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Opinion statement

Soft-tissue sarcoma is one of the few clinical cancer models in which pre-operative
radiotherapy is commonly utilized and in which tumor response to radiotherapy could
be assessed. However, clinical and histopathological features of soft-tissue sarcomas are
not useful in predicting tumor radiotherapy response. Exploration of predictive markers of
sarcoma response to radiotherapy is further confounded by discordance between radio-
logical tumor size reduction, pathological changes, and clinical local recurrence rates. The
diversity of disease histology and anatomical origin further influences which type of
radiotherapy response (volumetric vs. cytotoxic) would best relate to patient outcome.
Advances in molecular biology and understanding of sarcoma biology have recently
resulted in the identification of several molecular and imaging predictive markers of
radiotherapy response. As the underlying mechanism of radiation-induced cell killing
involves the production of DNA damage through the production of oxygen radicals, the
most promising biomarkers and imaging markers are related to DNA damage repair genes,
hypoxia, and tumor vasculature. As bone and cartilaginous sarcomas are less often treated
with radiotherapy, biomarkers of response in these diseases are less examined.

Introduction

Sarcomas are cancers of diverse histologic subtypes and
origins. They are generally first subclassified into bone
and soft-tissue sarcomas. The management of bone and
cartilaginous sarcomas often involves surgery with

adjunctive chemotherapy given before and/or after sur-
gery. Radiotherapy is seldom used in the management
of bone sarcomas unless surgery is precluded or if the
surgical margins are positive. On the other hand,
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multiple randomized controlled trials demonstrated
the efficacy of adjuvant radiotherapy in reducing
the need of extensive and morbid surgeries in the
treatment of soft-tissue sarcomas [1–4]. Subsequent
studies demonstrated that pre-operative radiothera-
py induced less long-term irreversible radiation tox-
icities than post-operative radiotherapy, with simi-
lar rates of local control [1, 5–9]. Therefore, pre-
operative radiotherapy is commonly offered to

patients in the multidisciplinary management of
their soft-tissue sarcomas. With recent technical ad-
vances in image-guided radiotherapy (IGRT), the
volumetric changes occurring to the sarcoma during
weeks of pre-operative radiotherapy can be moni-
tored [7, 10•]. Subsequent radiological and biolog-
ical responses of the tumor to pre-operative radio-
therapy can then be assessed using images and
surgical specimen obtained after radiotherapy.

Radiotherapy response

The definition of radiotherapy response is in itself not straightforward as
it depends on the goal of radiotherapy in the multidisciplinary manage-
ment of sarcomas. Radiotherapy mainly induces cellular toxicities
through the production of free radicals that subsequently cause DNA
single-strand and double-strand breaks. Although radiotherapy-induced
DNA damages may result in rapid cell deaths through apoptosis in
certain cancers such as lymphomas, radiotherapy commonly induces
the activation of a wide range of cellular pathways that take time to
resolve. At the conclusion of these intracellular molecular interactions,
the same radiotherapy dose may be as cytotoxic to two different cancers
but one tumor may show more rapid volumetric response than the
other one in which more cells undergo mitotic cell deaths and senes-
cence. Therefore, a lack of radiological response from radiotherapy does
not necessarily mean that the treatment is inactive as cells could remain
metabolically active, be senescent, and lose their capacity to form clones
(Fig. 1) [11–14].

In sarcoma, the predominant fate of cell death following radiothera-
py is unclear. However, the presence of a dose-dependent efficacy from
radiotherapy in improving local control [15, 16] and limited volumetric
change after radiotherapy suggest that sarcomas generally do not under-
go rapid apoptotic cell deaths [10•, 12, 14]. Measuring radiation re-
sponse based on sarcoma local control is complicated by the role of
radiotherapy as an adjunctive modality to surgery. In the post-operative
setting or in body areas where wide resection margins can be achieved,
the aim of radiotherapy is to maximize the cytotoxicity to sarcoma cells
in order to sterilize the peri-tumoral area and improve local control
irrespective of the type of cell death or volumetric response. Conversely,
in the treatment of sarcomas located close to critical organs and struc-
tures, volumetric response to neoadjuvant radiotherapy could influence
the ability to obtain a negative resection margin. In this situation, local
control may be improved by a reduction in tumor volume independent
of the number of cells killed by radiotherapy. Therefore, markers of
radiation response could be developed to predict for volumetric changes
or sarcoma cytotoxicity secondary to radiotherapy.
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Radiological and pathological response to radiotherapy in soft-
tissue sarcomas

