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Opinion statement

All work referenced herein relates to treatment of epithelial ovarian carcinomas,
as their treatment differs from ovarian germ cell cancers and other rare ovarian
cancers, the treatments of which are addressed elsewhere. Fallopian tube cancers
and primary peritoneal adenocarcinomatosis are also generally treated as epithe-
lial ovarian cancers. The standard of care initial treatment of advanced stage
epithelial ovarian cancer is optimal debulking surgery as feasible plus chemother-
apy with a platinum plus a taxane agent. If this front-line approach fails, as it
too often the case, several FDA-approved agents are available for salvage therapy.
However, because no second-line therapy for advanced-stage epithelial ovarian
cancer is typically curative, we prefer referral to clinical trials as logistically
feasible, even if it means referring patients outside our system. Immune therapy



has a sound theoretical basis for treating carcinomas generally, and for treating
ovarian cancer in particular. Advances in understanding the immunopathogenic
basis of ovarian cancer, and the immunopathologic basis for prior failures of
immunotherapy for it and other carcinomas promises to afford novel treatment
approaches with potential for significant efficacy, and reduced toxicities com-
pared with cytotoxic agents. Thus, referral to early phase immunotherapy trials
for ovarian cancer patients that fail conventional treatment merits consideration.

Introduction

Ovarian cancer (OC) is considered to arise from
epithelial cells encapsulating ovaries, stromal cells,
or ova, although recent evidence suggests origins in
Fallopian tubes and other sites as well [1]. The
great majority of OC is epithelial carcinomas and
often presents with advanced or metastatic disease.
Although chemotherapy and surgical debulking can
eliminate clinically apparent cancer, patients often
succumb to chemotherapy-resistant tumor relapse
within several years after initial remission. Immu-
notherapy for OC could be effective [2–8, 9••] as
OC cells express immunogenic tumor-associated
antigens that elicit detectable, specific immune re-
sponses [10–19]. The positive correlation between
OC survival and tumor infiltration with CD8+ T
cells is compelling evidence that antitumor im-
mune surveillance is a critical dictate of clinical
outcomes in OC [20••]. Despite abundant evidence
that anti-tumor immunity in OC could be effective,
immune-based OC therapies have generally been
only modestly successful, at best. The first immu-
notherapy for OC used intraperitoneal injections of

anti-human milk fat globulin-1 antibodies in 1987
[21], which was also among the very first uses of
monoclonal antibodies as cancer immunotherapy.
Additional antibody approaches followed, most no-
tably with failure of the anti-CA-125 antibody
oregovomab. Although there have been anecdotal
reports of good clinical responses to newer immu-
notherapy approaches, there is no FDA-approved
OC immunotherapy, as exists for other cancers.
Nonetheless, recent data suggest that effective, tol-
erable OC immunotherapy could be developed in
the near future. Recent advances in the understand-
ing of OC immunopathogenesis, including under-
standing the immunopathogenic role of regulatory
T cell, immature myeloid cells and dysfunctional
immune co-signaling, help identify potentially
more effective immunotherapy approaches. Combi-
nation immunotherapies appear more promising
than individual immunotherapy agents, and immu-
notherapy could be combined with cytotoxic
agents, small molecule inhibitors, radiation thera-
py, or surgery based on rational concepts.

Treatment

& Standard of care treatment for advanced stage OC includes optimal
surgical debulking combined with chemotherapy with a platinum plus
taxane agent.

& Immunotherapies include passive cell transfers, active vaccinations, or
cytokine, toxin, or antibody infusions to stimulate antitumor
immunity.

& Newer experimental approaches include combinations of
immunoactive agents or combining immunotherapy with cyto-
toxic agents, small molecule inhibitors, surgery, or radiation
therapy.
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Surgery

& Standard of care front-line surgery consists of optimal tumor debulking
where feasible, or debulking as much primary tumor as possible.

& Surgery is also used in recurrences and salvage settings, occasionally
with curative intent, but more often for patient comfort or to preserve
organ function.

& Surgical debulking as an adjunct to immunotherapy is in the explor-
atory phase.

