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Opinion statement

The single agent activity of PARP inhibitors (PARPi) in germline BRCA mutated
(gBRCAm) breast and ovarian cancer suggests untapped potential for this new class
of drug in breast cancer. The US Food and Drug Administration has approved three
PARPi (olaparib, rucaparib, and niraparib) so far to treat certain ovarian cancers,
including those with gBRCAm and olaparib for treatment of gBRCAm breast cancers.
Several PARPi are now under clinical development for breast cancer in the various
treatment settings. Recently, two phase III trials of olaparib (OlympiaD) and
talazoparib (EMBRACA) demonstrated 3-month progression-free survival improve-
ment with PARPi compared to physician’s choice single agent chemotherapy in
metastatic gBRCAm breast cancer. To date, PARPi seems less efficacious in meta-
static breast cancer patients than those with BRCA mutated platinum-sensitive
recurrent ovarian cancer, perhaps reflecting the biologic heterogeneity and low
somatic BRCA mutation rate in breast cancer. The use of PARPi is gradually evolving,
including combination strategies with chemotherapy, targeted agents, radiotherapy,
or immunotherapy in women with and without gBRCAm. The role of predictive
biomarkers, including molecular signatures and homologous recombination repair
deficiency scores based on loss of heterozygosity and other structural genomic
aberrations, will be crucial to identify a subgroup of patients who may have benefit
from PARPi. An improved understanding of the mechanisms underlying PARPi clin-
ical resistance will also be important to enable the development of new approaches
to increase efficacy. This is a field rich in opportunity, and the coming years should
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see a better understanding of which breast cancer patients we should treat with
PARPi and where these agents should come in over the course of treatment.

Introduction

Over the past few decades, significant advances have
been made in understanding the genetic causes of famil-
ial breast cancers, including cloning of the BRCA1 and
BRCA2 genes in the mid-1990s [1]. The essential role of
BRCA1 and BRCA2 proteins in homologous recombi-
nation repair (HRR), a high-fidelity DNA double-strand
break (DSB) repair mechanism, has been extensively
documented [2]. Loss of function of the BRCA proteins
is thought to contribute to genetic instability, potentially
leading to malignancy [3ee]|. BRCA1 and BRCA2 muta-
tions account for about 10% of all breast cancers and
about 30% of hereditary breast cancers [1]. Individuals
who harbor germline BRCA1 or BRCA2 mutation
(gBRCAm) are at much greater risk of developing breast
and/or ovarian cancer over their lifetime: 45-65 and 15-
40% for breast and ovarian cancer, respectively [4, 5]. A
majority of patients with gBRCA1m that develop breast
cancer have tumors that lack estrogen receptor (ER),
progesterone receptor (PR), and do not have amplifica-
tion of human epidermal growth factor 2 (HER2), so
called triple negative breast cancer (TNBC). By contrast,
only ~ 15% of sporadic breast cancers are TNBC [6e].
Most patients with gBRCA2m who develop breast cancer
have tumors that express ER and/or PR in proportions
similar to sporadic breast cancer [7, 8].

The seminal advance since the cloning and recogni-
tion of the relationship between gBRCAm and breast
and ovarian cancers is the identification and application
of new important molecular targets, poly-(ADP ribose)
polymerase (PARP) family members, and other proteins
involved in HRR [9, 10]. Of the 17 PARP family pro-
teins, PARP1 and/or PARP2 are required to repair DNA
single-strand breaks (SSBs) and PARP1 also is involved
in repair of DSBs and replication fork injury [11]. The

