeoyxglucose, novel tracers
are now available to probe tumor metabolism and are
being increasingly studied for their potential as diagnos-
tic and treatment response markers. Lastly, in the era of
artificial intelligence, radiomics and machine learning
are being explored as tools to extract more objective
imaging features that can predict tumor histology, tu-
mor genotype, and treatment response.

Diffusion-weighted MRI

Diffusion-weighted imaging (DWI) uses MR sequences sensitized to the intrin-
sic random (Brownian) motion of water molecules, thus measuring the diffu-
sivity or displacement of water in tissue [5•, 6]. The degree of displacement of
water molecules varies significantly depending on the geometry and structure of
the microenvironment of tissue. The apparent diffusion coefficient (ADC)
reflects the magnitude of water motion and is the most commonly used DWI
metric in clinical practice. The ADC increases with increased extracellular water
(as seen in vasogenic edema) and decreases with increased intracellular water
(as seen in cytotoxic edema) and increased cellularity (as seen in high-grade
tumors; Fig. 1). The latter is due to decreased water mobility from dense cellular
packing, thus accounting for the increased “restricted diffusion” commonly
observed in malignant brain tumors [5•].

ADC values tend to be low in highly cellular tumors such as high-grade
gliomas (HGGs), primary CNS lymphoma (PCNSL), and medulloblastoma
[7–9]. Multiple studies have shown that the mean or minimum ADC value
within the enhancing tumor region of interest (ROI) is significantly lower in
PCNSL compared to glioblastoma (GBM) [10–12]. Very low ADC values
have also been reported within areas of necrosis after treatment of HGGs
and metastases with bevacizumab, which likely represent regions of
bevacizumab-induced chronic hypoxia. Mean and minimum ADC values
can also distinguish between low- and high-grade gliomas [13–15] as well
as anaplastic gliomas and GBMs [14].

Furthermore, ADC values within the tumor ROI (defined as either the
enhancing region in high-grade or T2/FLAIR-hyperintense region in low-grade
tumors) have shown predictive and prognostic utility in patients with PCNSL
[7], LGGs, and HGGs [14, 16]. For instance, multivariate analysis in a series of
LGGs and HGGs demonstrated that patients with a median ADC G 0.799 ×
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10−3 mm2/s had significantly worse overall survival (OS) compared to those
with ADC values above this threshold (8 months vs. not reached) [16]. How-
ever, these studies included relatively small samples sizes, and specific threshold
values may not translate across the variety of scanner field strengths and MRI
vendors currently in clinical use. Unlike mean and median ADC values, histo-
gram analysis relies on the extraction of ADC values from each image voxel,
which are then grouped into pre-defined bins according to their values. By
fitting ADC histograms to a two-normal distribution mixture curve, higher
mean ADC from the lower curve (thought to represent the tumor-rich rather
than the edematous or necrotic part of the tumor) on pre-treatment scans
correlated with improved PFS and OS after bevacizumab treatment in recurrent
GBM patients [17, 18]. A subsequent study showed that this histogram-derived

Fig. 1. MR images from a patient with untreated newly diagnosed left thalamic glioblastoma, including T1-weighted post-contrast
(a) and T2-weighted FLAIR (b) sequences as well as diffusion (c) and corresponding ADC maps (d). The bright signal on the ADC map
(d; solid arrow) is associated with higher ADC values and corresponds to the area of T2/FLAIR hyperintensity (d). This area likely
represents vasogenic edema. In addition, there is a small area of dark signal on the ADC map (d; dashed arrow), which corresponds
to an area of faint contrast enhancement (a). This region of restricted diffusion likely represents an area of increased cellularity
secondary to the tumor.
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value was a predictive biomarker for bevacizumab-treated, but not chemother-
apy-treated, GBM [19].

Lastly, DWI may aid in the differentiation between true tumor progression
and pseudoprogression. Multiple studies have shown that patients with recur-
rent gliomas demonstrate lowermean ADC values or ADC ratios (defined as the
ratio of the ADC of the enhancing lesion and ADC of the contralateral white
matter) than those with pseudoprogression [20–22]. The time point at which
the ADC is measured is important: Immediately post-treatment, therapy-
induced cytotoxic edema can lower the ADC, whereas subsequent treatment-
related cell death, necrosis, and edema would increase the ADC [23].