Interventional procedures
Radiotherapy

& External beam irradiation is not typically front-line OC therapy, but is
used to reduce surgically inaccessible tumors or for palliation.

& The efficacy of combined external beam irradiation with immuno-
therapy is under investigation in other cancers [22] but has not yet been
reported in OC.

Pharmacologic treatment

Chemotherapy as immunotherapy
This review of OC immunotherapy will not detail front-line and salvage che-
motherapeutic agents, which are discussed in detail elsewhere [23••]. Chemo-
therapy can serve as an adjunct to immune therapies through the reduction of
immune suppressive factors or by increasing immune surveillance. Fludarabine
[24] or cyclophosphamide [25] can deplete immunopathogenic regulatory T
cells. 5-fluorouracil can deplete cancer-promoting myeloid-derived suppressor
cells in preclinical models [26]. Anthracyclines can increase the immunogenic-
ity of tumors through the uncovering of tumor-associated antigens by tumor
lysis or release of danger signals, such as high-mobility group box 1 [27••]. There
is a clear rationale to combine certain cytotoxic agents with immune therapies.

Monoclonal antibodies

Anti-milk fat globulin-1

The first therapeutic antibodies to treat human OC were anti-human milk
fat globulin-1 antibodies radiolabeled and injected into the peritoneum,
reported 27 years ago [21]. Treatment responses were positively correlated
with irradiation doses and inversely correlated with tumor volumes. Addi-
tional antibodies continued to highlight the relative safety of intraperito-
neal antibody injections, and produced occasional long-term clinical
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responses [28]. However, a phase II trial of 90yttrium-labeled anti-human
milk fat globulin-1 antibodies did not show significant clinical benefits in
25 patients. Further dose-escalations produced myelosuppression [29],
limiting the approach.
A phase I/II trial using 90yttrium-labeled anti-human milk fat globulin-1 in
52 patients tested standard-of-care surgery plus chemotherapy at initial OC
diagnosis, followed by intraperitoneal antibody [30]. Treatment was well
tolerated and 21 of 52 patients had no detectable disease at the end of
therapy. At 35 months median follow-up, survival was potentially better
than historical controls, suggesting possible efficacy, which was corrobo-
rated by a longer-term survival analysis in 2000 [31]. More recent trials of
intraperitoneal 90yttrium-labeled anti- human milk fat globulin-1 suggest
that whereas it can control local (intraperitoneal) disease, distant relapses
could offset any overall survival benefits. Nonetheless, further study could
be warranted [32].

Farletuzumab

Folate receptor-α is overexpressed in most OCs. Farletuzumab is a hu-
manized anti-folate receptor-α antibody thought to function not through
blocking folate transport but through antibody dependent cellular cyto-
toxicity. Safety and activity was demonstrated in phase I and II trials at
doses from 12.5–400 mg/m2 in OC patients in platinum-resistant relapse
[33, 34]. Grade 1–2 adverse events were noted in 80 % of patients, with
grade 3 fatigue reported in 2. The most common side effects were hyper-
sensitivity, fatigue, diarrhea, and cough/dyspnea. Ultimately, farletuzumab
failed to meet its endpoint of improving progression-free survival in a
recent phase III trial of 1100 platinum-resistant OC patients (http://www.
eisai.com/news/news201305.html) although a post hoc analysis suggested
a trend toward improved progression free survival in OC subsets,
prompting additional analyses. In another trial [33], 54 OC patients re-
ceived weekly farletuzumab alone or combined with carboplatin (AUC 5-
6) plus paclitaxel (175 mg/m2) or docetaxel (75 mg/m2). Cytotoxics were
given every 21 days for 6 cycles, followed by weekly farletuzumab until
progression. 28 patients with asymptomatic CA-125 relapse got
farletuzumab alone and were eligible for carboplatinum/taxane plus
farletuzumab if they progressed on farletuzumab alone. 26 patients with
symptomatic relapse initially got cytotoxics plus farletuzumab and 21
additional patients had cytotoxics added after initial farletuzumab.
Farletuzumab alone was well-tolerated and did not augment toxicities of
cytotoxics. In the 47 patients on farletuzumab plus chemotherapy, 38
(80.9 %) normalized CA-125. Complete or partial response rates were
75 % with farletuzumab plus cytotoxics. Thus, farletuzumab alone might
be poorly effective, but combination with carboplatin plus a taxane could
merit additional consideration in platinum sensitive first relapse.