PARP-1 enzyme has been implicated in signaling DNA
damage through its ability to recognize and rapidly bind
to DNA SSBs; it mediates base excision repair by recruit-
ing the scaffolding proteins, e.g.,, XRCC1, DNA ligase III,
and DNA polymerase 8 [12]. DNA-bound activated
PARP-1 uses nicotinamide adenine dinucleotide
(NAD+) to poly-ADPribosylate nuclear target proteins,
at the site of DNA damage, including topoisomerases,
histones, and PARP-1 itself, to signal the need for both
DNA SSB and DSB repair. This observation suggests that
inhibition of PARP-1 activity where HRR is compro-
mised would lead to adverse consequences for the tu-
mor cells. PARP inhibitor (PARPi) also traps PARP1 and
PARP2 while in complex with damaged DNA, and
trapped PARP prevents its participation in DNA repair,
resulting in cytotoxic consequences for the cells [13].
This mechanism of action may be important to the
clinical activity and toxicity of the PARPi class [13].

The clinical use of PARPi identified the integral role
of BRCA1 and BRCA?2 in maintaining functional high-
fidelity DNA repair through HRR. The single agent
PARP1 activity in BRCA mutant ovarian cancer treatment
suggests untapped potential for this new class in
gBRCAm breast cancer. Additionally, there is a potential
therapeutic role for PARPi in a wider subgroup of breast
cancer that may have defective DNA repair, e.g., muta-
tions in ATM, ATR, PALB2, or CHEK2 [14]. Accumulat-
ing evidence suggests that further clinical exploration of
PARPi as monotherapy or combinations is warranted in
patients not only with gBRCAm-associated breast can-
cer, but also in breast cancer with HRR dysfunction [14].
Here, we briefly review the preclinical data and clinical
development of PARPi and discuss its future develop-
ment in breast cancer.

PARPi in breast cancer: preclinical evidence

The clinical utility of PARPi as monotherapy in gBRCAm-associated tumors is
based on the concept of synthetic lethality, where neither PARP inhibition alone
nor BRCA deficiency alone is lethal but the combination is [15]. In a series of
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pivotal preclinical studies, PARPis were noted to cause selective cytotoxicity for
in vitro and in vivo models of BRCA-deficient cells [16, 17]. Bryant et al. were
the first to document this finding, showing that the PARPi NU1025 and
AG14361 were profoundly cytotoxic in V-C8 (BRCA2-deficient) cells but did
not affect V79 (BRCA2-expressing) cells [17]. They observed similar cytotoxic
effects of NU1025 in the MCF7 and MDA-MB-231 breast cancer cell lines
following siRNA-induced BRCA2 depletion in these cells [17]. Farmer and
colleagues also reported that PARPi KU0058684 and KU0058948 exhibited
particularly cytotoxic effects in mouse embryonic stem cell lines deficient in
either BRCA1 or BRCA2 [16].

The concept of using PARPi as single agents to induce cell death through
synthetic lethality represented a novel approach to cancer treatment but may
not be the only mechanism by which PARPi could improve cancer therapy.
When used in combination therapy, PARPi enhanced the effectiveness of con-
ventional treatments by impairing the repair of damage caused by those agents
(e.g., impeding repair of SSB induced by radiotherapy or platinum agents) [18-
23]. Donawho et al. showed that the PARPi ABT-888 (veliparib) potentiated
cytotoxicity of cisplatin and carboplatin and led to tumor regression in BRCA1
and BRCA2 mutated MX-1 breast xenograft model [21]. Other groups have
reported similar findings supporting the efficacy of PARPi/platinum therapy in
BRCAT and BRCA2 deficient mammary tumors and in TNBC cell lines [18, 22,
23]. Additionally, other chemotherapeutics such as gemcitabine, temozolo-
mide, and topoisomerase-1 inhibitors have been investigated in combination
with PARPis in BRCA-mutated TNBC cell lines, yielding significant reduction in
tumor cell replication and increased DNA damage [23-25]. Taken together,
these preclinical studies have helped the development of clinical trials investi-
gating the benefit of PARPi and platinum agents or other cytotoxic agents.