Soft-tissue sarcomas (STS) are often considered poorly responsive to radiother-
apy. However, radiological volumetric response does not correlate well with
pathological response [17•]. In a study reported by Roberge et al., 50 patients
with STS (45 extremities and 5 trunks; 38 high-grade and 16 low-grade sarco-
mas) underwent pre-operative radiation therapy; each patient received a course
of 50 Gy in 25 fractions over a median of 35 days. By comparing pre- and post-
treatment MRI, median tumor volume changes were 0.5 % (range −85 to
+285 %) and 36 % (range −89 to +42 %) for high-grade and low-grade STS,
respectively. Myxoid liposarcoma was particularly responsive to radiation treat-
ment with a median of 86 % decrease in tumor volume. Although there was
minimal (median reduction in tumor volume G1 %) radiological response in
high-grade STS, a median treatment-induced necrosis was observed in 50 % of
the pathological samples. On the other hand, there was a median volumetric
reduction of 13.8 % in low-grade non-myxoid STS but the median treatment-
induced necrosis was observed in only 10 % of these tumors. Similarly, Canter
et al. showed a median tumor necrosis of 30 % in 25 STS (18 extremity and 7

Fig. 1. Representations of the aim of pre-operative radiotherapy and sarcoma response to the treatment. Perceivable or measurable
radiologic response to radiotherapy is from changes in the gross tumor. Radiotherapy may induce sizable volumetric response (a))
but may not change the outcome of patients in comparison to a tumor that did not respond as rapidly radiologically to radiotherapy,
but with similar cancer toxicity (b)). Following the same surgery, both patients would have equivalent clinical outcome from their
surgeries in comparison to an un-irradiated tumor undergoing the same surgery (c)) in which microscopic residual disease remains.
A sizeable tumor response in tumors located close to vital organs may however render a marginally unresectable tumor resectable.
Yet, the majority of radiotherapy response in soft-tissue sarcoma resembles b), in which little radiological response is observed
despite radiotherapy being efficacious in inducing clonogenic death of cancer cells.
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retroperitoneal) treated with neoadjuvant radiation therapy. None of the cases
with over 80 % tumor necrosis had radiological responses [18•]. These
studies are examples of the discordance between histopathological findings
and radiological responses, with neither endpoints irrevocably associated with
patient prognosis [19•, 20•]. However, based on different studies using tumor
necrosis as a marker of response, the response rate of radiation therapy varies
between 20 and 78 % depending on the radiation regimens used, histological
subtypes included, and addition of concurrent chemotherapeutic or biological
agents [21–23, 24•, 25, 26•]. In the ongoing PAZNTIS/ARST1321 study “A
Phase II/III Randomized Trial of Preoperative Chemoradiation or Preoperative
Radiation Plus or Minus Pazopanib,” the primary endpoints of the phase II
study component is 990 % pathologic necrosis in the resected STS after neoad-
juvant treatment (clinicaltrials.gov NCT02180867).

Although tumor necrosis can be used as a marker of response, previous
reports suggest that tumor size, tumor grade, and histological subtype could
have an impact on this measurement of radiation response. In particular,
myxoid liposarcomas are more sensitive to radiation compared to other STS
[17•, 27, 28]. Larger tumors tend to be more resistant to radiotherapy [29].
High-grade tumors could be more responsive than low-grade tumors except for
myxoid liposarcomas [17•]. As histopathological tumor characteristics are in-
sufficient to reliably predict for tumor response to radiotherapy, molecular
markers were evaluated to determine their prognostic and predictive values.