Catumaxomab

Catumaxomab is a trifunctional antibody that kills EpCAM-expressing
tumor cells, the primary cause of malignant ascites. It is approved to treat
malignant ascites in Europe but not the United States. It is administered as
4 3-hour intraperitoneal infusions. One case report describes complete
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remission in an OC patient that received 4 infusions of catumaxomab
alone. The most frequent adverse effects are fever, nausea, vomiting, and
abdominal pain. In a phase IIIb study, 25 mg prednisolone reduced
catumaxomab-related adverse events in OC patients receiving it for malig-
nant ascites. There were nonsignificant trends for prednisolone to reduce
time between paracenteses and for catumaxomab alone to increase overall
survival, but the main finding was that prednisolone did not reduce
catumaxomab-related adverse events [35].

Ipilimumab

Immune checkpoint blockade with antibodies is emerging as poten-
tially effective immunotherapy in many cancers [36••]. Ipilimumab
and tremelimumab are fully human IgG1 or IgG2 antibodies, respec-
tively, that antagonize the CTLA-4 immune checkpoint. Ipilimumab is
FDA-approved to treat metastatic or unresectable melanoma and is the
first standard-of-care immune checkpoint inhibitor. Anecdotal reports
of OC responses to ipilimumab and preclinical findings prompted an
ongoing phase II trial of ipilimumab for platinum-resistant OC
(NCT01611558). Ipilimumab can cause significant autoimmune side
effects. Tremelimumab (in phase III trials for melanoma) could have
similar efficacy with reduced toxicities.

Anti-PD-L1

Various clinical and preclinical studies support PD-L1 as a cancer treatment
target [37]. BMS-936559 is a fully human IgG4 monoclonal antibody that
blocks PD-L1 from binding its 2 known receptors PD-1 and CD80 (http://
www.onclive.com/web-exclusives/the-role-of-anti-pd-l1-immunotherapy-
in-cancer/6#sthash.NSf1zUJC.dpuf). It was safe in a phase I trial that in-
cluded 17 OC patients [37] in doses of 0.3–10 mg/kg by intravenous
infusion. Adverse events of any gradewere reported in 91%of 207 patients.
Only 12 patients (6 %) discontinued therapy for treatment-related adverse
events. Common side effects included fatigue, infusion reactions, diarrhea,
arthralgia, pruritis, rash, nausea, and headache. Potential immune adverse
events (rash, hypothyroidism, hepatitis, sarcoidosis, diabetes mellitus, en-
dophthalmitis, myasthenia gravis) were observed in 81 patients (39 %).
Only OC patients at the 10 mg/kg dose achieved objective responses: 1
(6 %) with a partial response and 3 (18 %) with stable disease lasting ≥
24 weeks.

Oregovomab

CA-125 is a tumor-associated antigen used to monitor OC treatment
responses. CA-125 was targeted in vivo by the murine IgG1 monoclonal
antibody oregovomab. Antigen-antibody complexes prime dendritic cells
[38] to activate T cells [39]. In a pivotal phase III study of 373 OC patients
[40], oregovomab maintenance was used after front-line therapy. No dif-
ference in clinical outcome was identified, although treatment was well
tolerated. The future for this monoclonal antibody was uncertain although
interest remained. It is currently in a phase II randomized study
(NCT01616303) in combinationwith first-line chemotherapy consisting of
carboplatin plus paclitaxel vs carboplatin plus paclitaxel alone in advanced
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OC. As prior work suggested immune boosting effects [38–40], this trial
will study anti-CA-125 immunity in addition to clinical end points.