Recently, targeted agents, e.g., phosphatidylinositol-4,5-bisphosphate 3-
kinase (PI3K) inhibitors or cell cycle checkpoint regulators, have been ex-
plored preclinically and clinically in combination with PARPi [26, 27]. Com-
bining a PARPi (olaparib or veliparib) with a PI3K inhibitor (NVP-BKM120)
has shown synergistic cytotoxicity in both BRCA1-mutated and BRCA wild-type
TNBC models [27, 28]. Proteins involved in cell cycle checkpoint pathways,
particularly cell cycle checkpoint kinase (CHK)1 or WEE], also emerged as
therapeutic targets as the loss of cell cycle checkpoint control leads to the
accumulation of DNA damage and ultimately cell death [29-31]. Booth et al.
showed that combining any one of four different PARPis (olaparib, veliparib,
rucaparib, NU1025) with a CHK1 inhibitor (CHK1i; AZD7762, LY2603618,
UCN-01) increased SSBs and DSBs in both BRCA wild-type and BRCA-mutated
breast cancer cell lines [24, 31]. Thus, utilizing a PARPi/CHKi strategy may have
a broader clinical applicability in breast cancer, independent of gBRCAm status.

Targeting growth factor receptors is also under preclinical and clinical inves-
tigation [24]. The epidermal growth factor receptor (EGFR) is mutated in a
variety of different cancers, including various subtypes of breast cancer [32].
EGFR-activating mutations often result in receptor amplification, which is
targetable via monoclonal antibodies or small molecule tyrosine inhibitors [33,
34]. Sui et al. reported a markedly enhanced antitumor effect of PARPi/EGFR
inhibitor therapy (olaparib and erlotinib) compared to each treatment alone in
BRCA wild-type EGFR-overexpressing ovarian cancer xenograft models (A2780
cells). These results encourage the expanded use of this therapy to a subgroup of
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breast cancer containing EGFR amplifications [35]. Furthermore, the insulin-
like growth factor type 1 receptor (IGF-1R) is involved in tumorigenesis and
shown to exhibit hyper-activation in BRCA1-mutation-associated breast cancers
[36-38]. Preclinical studies have shown BRCA1-deficient breast and ovarian
cancer cell lines to be particularly vulnerable to IGF-1R inhibitors (IGF-1Ri),
and PARPi/IGF-1Ri combination therapy resulted in a synergistic cytotoxic
effect on these cells [39]. However, despite these promising preclinical results,
this approach has yet to be implemented in a clinical setting.

Many of the most significant advances in cancer therapy have recently aimed
at stimulating the immune system to participate in tumor cell killing [40]. These
approaches have expanded the fundamental role of PARPi in the treatment of
cancer, as PARPi has immunomodulatory activity. Huang et al. showed that
BMN 673 (talazoparib) significantly increased the number of CD8+ T cells and
NK cells in the microenvironment and the production of IFN-gamma and TNF-
alpha by lymphocytes in BRCA1-deficient ovarian cancer murine models
(BR5FVB1-Akt) [41]. PARPi (olaparib, talazoparib or rucaparib) upregulated
PD-L1 expression in breast cancer in vitro and in vivo models, partly due to
inactivation of GSK3p [42]. Subsequent blockade of PD-L1 resensitized PARPi-
treated cancer cells to T cell killing, yielding greater tumor regression with the
combination therapy in breast cancer mouse models [42]. Taken together, these
findings highlight the role of PARPi in cellular processes unrelated to DNA
damage repair and emphasize the need for further investigation into the im-
munoregulatory effects of PARPi therapy in breast cancer.