Notably, one of the main limitations of ADC values is that they may not
adequately reflect underlying tumor biology in heterogeneous tumors which
contain a mixture of tumor cells, edema, hypoxia, and necrosis (as is frequently
seen in GBMs). Although these tumors demonstrate increased restricted diffu-
sion, the tumor ADC value may not fall below that of normal appearing white
matter, given that the concomitant presence of vasogenic edema and necrosis
within the tumor (which increase the ADC) offsets the low ADC imposed by
tumor cells [6, 24]. An active area of research in DWI thus focuses on the
development of new diffusion modeling techniques that fit tissue-specific
parameters, including cell size, cell density, and intra- and extracellular com-
partment sizes, directly to the diffusion signal [25].

Perfusion-weighted MRI: DSC and DCE MRI

Perfusion-weighted imaging (PWI) is typically performed either by dynamic
imaging of the passage of a contrast agent (accomplished with dynamic sus-
ceptibility contrast (DSC) and dynamic contrast enhancement (DCE) tech-
niques) or imaging of magnetically labeled endogenous protons in blood
(accomplished with arterial spin labeling)). Here, we will focus our discussion
on DSC and DCE MRI, given their increasing implementation in clinical prac-
tice and relevance to patient management.

DSC MRI is a T2 or T2*-weighted technique which measures changes in
signal intensity after injection of an exogenous, paramagnetic contrast agent
and acquisition of images during the contrast agent’s first-pass passage through
the brain [6]. Multiple parameters can be derived from DSC MRI, including
relative cerebral blood volume (rCBV) and flow (rCBF; normalized to contra-
lateral brain), and mean transit time. While DSC MRI assumes that contrast
remains intravascular (which may not be the case in brain tumors where BBB
breakdown results in extravascular contrast extravasation), DCEMRI utilizes T1-
weighted sequences to measure signal intensity changes as contrast agent dif-
fuses from the intravascular space into tissue through a leaky vasculature [6].
DCE MRI permits calculation of the extravascular-extracellular (ve) and plasma
(vp) space volume fractions and the transfer constant coefficient (Ktrans). Ktrans is
typically considered a measure of vascular permeability but, depending on the
degree of permeability, also reflects blood flow [26].

Elevated rCBV is usually a marker of increased tumor aggressiveness, given
the greater degree of angiogenesis and vascularity in higher-grade neoplasms
[27] (Fig. 2). This is supported by the higher rCBV values seen in HGGs
compared to LGGs [28]. In addition, a large body of literature has established
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a link between elevated pre-surgical rCBV and worse OS and PFS in glioma
patients [29–39]. Interestingly, both low- and high-grade oligodendrogliomas
can demonstrate greater maximum rCBV values than astrocytomas [40, 41],
presumably because oligodendrogliomas contain a fine capillary network and
harbor select foci of high blood volume [41]. In addition, rCBVmay help in the
distinction between HGGs and metastases. While rCBV within the enhancing
tumor ROI has modest ability to distinguish between these two entities [42],
peritumoral rCBV appears to be a more reliable predictor of tumor type [28, 42,
43]. This is likely explained by the presence of infiltrating glioma cells with
greater metabolic demands in the peritumoral region. In addition, metastatic

Fig. 2. T1-weighted post-contrast images (a, c) and corresponding relative cerebral blood volume maps (b, d; obtained from
gradient echo sequences using dynamic susceptibility-weighted MRI) from a patient with multifocal glioblastoma before (a, b) and
during (c, d) treatment with concurrent cediranib (an anti-angiogenic agent), radiation, and temozolomide. Before treatment (b),
there is increased perfusion associated with the areas of contrast enhancement (arrows), reflecting increased tumor-related
angiogenesis and vascularization. After 2 weeks of treatment (d), there is a noticeable decrease in tumor-related perfusion
(arrows), likely secondary to cediranib’s anti-angiogenic effect.
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tumors usually exhibit significant vasogenic edema in the peritumoral region
which can cause local compression of themicrocirculation and thereby decrease
rCBV [43]. Multiple studies underscore the improved predictive ability of
peritumoral rCBV compared to tumoral rCBV in differentiating between
HGGs/GBMs and metastases [44, 45].