Abagovomab

Abagovomab is an anti-idiotypic CA-125murine monoclonal antibody [41]
that induces anti-CA-125 antibodies. In a phase I trial, 42 OC patients were
randomized to abagovomab vaccination with 2 or 0.2 mg by intramuscular
vs subcutaneous vaccination 4 times every 2 weeks, plus 2 additional
monthly vaccinations. The most common adverse events were minor injec-
tion site pain, myalgia, and fever. No 9grade 2 immunization-related toxic-
ities were noted. Human anti-mouse antibodies were elicited in all patients
in addition to anti-CA-125 antibodies, which were unrelated to vaccine dose
or administration route [42], prompting additional study. In a recently
completed phase III trial of abagovomab maintenance therapy (the MIMOSA
study) in 888 patients with stage III or IV OC [43] in complete clinical
remission after front-line surgery plus platinum/taxane-based chemotherapy,
patients were randomized to abagovomab 2 mg or placebo every 2 weeks for
6 weeks as induction, followed by maintenance vaccinations every 4 weeks
until recurrence. Patients were treated a mean of 450 days. Side effects were
similar to the phase I trial. Vaccinations induced robust anti-CA-125 antibod-
ies, but unfortunately without increase in recurrence-free or overall survival.

Volociximab

Volociximab is a chimeric IgG4 monoclonal antibody against AAB1, a
component of α5β1 integrin that is anti-angiogenic [44]. A phase II study of
weekly volociximab was conducted in 16 patients with platinum-resistant,
advanced epithelial OC or primary peritoneal cancer [45]. Volociximab
15 mg/kg intravenously was given weekly until disease progression or treat-
ment intolerance. One patient had stable disease at 8 weeks whereas the
others progressed. Common adverse events included headache and fatigue
in 75%of patients. Possible study-related serious adverse events in 3 patients
were reversible posterior leukoencephalopathy syndrome, pulmonary em-
bolism, and hyponatremia. This trial has prompted further assessments.

Amatuximab

Mesothelin is a tumor differentiation antigen over-expressed in certain
cancers including those of ovary, pancreas andmesothelium [46]. MORAb-
009 (amatuximab) is a chimeric anti-mesothelin monoclonal antibody
that was tested in a phase I trial of 24 patients with mesothelin-expressing
tumors including patients with OC [47]. Eleven subjects experienced stable
disease prompting an ongoing phase II trial in mesothelioma patients.

Siltuximab

IL-6 in an important immunopathologic cytokine in distinct tumors [48]
and plays diverse immunopathogenic roles inOC [49, 50]. Siltuximab is an
anti-IL-6 antibody being tested as treatment for various carcinomas, he-
matologic malignancies and tumor cachexia [51].

Tocilizumab

Tocilizumab is a humanized anti-IL-6 receptor antibody being tested for
cancer cachexia [52] and is used to mitigate cytokine release symptoms in
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adoptive T cell therapy [53]. In vitro studies of tocilizumab have been
reported with human OC cells but there are no reported clinical trials.
Additional anti-IL-6 and anti-IL-6 receptor antibodies are in trials, includ-
ing for cancer.

Anti-CD137

CD137 (4-1BB) is a stimulatory T cell co-receptor that enhances T cell
proliferation and cytolytic activity. In mouse OC models, combining anti-
CD137 plus anti-Tim3 [54•] or anti-PD-1 [55•] improved immune and
clinical responses. Anti-CD137 has moved into phase I human clinical
trials that include patients with OC [56].
For additional information on antibody therapy for cancer, see a recent
review [57••].

Additional approaches
We recently reported that the fusion toxin denileukin diftitox reduces regulatory
T cells in human cancer and improves anti-tumor immunity, includingOC, and
induced a significant partial response in 1 patient withmetastatic OC in a phase
I trial. We tested denileukin diftitox 12 μg/kg every 3–4 weeks in a phase II trial
of 28 OC patients. It was well-tolerated with no more than grade 2 toxicities
(most commonly fatigue, fever, myalgias) but failed clinically [58•]. Our recent
preclinical findings that immune checkpoint blockade greatly enhances
denileukin diftitox clinical efficacy, including in OC [59] has prompted addi-
tional ongoing studies of combination strategies. In other preclinical studies we
showed that anti-CD73 improves clinical effects of adoptive T cell transfer in
OC [60] and demonstrated that age [61] and sex [62] alter immunotherapy
outcomes, factors generally not taken into account in immunotherapy trial
design.