Clinical development of PARPi in breast cancer

Five PARPis are in clinical development, olaparib, rucaparib, niraparib, talazo-
parib, and veliparib. The first three listed are the United States (US) Food and
Drug Administration (FDA)-approved PARPis for specific indications in ovarian
cancer. Several of PARPis are now under clinical development for breast cancer,
with some showing clinical activity in gBRCAm breast cancer, and olaparib has
recently been approved by the FDA for use in gBRCAm, HER2-negative meta-
static breast cancer who have been treated with chemotherapy either in the
neoadjuvant, adjuvant, or metastatic setting. Overall, PARPis have been less
efficacious in BRCA wild-type patients with breast cancer than in those with
ovarian cancer, perhaps reflecting the biological heterogeneity and low somatic
BRCA mutantion rate in breast cancer [43]. In gBRCAm recurrent ovarian
cancer, PARPi activity correlates with platinum sensitivity [44]; higher response
rates (RRs) were reported in platinum-sensitive recurrent gBRCAm ovarian
cancer compared with platinum-resistant disease (approximately 48 vs. 28%
overall RR) [45]. It is unclear whether platinum sensitivity plays the similar role
in breast cancer setting.

PARPi therapy in breast cancer: clinical experiences

A number of clinical trials have reported partial or complete results of PARPi
treatment in breast cancer patients, which are summarized in Table 1. PARPis
have been studied in monotherapy and in combination with radiotherapy or
cytotoxic chemotherapy [24]. The clinical benefit of combining PARPi with
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cytotoxic chemotherapy or radiotherapy yielded improved efficacy; however,
increased adverse events have been a challenge for further development [57, 58,
60]. In phase I/Ib studies of olaparib and carboplatin [58, 59], olaparib sched-
ules had to be changed to interrupted use of the PARPi with carboplatin every
3 weeks, with resumption of continuous daily use of olaparib in the mainte-
nance phase after stopping carboplatin. All other PARPi combination trials
showed the increased hematological toxicity in the combination therapies, as
well as fatigue and gastrointestinal toxicities [61-64, 66, 67].

Olaparib

Olaparib is the first US FDA and European Medicines Agency (EMA)-approved
PARPi for use in gBRCAm ovarian cancer and now FDA approved for gBRCAm
breast cancer [68, 69]. Olaparib was also granted breakthrough therapy desig-
nation by the US FDA for treatment of gBRCAm or ATM-mutated metastatic
castration-resistant prostate cancer [68]. Olaparib is available in two types of
formulations, capsule and tablets [70]. Comparative bioavailability studies
demonstrated that 400 mg twice daily capsule formulation is equivalent to
200-250 mg twice daily tablet formulation [59, 71, 72]. Olaparib is rapidly
absorbed, with peak plasma concentration of 1-3 h post-ingestion and mean
half-life of 6.1 h [46ee]. Good reviews have been published recently describing
its biology and clinical development in ovarian cancer; therefore, it will not be
summarized here [73-75]. In earlier studies, the clinical benefit of olaparib was
observed in advanced breast cancer patients with gBRCAm [46ee]. Olaparib
activity was shown to be dose-dependent, with a reported RR of 41% with
400 mg twice daily vs. RR 22% with 100 mg twice daily in gBRCAm carriers with
advanced/recurrent triple negative or hormone receptor positive breast cancer
[47]. Recently, Robson et al. reported the findings of the randomized, open-
label, phase III OlympiAD trial in which they compared olaparib alone with
standard chemotherapy in patients with gBRCAm, HER2-negative, metastatic
breast cancer [50®e]. Two thirds of patients received one or two prior lines of
chemotherapy for metastatic disease. They received olaparib (300 mg tablets
twice daily) or standard ‘physician’s choice’ chemotherapy (capecitabine, eri-
bulin, or vinorelbine) with 2:1 randomization. Olaparib was clinically superior
to the standard therapy with median progression-free survival (PES; 7.0 vs.

4.2 months; p<0.001) and RR (59.9 vs. 28.8%) [72]. The impact of prior
exposure to platinum agents, whether PARPi induce cross-resistance to the
subsequent chemotherapy such as other DNA damaging agents, and the long-
term risks and benefits are unclear.