rCBV is a potentially useful marker in the assessment of treatment response.
Angiogenesis is a highly dynamic process on both a temporal and spatial level,
so the time point at which perfusion is measured is critical. Improvement of
subnormal perfusion after cediranib treatment, for instance, has been associat-
ed with improved OS in newly diagnosed and recurrent GBM patients [46],
likely due to improved drug and oxygen delivery and reversal of a pro-
tumorigenic hypoxic microenvironment [47]. By contrast, higher rCBV at 3–
8.5 weeks after bevacizumab treatment predicted worse OS [48].

Typically, high rCBV values compared to baseline after tumor-directed
therapy suggest tumor progression, whereas low rCBV values are indicative of
pseudoprogression [49–51] although this association is not perfect. For in-
stance, rCBV cutoff values have been shown to vary between institutions and
techniques, and a recent meta-analysis of 11 studies concluded that rCBV had
moderately high diagnostic accuracy to distinguish between tumor progression
and pseudoprogression (AUC of summary ROC = 0.8899) [52]. Efforts to
standardize DSC acquisition are underway and will help increase the utility of
DSC MRI in assessing brain tumor response to treatment.

Similar to rCBV, highKtrans values are associated with high-grade tumors due
to the presence of increased capillary permeability in malignant lesions [53–
55]. The impact of high pre-treatment Ktrans on clinical outcome is less clear
than with rCBV. Some studies have suggested a relationship between high-
presurgical Ktrans [56–58] and worse PFS/OS, while others did not find such
an association [32, 59, 60]. These discrepant findings may be explained by
differences in patient population (newly diagnosed vs. recurrent glioma pa-
tients) as well as different imaging acquisition protocols and post-processing
techniques.

Chemical MR imaging: MR spectroscopy and pH-weighted MRI

Proton (1H) magnetic resonance spectroscopy (MRS) measures metabolite
concentrations in tissue by suppressing the large signal peak of water (the most
abundant molecule in brain tissue). Commonly measured molecular spectra
are N-acetylaspartate (NAA), choline (Cho; commonly elevated in gliomas),
creatine (Cr), lactate, myoinositol, and lipid [61]. Each of these metabolites
measures different types of cellular processes (Table 1; Fig. 3).

In clinical practice, MRS can help distinguish between low- and high-grade
tumors since high-grade lesions are characterized by elevated Cho/NAA and
Cho/Cr ratios [63–66]. As with peritumoral rCBV values, the peritumoral Cho/
NAA and Cho/Cr ratios can be useful to differentiate between HGG and
metastases, with HGGs demonstrating greater ratios [67]. With regard to differ-
entiating between tumor progression and treatment-related changes, MRS has
moderate discriminating ability [68], partly because the concomitant presence
of tumor cells and necrosis (as seen, for instance, after provision of RT) can
confound the spectral patterns.
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Recent data suggest that 1H MRS may help differentiate between the four
different molecular subgroups of medulloblastoma (WNT, SHH, Group 3, and

Table 1. Overview of different types of functional imaging methods and radiomics, including commonly extracted param-
eters and features and common PET tracers as well as their biophysical correlate

Type of imaging Parameter or tracer Significance
DWI Apparent diffusion coefficient Rate of diffusional motion of water molecules (mm2/s)

PWI: DSC Cerebral blood volume Volume of blood (mL/100 g) in tissue

Cerebral blood flow Speed of blood flow (mL/100 g/min) through tissue

Mean transit time Ratio of blood volume to blood flow (s)