Cytokines

Interferon-α

Type I interferons (primarily interferons α, β, and ω) were originally
identified as anti-viral proteins [63]. Soon after their discovery, they were
found to block malignant cell proliferation. Interferon-α is the principal
type I interferon tested for human anti-cancer activity. Studies have focused
on high doses that directly inhibit tumor cell replication, but these high
doses elicit significant toxicities that limit clinical applications [64]. Intra-
peritoneal interferon-α to treat OC was first assessed in the early 1980s,
with only modest efficacy [65, 66]. A phase II study of 14 patients showed
that interferon-α could be administered intraperitoneally in combination
with cis-platinum as OC salvage therapy when optimal surgical debulking
was not achieved. The approach was tolerable with hints of clinical efficacy
[67]. Intraperitoneal interferon-α is ineffective againstmalignantOC ascites
[68].
In a mouse OC model, interferon-α improved paclitaxel clinical efficacy
[69]. Interferon-α upregulates OC cell human leukocyte antigen class I
in vitro [70] suggesting possible beneficial immune modulation. However,

Curr. Treat. Options in Oncol. (2015) 16: 1 Page 7 of 20 1



interferon-α down-regulatedmolecules HMFG1 andHMFG2, antigens that
could be OC immune therapy targets. These results illustrate the concept
that treatments effects can be multi-faceted, which must be taken into
account when designing combination therapies.
We found that interferon-α at low immune modulating doses improved
the immune and clinical efficacy of denileukin diftitox used to deplete
regulatory T cells in a mouse OC model, and in 2 of 3 OC patients with
manageable toxicities [71•], prompting ongoing studies. Gene therapywith
adenoviruses engineered to express interferon-β was used in an early phase
clinical trial that included 2 OC patients [72]. One of the 2 had stable
disease 2 months after treatment ended, but both died within 5 months of
treatment. Interferon-β levels decreased after the second adenovirus infu-
sion, because neutralizing anti-adenovirus antibodies developed, a well-
known limitation of repeated adenovirus administrations. Nonetheless,
anti-tumor antibodies were also generated. Finally, interferon-α reduces
proliferation in human OC stem cells [73], suggesting additional mecha-
nisms of action.

Interferon-γ

Interferon-γ was used to treat OC by 1992 [74], and by 1996, intraperito-
neal interferon-γ elicited some encouraging preliminary results [75].
Interferon-γ plus front-line chemotherapy improved OC survival [76].
Interleukin-2 plus interferon-γwas studiedwith infusion of tumor filtrating
lymphocytes in OC. Interferon-γ either alone or combined with
interleukin-2 upregulated tumor cell human leukocyte antigen class I and
class II expression [77], suggesting augmented tumor immunogenicity. Of
the 22 OC patients receiving cytokine treatments, 2 also received tumor
infiltrating lymphocyte adoptive transfer after ex vivo expansion. One of
these 2 had disease stabilization 96 months. Interferon-γ plus IL-2 therapy
activated CD8+ T cells but also induced potentially immunosuppressive IL-
10 and TGF-β.
In a phase I trial, 25 potentially chemotherapy-sensitive OC patients with
recurrent measurable disease got subcutaneous GM-CSF (starting at
400 μg/day) for 7 days plus subcutaneous IFN-γ (100 μg) on days 5 and 7
in attempts to boost antibody dependent cellular cytotoxicity, before and
after carboplatin (AUC 5, intravenous). Levels ofactivated monocytes in-
creased but without clear effects on antibody dependent cellular cytotox-
icity [78].
In mouse xenograft models, interferon-γ treatment significantly improved
survival of OC tumor-challenged mice. Carboplatin did not enhance the
survival benefit of interferon-γ, whereas survival was enhanced by the
matrix metalloprotease inhibitor batimastat [79]. In 4 human OC lines
studied in vitro, interferon-γ downregulated Her2 and impeded cell pro-
liferation [80]. In another in vitro study, interferon-γ rendered OC cells
more susceptible to cytotoxicity mediated by CD8+ CA-125 (tumor)-spe-
cific T cells [81].