There are limited data on combination trials of PARPi and targeted thera-
pies. Michalarea et al. reported preliminary data on the phase I trial of olaparib
and an oral AKT inhibitor, AZD5363, in which 16 breast cancer patients were
enrolled [61]. Four of eight gBRCAm breast cancer and one of eight sporadic
TNBC had RECIST response to the combination therapy. Another phase I study
of the PI3K inhibitor BKM120 and olaparib (300 mg tablets twice daily) was
reported, in which 24 breast cancer patients (13 TNBC and 11 hormone
receptor positive and HER2-negative) were enrolled, including 15 gBRCAm
carriers [76]. Of the 18 evaluable patients, five (28%) had partial response and
eight (44%) had stable disease. Among 12 gBRCAm carriers of these 18 evalu-
able patients, four had partial response and five had stable disease. More
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recently, preliminary results of phase Il MEDIOLA study were reported at the
40th San Antonio Breast Cancer Symposium. This single arm, phase II trial
evaluated the combination of olaparib and durvalumab, a PD-L1 inhibitor in
gBRCAm HER2-negative metastatic breast cancer patients. The combination
therapy resulted in 80% (20/25) of disease control rate (defined by CR + partial
response + stable disease) at 12 weeks, and 48% (12/25) maintained disease
control rate at 28 weeks, with unconfirmed ORR 52% (13/25) [77]. It is unclear
how much clinical activity is from PARPi and how much activity is from
immune checkpoint inhibition. Future use and clinical trials should take into
consideration that immunotherapies may elicit a better immune response if
used while the patient is still immunocompetent at earlier stages of the disease
course [78].

Talazoparib

Talazoparib is an oral PARPi with a greater PARP-DNA trapping activity com-
pared to other PARPis in preclinical settings [79, 80]. Median peak plasma
concentration is 1-2 h post-dose, with mean half-life of 50 h and steady state
reached around 2 weeks in most patients taking a recommended phase 2 dose
(RP2D) of 1 mg/daily [81]. Early findings from a pilot study of talazoparib
demonstrated decrease in tumor volume (median - 78% [range — 30 to — 98%)]
in all early-stage gBRCAm breast cancer patients (n = 13), treated with talazo-
parib for 2 months followed by standard neoadjuvant chemotherapy [52]. This
study is currently ongoing with a target accrual of 20 patients. More recently, the
results of the phase III trial of talazoparib in breast cancer (EMBRACA) were
presented at the 40th San Antonio Breast Cancer Symposium. This is the second
of four-ongoing phase III clinical trials of PARPis in advanced breast cancer to
report findings. gBRCAm carriers with HER2-negative metastatic disease were
randomized 2:1 to talazoparib (n =287) vs. physician’s choice chemotherapy
(capecitabine, eribulin, gemcitabine, or vinorelbine; n = 144). The median PFS
was 8.6 months for talazoparib arm vs. 5.6 months for chemotherapy arm
(HR=10.542, p<0.0001). Overall RR (ORR) was also better in talazoparib arm,
with 62.6 vs. 27.2% (HR=4.99, p<0.0001) [55]. About 55% of patients in the
talazoparib arm experienced grade 3 or 4 hematologic adverse events vs. 38% of
those in the physician’s choice chemotherapy arm. It appears that equitoxic
doses of high trapping PARPi may result in relatively similar clinical activity to
those with less trapping activity [82] and DNA-PARP trapping may also be
associated with enhanced toxicity, most often hematologic adverse events.