Molecular and imaging predictive markers
Gene signature

To address the lack of molecular predictors, Yoon et al. attempted to identify a
genetic signature that may predict radiation response of STS [26•]. In their
study, 20 patients with STS (14 extremity and 6 retroperitoneal sarcomas)
underwent pre-operative external beam radiation (50.0 to 66.4 Gy) along with
concurrent bevacizumab (monoclonal VEGF-A antibody). Global gene expres-
sion profiles were obtained in pre-treatment biopsies using gene expression
microarrays. With a cutoff value of 80 % post-treatment tumor necrosis being a
marker of radiation response, 8 cases were classified as good responders and 8
cases as poor responders. While some histological subtypes, such as pleomor-
phic fibrosarcomas and liposarcomas, were clustered together, other sarcoma
subtypes did not, suggesting histological subtype may not predict radiotherapy
response. From this data set, the authors constructed a 24-gene signature
predicting radiotherapy response. As the treatment consisted of concurrent
radiotherapy and bevacizumab, it remains to be seen if this signature is gener-
alizable to STS treated with radiation alone or along with other biological
agents. Furthermore, a subsequent analysis of the same study suggested 20
genes associated with tumor response, which consisted of genes different from
the ones described in the aforementioned signature [30••].

DNA damage response (DDR) regulators
As we had previously described, the principal method by which radiotherapy
induces cell deaths is through the induction of DNA damage. Therefore, Ernst
et al. irradiated a panel of six sarcoma cell lines (HT-1080, TE-671, SW-872, SW-
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982, HS-729, and A-673), profiled the expression of DNA damage response
regulators in these cell lines, and associated the expressions of these genes to the
clonogenic survival of the cells following in vitro irradiation. Their results
suggested that the expression levels of ataxia telangiectasia and RAD3 related
(ATR), ataxia telangiectasia mutated (ATM), nijmegen breakage syndrome 1
(NBS1), and heat shock proteinHSP90AB1were correlatedwith radioresistance
[31•]. The authors then used NW457 to inhibit the chaperone function of
HSP90, which targets ATR, ATM, and NBS1, and showed that NW457
radiosensitized the sarcoma cell lines and delayed their clearance of γ-H2AX
foci, which is a marker of DNA double-strand breaks [31•]. The inherent STS
expression level of these DNA damage response regulators might therefore be
predictive of radiotherapy response. In fact, overexpression of NBS1, also
known as nibrin (NBN), was shown to confer radioresistance in prostate cancer
cells and was correlated with a shorter relapse-free survival in 139 patients who
received image-guided radiotherapy [32]. In a clinical study conducted in Spain
where 87 patients received chemoradiotherapy for head and neck cancers,
although biopsy samples overexpressing HSP90AA had a higher local relapse
rate, it did not reach statistical significance [33].

Hypoxia-related markers
Most tumors regardless of their origin contain hypoxic regions [34•]. Hypoxia
induces a myriad of events that promote cellular aggressiveness such as in-
creased genomic instability, migration and invasive capacity, and resistance to
radiotherapy. Brizel et al. had previously observed that lower tumor oxygena-
tion in high-grade STS was prognostic of the development of metastasis [35].
Correspondingly, two studies have previously described prognostic molecular
signatures composed of three hypoxia-related messenger RNA (mRNA) (HIF-
1α, HB-EGF, and VEGF-C) expressions and a 177-mRNA gene signature [36,
37]. Recent pre-clinical work by Zhang et al. further suggested that the deletion
of HIF-1α from primarymurine sarcomas increases the sensitivity of the tumors
to radiation in vivo [38]. A similar observation was reported in mouse hepato-
ma cell lines [39]. In addition, HIF-1α expression in esophageal squamous cell
carcinomas was negatively correlated to response to chemoradiation, with a
44 % complete response rate when pre-treatment HIF-1α expression was neg-
ative [40]. Similarly, a strong HIF-1α expression prior to definitive radiotherapy
for cervical cancer is associated with a lower complete response rate (72 vs. 91%
with no/weak expression) and a shorter progression-free survival [41].