Interleukin-2

Interleukin (IL)-2 a T cell growth and activator factor, exerts modest
anti-cancer activity in melanoma and renal cell carcinoma, among
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other cancers [82]. IL-2 at low doses was combined with retinoic
acid in an OC trial [83]. Five-year progression-free survival and
overall survival rates were 29 % and 38 %, respectively, in 65
evaluable OC patients. Immune effects included decreased vascular
endothelial growth factor and statistically significant increases in
lymphocytes and natural killer cells. In a phase II trial of 31 OC
patients with platinum-resistant or platinum-refractory disease [84],
intraperitoneal IL-2 elicited hints of clinical efficacy in addition to
being relatively well tolerated. In 24 patients so assessed, there were
4 complete responses and 2 partial responses. Survival was positively
correlated with total and interferon-γ+CD8+ T cell numbers.
IL-2 plus erythropoietin was tested in peripheral blood stem cell transplants
for breast cancer and OC. Myeloid cell recovery was improved but there
were no significant immune benefits [85]. Therapeutic IL-2 infusions
modulate Treg numbers and trafficking in OC [86], but the clinical signif-
icance is uncertain. However, because IL-2 is a Treg growth and differenti-
ation factor, combining IL-2 with Treg depletion could be useful.

Tumor necrosis factor-α

Tumor necrosis factor (TNF)-α can directly induce apoptosis of
cancer cells and promote anticancer immune responses. TNF-α fused
to the tri-peptide asparagine-glycine-arginine (NGR-hTNF) binds se-
lectively to CD13, which is overexpressed on tumor blood vessels.
Preclinical studies showed that NGR-hTNF exhibits higher potency
than native TNF-α and circumvents its toxicities. 37 patients with
platinum-resistant OC were given a median of 4 cycles of NGR-
hTNF [87]. Partial responses were observed in 8 (23 %) and stable
disease in 15 (43 %). Weakness, anemia, leukopenia, nausea, neu-
tropenia, vomiting, chills, and constipation were the most common
side effects. Febrile neutropenia was observed in 1 patient (3 %).
However, G10 % of adverse events were attributable to NGR-hTNF.

IL-18

Recombinant IL-18 (SB-485232) is an immunostimulatory cytokine
that boosts antitumor immunity in combination with pegylated
liposomal doxorubicin in mouse models. In a phase I study, SB-
485232 was combined with pegylated liposomal doxorubicin in
patients with recurrent OC. 16 patients received 4 cycles of pegylated
liposomal doxorubicin (40 mg/m2) every 28 days, plus dose-
escalated SB-485232 on days 2 and 9 of each cycle plus additional
discretionary pegylated liposomal doxorubicin monotherapy. Most
patients (82 %) were platinum-resistant or refractory, and heavily
pretreated. SB-485232 up to 100 μg/kg was well-tolerated. Pegylated
liposomal doxorubicin did not alter SB-485232 biologic activity and
SB-485232 did not affect doxorubicin toxicities. Ten of 16 subjects
(63 %) completed study and 5 (31 %) progressed on treatment. 6 %
had a partial response, and 38 % had stable disease [88].
A summary of recent clinical trials using antibodies, immunotoxins, or
cytokines is summarized in Table 1.
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Other treatments

Peptide vaccines
Many OC patients have easily detectable numbers of functional tumor
antigen specific T cells, suggesting that augmenting tumor-specific immunity
could lead to improved clinical benefits. A number of tumor-associated
antigens have been detected in OC, any of which potentially could help
elicit beneficial anti-tumor immunity. These tumor-associated antigens in-
clude HER2/neu [5], MUC1 [10], NY-ESO-1 [11], membrane folate receptor
r [12], folate binding protein (gp38) [13], TAG-72 [14], mesothelin [15,
16], sialyl-Tn [17, 18], milk fat globulin-1 [21], and OA3 [19].