Veliparib is an oral PARPi-1/2 with a RP2D of 400 mg twice daily when used as
single agent [83]. Median peak plasma concentration is 0.5-1.5 h post-dose,
with a short half-life, mean of 5 h [84]. Clinical trials of veliparib, either single
agent or combinations, are now ongoing for breast cancer in various settings
(Table 2). The I-SPY2 trial is a multicenter, phase II trial using Bayesian adaptive
randomization as a platform for high-risk patients with stage II/I1I breast cancer.
The patients receive a backbone of standard neoadjuvant therapy, and investi-
gational regimens are added to evaluate pathological complete response (pCR)
as a primary endpoint [66]. One of the experimental arms included PARPi,
veliparib; patients were randomized to the combination of veliparib and
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chemotherapy (carboplatin and paclitaxel, followed by doxorubicin plus cy-
clophosphamide) or standard chemotherapy (paclitaxel alone, followed
doxorubicin plus cyclophosphamide) [66]. Patients with HER2-negative breast
cancer, with either hormone receptor positive or negative, were enrolled in this
part of the I-SPY trial. pCR rates were 51% in veliparib and carboplatin arm, as
opposed to 26% in the standard chemotherapy arm in which 17% of patients
had deleterious gBRCAm in the experimental arm vs. 5% in the control arm
[66]. In a similar way, the phase III BrighTNess study evaluated the addition of
carboplatin with and without veliparib to the standard neoadjuvant combina-
tion of paclitaxel followed by doxorubicin and cyclophosphamide in 634 TNBC
patients. pCR rates increased significantly with the use of carboplatin (53 and
58% in the two arms offering carboplatin vs. 31% without carboplatin), while
veliparib added no further benefit to chemotherapy [54].

A phase II trial also enrolled 290 gBRCAm patients with locally advanced or
metastatic breast cancer for treatment with the combination of carboplatin and
paclitaxel with and without veliparib or a third arm with veliparib and temo-
zolomide [65]. The primary endpoint of PFS was similar between the arms
offering carboplatin and paclitaxel (14.1 months with veliparib vs. 12.3 months
with placebo, p=0.227). The ORR was increased by veliparib compared to
placebo (77.8 vs. 61.3%, respectively, p = 0.027), without impacting the OS
(28.3 vs 25.9 months, respectively, p =0.156) [65]. Veliparib and temozolo-
mide alone were inferior to the carboplatin and paclitaxel containing arms in
ORR, PES, and OS.

Rucaparib is a second FDA-approved oral PARPi for use in gBRCAm and
somatic BRCA-mutated advanced ovarian cancer [85]. The median peak plasma
concentration is reached in 1.9 h and mean half-life is 17-19 h after a RP2D of
600 mg twice daily [86]. Additionally, an intravenous (IV) formulation of
rucaparib was investigated in breast cancer patients. Drew et al. reported stable
disease only in 44% (8/18) of metastatic breast cancer patients with gBRCAm,
treated with IV rucaparib at dose of 18 mg/m? [51]. The phase I trial of IV
rucaparib in combination with chemotherapy (carboplatin, paclitaxel and car-
boplatin, pemetrexed and cisplatin, or epirubicin and cyclophosphamide)
resulted in one CR and one partial response out of seven gBRCAm carriers, in a
total of 22 metastatic breast cancer patients enrolled. No further details on
clinical or histological characteristics were described in this trial which included
other solid tumor patients [63]. The single arm, phase Il window of opportunity
RIO trial also assesses rucaparib efficacy and biomarkers in sporadic TNBC and
gBRCAm breast cancer patients prior to commencing primary neoadjuvant
treatment. The primary endpoint is Ki67 response defined as > 50% fall from
baseline to end of rucaparib treatment [87] and results are awaited.

The Hoosier Oncology BRE09-146 phase II trial randomized 128 TNBC or
known gBRCAm patients with residual disease post-neoadjuvant therapy with
anthracycline or taxane to cisplatin alone or cisplatin combined with rucaparib
[62]. The primary endpoint of 2-year disease-free survival (DFS) was similar
between the two arms (58.3% with cisplatin and 63.1% with cisplatin and
rucaparib, p = 0.43). The presence of gBRCAm had no impact in those findings
which was partly due to the lower dose used than RP2D of rucaparib and the
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small sample number (n = 22) of gBRCAm patients enrolled in the trial [62].