Hypoxia also reduces microRNA (miRNA) genesis through the repression of
DICER and DROSHA. In a murine undifferentiated pleomorphic sarco-
ma (UPS) model, Mito et al. observed that the deletion of one allele of
DICER resulted in an increased rate of lung metastasis [42]. In our
cohort of 42 human pre-treatment UPS fresh frozen samples, we also
observed through global miRNA profiling that 166 (43.9 %) of the 378
quantified miRNAs were significantly underexpressed in UPS primaries
compared to normal tissues (pG0.0001); no miRNAs were significantly
overexpressed in UPS. Nevertheless, compared to non-metastatic primary
tumor samples, metastatic primary samples and their corresponding
metastases had higher expressions of certain miRNAs (miR-138 and
miR-143) [43].
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Lewin et al. recently reported results from their phase Ib/II study in which the
influence of hypoxia in STS was investigated using PET hypoxia tracer [18F]FAZA
[44••]. Consistent with prior results by Brizel et al., 13 of the 23 evaluated STS
were hypoxic (tumor-to-background ratio of 1.2 or greater). Hypoxic tumors
demonstrated less radiologic volume response to pre-operative radiotherapy (p=
0.012) with no association with tumor necrosis in the final surgical specimen.
This study further documented the discordance between the presence of tumor
necrosis and clinical outcome as FAZA-PET hypoxic tumors were associated with
a higher risk of local recurrence (HR 10.2, p=0.02) and shorter PFS (HR 8.37, p=
0.02) andOS (HR 41.42, pG0.04). In the second cohort of this study, the authors
administered sunitinib concomitantly with radiotherapy to normalize tumor
vasculature and reduce tumor hypoxia. Counterintuitively, these patients who
received sunitinib developed high rates of grade 3+ hepatotoxicity and local
failures (HR 8.1, p=0.004) in comparison to patients who were treated with
pre-operative radiotherapy only [44••]. In their biomarker study, the authors did
not observe a measurable difference in VEGF levels between hypoxic and non-
hypoxic tumors but found that VEGF-A blood levels increased (pG0.001) during
the radiotherapy of hypoxic tumors. The addition of sunitinib also significantly
(p=0.06 and p=0.004, respectively) increased VEGF-A and VEGF-D blood levels.

Two recent publications were derived from the phase II clinical trial previ-
ously described in which 20 patients were treated with bevacizumab concom-
itantly with pre-operative radiotherapy. The trial included perfusion CT to
characterize the tumor vasculature over the course of the treatments and ob-
served significant reduction in mean positive pixels [45], blood flow, blood
volume, mean transit time, and permeability [30]. While Tian et al. observed a
correlation between mean positive pixels and the presence of tumor necrosis,
there was no correlation between the presence of histopathological necrosis
with other CT perfusion parameters [30]. There was no association between
clinical outcomes with any of the parameters from perfusion CT. Of note,
Kambadakone et al. paid special effort to analyze a large number of biomarkers
(serum VEGF, PDGF, sVEGFR-1, sVEGFR-2, sVEGFR-3, bFGF, IL-6, IL-8, TNF-α,
SDF-1a, and cKIT), pathological markers (tissue CD31 staining for assessing
microvascular density, proliferation cell nuclear antigen staining for determin-
ing cellular proliferation, terminal deoxynucleotidyl transferase-mediated
dUTP-biotin nick end labeling for documenting apoptosis), and genetic expres-
sion profiles. Of these explorative analyses, only the microvascular density was
associated with blood flow measured by perfusion CT (p=0.04 without
Bonferroni correction). Finally, as alluded to previously, the authors proposed
a set of 20 genes that were differentially expressed in high- and low-baseline
perfusion tumors, suggesting that genes associated with radiological response
may differ from those associated with the presence of tumor necrosis at the
completion of radiotherapy and bevacizumab [26].

Other potential markers of response
Osteopontin is a secreted phosphoprotein involved in cell growth, cell migra-
tion, invasion, and metastasis [46]. Elevated expression of osteopontin is
associated with poor prognosis in patients with STS [47]. In a study conducted
by Hahnel et al., tissue expressions of three different splice variants of osteo-
pontin were determined in 52 STS patients treated with radiotherapy [48]. A
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high expression level of two splice variants (OPN-b and OPN-c) was signifi-
cantly (pG0.01 for both variants) associated with a poor prognosis in the
multivariate Cox regression analysis and a 10- to 11-fold increased risk of
sarcoma-related death [48]. In rectal cancer patients who underwent pre-
operative chemoradiation, a lower osteopontin level was associated with path-
ological complete response [49]. Although direct evidence is still lacking, the
expression level of osteopontin could be a potential predictive marker of
radiotherapy response in STS, as in rectal cancer.