PWI: DCE Ktrans Volume transfer coefficient between plasma and extracellular
extravascular space (per minute); measure of permeability

ve Volume of extracellular extravascular space

vp Volume of intravascular blood

MRS N-Acetylaspartate Marker of neuronal integrity

Choline Marker of cell membrane turnover

Creatine Marker of energy metabolism; commonly
used as internal control

Lactate Marker of non-oxidative glycolysis, necrosis, and hypoxia

Myoinositol Related to astrocyte integrity and regulation of brain osmosis

Lipid Marker of cellular necrosis

2-Hydroxyglutarate Oncometabolite produced as result of IDH mutation

PET 18F-FDG Marker of glucose metabolism
11C-MET

18F-FET
18F-FDOPA
18F-Fluciclovine

Marker of amino acid transport

68Ga-DOTATOC
68Ga-DOTATATE
68Ga-DOTANOC

Marker of somatostatin receptor expression

Radiomics Tumor intensity features Distribution of gray values within image; calculated from
histograms of signal intensity within each voxel

Tumor shape features Size and morphology of lesion, e.g., how “round” or
“elongated” it is

Textural features Relative position or spatial distribution of various gray
levels over image

• Gray-level co-occurrence matrix (GLCM): calculates how
often pairs of pixel with specific gray values and in specified
spatial distance occur together in image

• Gray-level run-length matrix (GLRLM): defines number of
consecutive pixels with same gray level value

Wavelet features Transformed domain representations of intensity and
textural features

DWI diffusion-weighted imaging, PWI perfusion-weighted imaging
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Group 4). SHH medulloblastomas are typically characterized by high levels of
choline and lipids and low levels of creatine and taurine [69]. By contrast, group
3/4 medulloblastomas typically display high levels of taurine and lower lipid
and creatine levels [69]. These findings could have important management
implications, as group 3/4 medulloblastomas carry a significantly worse prog-
nosis compared to the SHH andWNT subtypes [70]. In addition, high levels of
glutamate on 1H MRS have been associated with improved survival in medul-
loblastoma patients [71].

More recently, the discovery of the prognostic significance of the isocitrate
dehydrogenase (IDH) mutation in gliomas [72, 73] led to the development of
2-hydroxyglutarate (2HG)MRS. 2HG is an oncometabolite produced as a result
of the IDH mutation. The initial detection of 2HG by single-voxel MRS was
reported in 2012 [74–76]. Subsequent and current work has focused on reduc-
ing the false-positive rate of conventional short-echoMRS, which can be as high
as 30% [76], with spectral editing techniques. The sensitivity of 2HG MRS
depends on a number of factors, including the density of IDH-mutant cells
and the efficiency of 2HGproduction, spectral quality, and degree of artifacts. In
general, tumors with IDH concentrations of 9 1 mM can be reliably detected
with 2HG MRS [77•, 78] (Fig. 3). At some institutions, 2HG MRS is used as a
research tool to help with neurosurgical planning, given that gross total resec-
tion of IDH-mutant gliomas confers an improved prognosis in young patients
[79] and pre-surgical detection of the patient’s mutational status can help
inform surgeons on the extent of planned resection. In addition, 2HG levels
have been shown to decrease after treatment with radiation and cytotoxic
chemotherapy and to increase with tumor progression [77•, 80•], thus making
2HG MRS an attractive non-invasive biomarker to assess treatment response.
While 2HG MRS is now occasionally incorporated into clinical trials involving
IDH inhibitors, further validation of this technique with histopathologic corre-
lation and establishing a standardized cross-institutional acquisition protocol
will be required before it can be integrated into routine clinical practice.

Given the significance of increased glucose metabolism and upregulation of
aerobic glycolysis (Warburg effect) in cancer, much interest has focused on
using 13C-labeled glucose as a MRS tracer to monitor treatment response. The
natural abundance of 13C is only 1.1%, which would necessitate long acquisi-
tion times and thus limits its application in the clinical setting [81]. Using
“hyperpolarization,” the MRS signal of 13C can be increased by 9 10,000-fold
[82]. This process involves exposing 13C-enriched probes to microwaves at