Niraparib

Niraparib is a recently FDA-approved PARPi for unselected platinum-sensitive
recurrent ovarian cancer patients, with a RP2D of 300 mg daily [88]. Median
peak plasma concentration is reached around 3 h post-dosage. The mean
elimination half-life of niraparib is 36 h, after daily 300-mg doses [88]. In the
phase I study evaluating niraparib in solid tumors, 22 of the 100 patients had
metastatic breast cancer, and 2 partial responses were seen in 4 breast cancer
patients with gBRCAm, no details of histological subtypes were reported for
these 22 breast cancer patients [56].

Initial results from phase I part of TOPACIO trial were recently presented,
with good tolerability and RP2D for niraparib in combination with pembroli-
zumab for treatment of patients with metastatic TNBC and ovarian carcinoma
[89]. From the 14 patients enrolled in the phase I, 5 had TNBC and the best
response in this group was seen in one BRCA wild-type patient with stable
disease for 10 months.

Table 2 summarizes ongoing clinical trials using PARPi.

Safety of single agent PARPi

Future directions

The side effect profile of PARPi monotherapy presents quite uniformly as
gastrointestinal (nausea, vomiting, anorexia, diarrhea), hematological (anemia,
thrombocytopenia, neutropenia) adverse events and fatigue. Notably, some
adverse events are more commonly observed (> 10%) with certain PARPj, e.g.,
rucaparib (hepatotoxicity) and niraparib (thrombocytopenia) [90, 91]. It is
possible that some differences in the “off-target” profile of different PARPis
might contribute to adverse side effects [92]. The potential long-term increased
risk of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML)
has been observed in < 1% of patients enrolled in clinical trials so far [46ee, 49,
88]. Most patients in those trials were heavily pretreated, making the exact
contribution of PARPi in the development of MDS or AML difficult to assess
although it is possible that DSBs caused by PARPi may be accumulated in
normal tissues, e.g., bone marrow. Careful hematological evaluation and
monitoring for second hematological malignancies are warranted.

The marked benefit of PARPi in patients with gBRCAm has validated gBRCAm
as a predictive biomarker for PARPi response in breast cancer patients. At
present, it remains unclear how to best identify breast cancer patients who will
respond better to PARPi beyond gBRCAm status. Although tumor phenotypes
can provide some predictions, as evidenced by responses of sporadic TNBC to
PARPi monotherapy, the RRs are lower than those with gBRCAm breast or
ovarian cancer [43, 93]. Other forms of HRR dysfunction, such as mutations in
ATM, ATR, PALB2, or CHEK?2, also need further clinical investigations for PARPi
in breast cancer treatment settings. Another opportunity for PARPi is the treat-
ment of breast cancer patients with brain metastasis. PARPis (olaparib, veli-
parib, niraparib) have been described as potentially penetrating the blood-
brain barrier [94-96], which increases their possible clinical utility in brain
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metastases-prone TNBC.

To date, many studies have been reported describing the mechanisms of
action of PARP, as well as mechanisms of clinical resistance of PARPi, which
were not described in detail here. Some of resistance mechanisms are associated
with reversion mutations in BRCA1 or BRCA2 gene, as well as inactivation of
DNA repair proteins, e.g., 53BP1 and REV7, or increased activity of RAD51, all
known to restore HRR function [2, 97, 98]. The combination therapies would
be the appropriate next steps to mitigate the resistance by using two distinct
treatments and also to potentiate PARPi activity. Among many PARPi combi-
nation trials, our phase 2 basket trial of durvalumab and olaparib is now
enrolling TNBC patients with and without gBRCAm to examine the role of
neoantigen expression and changes in immune microenvironment induced by
PARPi (NCT02484404).

Lastly, it would be critical to design and interpret clinical trials based on the
biological hypothesis and robust preclinical data. Understanding more about
the molecular abnormalities involved in HRR-deficient tumors, exploring novel
therapeutic trial strategies and drug combinations, and defining potential pre-
dictive biomarkers, is necessary to rapidly advancing the field of PARPi therapy
for breast cancer. This is a field rich in opportunity, and the coming years should
see a better understanding of which breast cancer patients we should treat with
PARPi and where these agents should come in over the course of treatment.
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