Apart from perfusion CT as a potential image method to trace radiotherapy
response, tumor perfusion and blood flow could also be evaluated using
dynamic contrast-enhanced (DCE)-MRI techniques, which use gadolinium
chelates as contrast agents to image and characterize tissue vascularity. Shapeero
et al. described the use of DCE-MRI [50] as an imaging modality that could
distinguish the response (≤10 % viable tumor) of STS to chemotherapy in 32
patients. The absence of a rapid enhancement within 3–10 s after arterial
enhancement was interpreted as voxels with no viable tumor. Using this inter-
pretation of DCE-MRI data, the authors identified all 11 responders, but no
clinical outcomes from these patients were described. Additionally, this method
could potentially distinguish tumor recurrence from post-radiotherapy inflam-
matory changes surrounding the surgical cavity. Meyer et al. reported their
experience in the use of DCE-MRI to monitor the effects of pre-operative
chemoradiation plus sorafenib in STS [22]. Eight patients from this phase I trial
underwent at least two of the three planned DCE-MRIs. Pathological tumor
necrosis (≥95%)was observed in 44% (n) of the post-treatment STS specimen.
The authors introduced a new DCE-MRI measureΔKtrans, which is a composite
measure of vascular permeability (Ktrans) calculated using two pharmacokinetic
models (the standard (Toft) model and the shutter-speed model). The percent
change in tumor DCE-MRI ΔKtrans after 2 weeks of sorafenib was inversely
correlatedwith the amount of tumor necrosis (R2=0.67, p=0.012) at the time of
surgery. Volumetric change (RECIST) of the tumors at 2 weeks did not predict
for histopathological response (R2=0.019, p=0.747). After completion of all
pre-operative treatments, multiple DCE-MRI parameters were capable of differ-
entiating optimal from suboptimal responders, including RECIST, median
values of Ktrans(standard model), Ktrans(shutter-speed model), and ΔKtrans.
Recently, Spratt et al. investigated the use of DCE-MRI in 9 patients treated for
spinal STS metastasis using stereotactic body radiotherapy (24 Gy in one
fraction (50 %), 27/3 in 33 % and 30/3 in the last patient) [51]. There was
one local failure (at 10.2 months post-treatment). At the 2-month post-treat-
ment DCE-MRI, an increase in the maximum Ktrans was observed in the sole
lesion that subsequently recurred. The authors concluded that DCE-MRI could
be used as a non-invasive method for early detection of radiotherapy outcome.

Bone and cartilaginous sarcomas

There are little advances in the molecular and imaging markers of radiotherapy
response for bone and cartilaginous sarcomas as radiotherapy is seldom used in
these sarcomas. The efficacy of radiotherapy in osteosarcomas and
chondrosarcomas is controversial and largely untested prospectively. On the
other hand, the treatment of Ewing’s sarcomas sometimes involves radiotherapy
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either as the sole modality for local treatment or in adjunct to surgery. Although
the degree of tumor necrosis (G90 vs. ≥90 %) following chemotherapy is asso-
ciated with Ewing’s sarcoma patient prognosis, there had not been similar studies
to examine the validity of this histopathological marker as a radiotherapy re-
sponse marker as patients seldom undergo surgery following radiotherapy. In
1921, James Ewing first described the sensitivity of the disease to radiation
through radiological observation of disease radiation response [52]. Neverthe-
less, the joint analysis of three prospective trials (INT-0091, INT-0154, and
AEWS0031) observed that 40 % of patients treated with definitive radiotherapy
recurred locally, suggesting that even though this disease often shows rapid
volumetric response, it is not an indicator that radiotherapy is necessarily more
efficacious in Ewing’s sarcoma than in other diseases [53]. This analysis also
showed that 30 % of patients treated with definitive surgery recurred locally, and
on multivariate analysis, the local control treatment modality did not influence
event-free survival, distantmetastasis, or overall survival, highlighting the need to
improve both local and systemic control in this disease.

Conclusion

Proven predictive molecular markers of radiotherapy response in sarcoma are
currently lacking. Nevertheless, different potential molecular and imaging
markers are on the horizon. With the concurrent improvement in biological
high-throughput technologies and radiological imaging capabilities, it is hoped
that combined studies would yield successful bio-imaging markers that could
be validated clinically. Sarcomas represent one of the few clinical cancer models
in which neoadjuvant radiotherapy is commonly used, and tumor specimen
could be retrieved post-radiotherapy to measure treatment response. As such,
despite their relative rarity in incidence, sarcoma is a good clinical model for the
discovery of radiation response bio-imagingmarkers. Findings originating from
sarcoma studies could then be translated to other cancers by adapting to
different cancers’ inherent biology and clinical needs from radiotherapy.
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