Fig. 3. Metabolic maps obtained from MR spectroscopy in a patient with a left frontal IDH-mutant glioma. IDH-mutant gliomas
produce 2-hydroxyglutarate (2HG) which can be measured with MRS. In addition, there is elevation of lactate (Lac) and choline
(Cho) as well as a decrease in N-acetylaspartate (NAA), which are characteristic features of neoplasms. Glx glutamate/glutamine,
GSH glutathione. Adapted from Andronesi et al. [62].
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extremely low temperatures (G 2 K) and a highmagnetic field (approximately 3
to 5 T) before tracer administration. The probe is then infused into the patient
immediately before MRS acquisition, given that 13C-labeled probes remain
hyperpolarized for only a short period of time [81]. Using this method, the
conversion of [1-13C]-pyruvate into [1-13C]-lactate (a key process of the War-
burg effect) can then be traced successfully [83]. Others have demonstrated a
decrease in [1-13C]-lactate production after exposure to various anticancer
drugs, including everolimus, voxtalisib, and TMZ [81]. The safety profile and
ability to detect elevated [1-13C]-lactate/[1-13C]-pyruvate ratios were demon-
strated in prostate cancer patients [84], but its application in brain tumor
patients remains to be established.

Lastly, pH-weightedmolecularMRI has gained increasing attention in recent
years. Chemical exchange-dependent saturation transfer (CEST)MRI probes the
acidic tumor microenvironment (typically with a pH range of 6.2–6.9, com-
pared to 7.3–7.4 in normal tissue) and measures the chemical exchange be-
tween protons on functional groups of metabolites (such as hydroxyls, amides,
and amines). This exchange rate fluctuates with changes in hydrogen ion
activity and is reflected by changes in the CEST contrast [85]. CEST has dem-
onstrated utility in distinguishing between glioma grades [86] and between
radiation necrosis and tumor recurrence in patients with brain metastases [87].

Positron emission tomography (PET)

PET imaging involves administration of tracer quantities of a radiolabeled
compound that is specific and selective for the target of interest. The radiolabel
(“radionuclide”) undergoes positive beta decay by emitting a positron, which
travels in tissue until it interacts with an electron. This leads to annihilation of
both the positron and electron, followed by emission of a pair of high-energy
gamma photons which are approximately 180° apart and registered by a
detector ring configured in the PET camera [88, 89]. These registered events
are then reconstructed into a three-dimensional image which reflects the spatial
distribution of radioactivity as a function of time [90]. One of the main
limitations of PET is its relatively low resolution (about 5 mm) compared to
CT or MRI (typically 2 mm or less for MRI). Therefore, PET is frequently
combined with CT or MRI to enhance anatomic contrast. PET acquisition can
be performed using a static or dynamic imaging protocol. In static imaging,
image data is acquired over a single time frame and results reflect the average
amount of radioactivity during the scan period. The most commonly acquired
parameter is the standardized uptake value (SUV; defined as the amount of
radioactivity in tissue divided by the injected dose of tracer per body weight). By
contrast, dynamic imaging involves monitoring the tracer’s radioactivity con-
tinuously or near-continuously during the entire course of the scan. This en-
ables time-activity curves to be generated and calculation of quantitative pa-
rameters such as the time-to-peak [91]. Earlier time-to-peak values, for instance,
are associated with more malignant tumors [92].

The most well-known tracer is 18F-fluorodeoxylucose (18F-FDG) which is a
marker of increased glucose uptake. However, given the high baselinemetabolic
activity of and, hence, increased background signal from the brain, 18F-FDGPET
has a limited role in reliably differentiating brain tumors from normal tissue. In
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addition, other pathologic processes such as abscesses and post-radiation
changes can also demonstrate increased glucose uptake [93]. The utility of
18F-FDG PET is thus limited to neoplasms with very high cellularity such as
CNS lymphomas [94].

Gliomas and brain metastases are preferentially imaged with radioactive-
labeled amino acids, given the low physiologic uptake of amino acids in normal
brain tissue and only minor uptake in inflammatory lesions [94–96]. The
uptake of amino acid PET tracers is mediated by the L-amino acid transporter
system which is overexpressed in neoplastic cells [23]. The most widely used
tracers are [11C]-methionine (11C-MET), O-(2-[18F]fluoroethyl)-L-tyrosine (18F-
FET), and 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-FDOPA). Nota-
bly, the use of 11C-MET is limited to centers with an on-site cyclotron given
its short half-life (20 min) compared to that of 18F-labeled tracers (half-life
110min) [94]. In addition, 18F-fluciclovine PET has been explored as a tracer in
brain tumors [97] and was recently approved by the Federal Drug Administra-
tion for detection of suspected recurrent prostate cancer [98].

Amino acid PET can be valuable for surgical planning as it has high sensi-
tivity for “hot spots” containing foci of anaplastic tumor cells [99] and captures
tumor extent beyond what is visualized with conventional T1W post-contrast
and T2/FLAIR sequences [100]. This is particularly useful in the evaluation of
non-enhancing gliomas. Amino acid PET has also proven useful to assess
treatment response and to identify cases of pseudoprogression and
pseudoresponse, given that the PET signal is independent of the integrity of
the BBB. Schwarzenberg et al. showed that 18F-FDOPA PET was able to identify
responders to anti-angiogenic therapy as early as 2weeks after starting treatment
in recurrent HGG patients [101]. Furthermore, 18F-FET had increased sensitivity
compared to conventional MRI to detect early tumor progression after treat-
ment with bevacizumab [102]. In addition to its utility in gliomas, 11C-MET
PET can be used to differentiate between tumor recurrence and treatment-
related changes in brain metastases with a sensitivity of 79% and specificity of
75% [103]. In the setting of immunotherapy, data from a small cohort of
melanoma patients treated with immune checkpoint inhibitors revealed a
lower maximum tumor-to-normal brain ratio on FET PET in a single patient
with pseudoprogression compared to patients with tumor progression [104];
however, further exploration of the utility of amino acid PET in larger patient
cohorts will be required.

In addition, changes on PET imaging may be useful in the early identifica-
tion of tumor progression compared to conventional MRI [105, 106]. Studies
using 11C-MET, 18F-FET, and 18F-DOPA PET have shown that progressive tumor
lesions demonstrate a significant increase in themaximum andmean tumor-to-
brain uptake ratio and/or decrease in tracer uptake kinetics (measured by the
time-to-peak on time-activity curves) compared to lesions secondary to
radiation-induced treatment changes [106–108]. In one study, the addition of
dynamic studies to tumor-to-background ratio measurements further increased
the sensitivity from 86 to 93% and specificity from 79 to 84% [107].

For tumors overexpressing somatostatin receptors, such as the vast majority
of meningiomas [109] and some metastatic neuroendocrine tumors [110],
somatostatin receptor (SSTR) ligands can be used to visualize these tumors.
Themost widely used SSTR ligands are 68Ga-DOTATOC, 68Ga-DOTATATE, and
68Ga-DOTANOC.Multiple studies have shown that 68Ga-DOTATOC and 68Ga-
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DOTATATE aid in the discrimination of meningiomas from adjacent non-
tumorous tissue, particularly tumors in anatomical locations that are challeng-
ing to image with conventional MRI (such as the skull base or the optic
pathways) [111, 112]. This provides complementary information to CT and
MRI to define tumor extent for surgical and radiation therapy planning [111,
113, 114] although the impact on clinical outcome remains to be determined.
Some evidence also supports the use of 68Ga-DOTATATE PET to distinguish
meningioma tissue from treatment-related changes [111].

PET tracers that probe different metabolic pathways or processes are under
investigation. These include thymidine analogues such as 2-[11C]-thymidine
[115] or 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT) [116] (which quantify
tumoral proliferation rates mediated via the enzyme thymidine kinase-1 in
the process of DNA synthesis), 11C-choline (a measure of phospholipid syn-
thesis in tumor cells) [117], and [18F]-fluoromisodazole (18F-FMISO; ameasure
of tumor hypoxia) [118].

Radiomics and machine learning

While conventionalMRI provides excellent anatomical contrast, one of its main
limitations is that the information gleaned from it is primarily qualitative,
rather than quantitative, in nature. Common radiographic terms used to de-
scribe tumor features are often subjective, such as “highly spiculated,” “moder-
ate heterogeneity,” and “significant enhancement”. Radiomics takes a large
number of MR images as input, and outputs quantitative descriptors of tissue
such as tumor volume, intensity, shape, and texture (a process known as
“feature extraction”). The central goal of radiomics is to overcome the largely
descriptive, subjective, and qualitative interpretation of MR images by the
human eye and to generate a large number of automatically extracted features
that are readily interpretable [119•, 120•]. These radiomic features (Table 1) are
typically extracted from a pre-defined ROI such as the tumor ROI (Fig. 4) or
peritumoral ROI [119, 122].

To identify radiomic features with predictive ability (known as “feature
selection”), machine learning is used. Machine learning is a family of compu-
tational methods that build predictive models by identifying imaging patterns
in a set of training data that are statistically associated with clinical outcome.
The training cohort is used to train the computer algorithm to identify patterns
of features which are subsequently tested in the validation cohort to assess the
performance of the algorithm to accurately predict the presence or absence of a
feature and its association with outcome. The typical workflow for radiomic
feature extraction and selection is shown in Fig. 4. Importantly, for a radiomic
feature to be meaningful, it should remain stable and robust under different
image acquisition parameters and be able to capture imaging patterns that
correlate with clinical outcome [120•]. Feature selection reduces features that
may simply represent noise or are highly correlated with each other, thus
preventing overfitting of models and increasing the prediction accuracy. To
increase the generalizability of select radiomic features and to cover the entire
dataset, cross-validation is frequently performed.

Radiomic features that carry prognostic value have been identified in GBM
patients, such as contrast information from co-occurring regions on FLAIR and
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T2-weighted images [123] as well as diffusion time, distance of tumor from the
ventricles, T1 and/or T2 intensities in the enhancing and non-enhancing tumor,
and peak height of the perfusion signal [124]. In addition, radiomics can be
used to predict tumor histology with an accuracy and sensitivity of ≥ 85% and
specificity ≥ 79% [125] as well as treatment outcome [122]. In brainmetastases,
the combination of five radiomic features from T1-weighted post-contrast and
T2-weighted sequences has been shown to differentiate between radiation
necrosis and progressive disease with an accuracy of 73% and an AUC of 0.73
[126]. “Radiogenomics,” an extension of radiomics that describes the associa-
tion between imaging features and underlying molecular tumor characteristics,
may enable non-invasive prediction of molecular gene expression profiles (e.g.,
TP53, EGFR, NF1, and IDH1) and molecular subtypes (e.g., classical, mesen-
chymal, proneural, and neural) in GBM [124, 127, 128]. For instance, EGFR
mutations could be predicted by the ratio of necrotic-to-contrast-enhancing
volume with an AUC of 0.68, while PDGFR amplifications could be predicted
by the ratio of FLAIR hyperintensity-to-total tumor volume (AUC 0.72) [128].
In another study, the overall accuracy to predict GBM subtype was 76%, with
AUCs ranging from 0.75 to 0.92 for individual subtypes [124]. As experience
with these approaches improves, the predictive value of radiomics and
radiogenomics will continue to increase.

Radiomics and machine learning have largely remained research tools thus
far, and multiple challenges need to be addressed before they can be integrated
in routine clinical care. Radiomic features can be highly sensitive to technical

Fig. 4. Overview of radiomics and machine learning workflow. Following segmentation of a ROI (tumor region in this case, as
defined by T2/FLAIR-hyperintense area), feature extraction is performed within the ROI. The patient cohort is randomly divided into
a training and validation cohort, both of which are balanced for demographic and clinical characteristics. Using machine learning,
the training cohort is used to train the computer algorithm to select the radiomic features most predictive of a pre-defined outcome
(e.g., tumor growth, PFS, or OS; “feature selection”). During classification training, the algorithm “learns” from the training data
and infers a hypothesis that is subsequently used to predict labels it has not yet seen. The selected features are then tested in the
validation cohort to assess the algorithm’s performance to predict outcome. Adapted from Parmar et al. [121].
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factors, such as imaging acquisition modes and reconstruction parameters. In
addition, radiomic feature extraction depends heavily on accurate delineation
of tumor ROIs which can be affected by inter-observer variability. Many experts
thus advocate for semi-automated or automated segmentation techniques.
Furthermore, the reproducibility of radiomic features using test and re-test scans
remains to be established [129]. Lastly, how the computer algorithm deter-
mines certain patterns and associations between imaging feature and clinical
outcome remains an active area of research.
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