Peptide vaccines help to define the magnitude and kinetics of specific
immune responses, but are limited clinically in that they are generally recog-
nized by a single major histocompatibility complex molecule as they are
relatively short in length. Peptide library vaccines could help overcome this
shortcoming [89] but have not specifically been tested in OC to our knowledge.

NY-ESO-1

NY-ESO-1 is highly expressed in OC. It was expressed in vaccinia or fowlpox
viruses and tested in 22 patients with advanced OC in clinical remission [90].
Patients were given 1 intradermal dose of NY-ESO-1-vaccinia vector followed
by monthly subcutaneous NY-ESO-1-fowlpox vector. Vaccination increased
NY-ESO-1 specific antibodies, or CD4+ or CD8+ T cells. The median duration
of progression-free survival was 21 months and median overall survival was
4 years. No adverse events higher than grade 2 were observed and the most
common side effect was injection site pain.
A phase I trial used decitabine as an epigenetic modifier for NY-ESO-1
vaccine and liposomal doxorubicin liposome in 12 patients with relapsed
OC. The regimen was safe with manageable toxicities. Vaccination increased
NY-ESO-1-specific antibodies and T cells and antibodies to additional tumor
antigens were elicited. Stable disease or partial clinical response was noted in
6/10 evaluable patients [91], prompting additional studies.

P53

p53 overexpression is common in many distinct cancers, including OC.
Vaccination with p53 peptide plus IL-2, GM-CSF and montanide adjuvant
was tested in patients with stage III, IV, or recurrent p53-overexpressing OC
without evidence of disease at vaccination. Subcutaneous vaccination im-
proved anti-p53 immunity (interferon-γ production and p53-containing
MHC tetramers) in 9 of 13 patients [92]. Subcutaneous vaccination was
compared with intravenous infusion of p53-pulsed dendritic cells using IL-
2 as an adjuvant/T cell enhancer. Both strategies elicited comparable im-
munity [92]. Thus, the logistically simpler subcutaneous approach could be
the best path forward, according to study investigators. OC recurrence and
survival data were not reported. IL-2 administration increased blood Treg
numbers significantly, which could impede anticancer immunity, an issue
that requires further investigation. Another phase II trial tested a synthetic
long p53 peptide in patients with recurrent OC and found that it induced
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antigen-specific T cells, but did not improve clinical outcomes as a stand-
alone approach, or when tested with secondary chemotherapy [93].

Natural cancer peptides
DPX-0907 (DepoVax) is an oil-based peptide adjuvant. In a phase I trial of
patients with advanced-stage cancers of breast, ovary, or prostate, a vaccine of
DPX-0907 plus naturally occurring HLA A2-expressed cancer peptides derived
from cell lines was well-tolerated and immunogenic [94]. Injection site reac-
tions were the most common adverse event. Vaccination induced
polyfunctional T cells, including in OC patients, prompting additional studies.

Carcinoembryonic antigen glypican-3 (GPC3)
A phase II trial tested a GPC3-derived peptide vaccine in incomplete Freund’s
adjuvant. OC patients received vaccination biweekly for 6 injections and then
every 6 weeks until disease progression. Two OC patients with chemotherapy-
refractory disease achieved partial clinical responses in this ongoing trial [95].

Carcinoembryonic antigen (CEA) and MUC1
CEA and MUC-1 are overexpressed many carcinomas. 25 patients were primed
with a vaccinia virus expressing CEA and MUC-1 plus the costimulatory mol-
ecules CD80, intercellular adhesion molecule 1, and lymphocyte function-
associated antigen 3, PANVAC-V) and boosted with fowlpox expressing these
molecules (PANVAC-F). Vaccination was well tolerated with no grade 2 toxicity
in more than 2 % of the cycles, except local vaccine reactions. MUC-1 and/or
CEA-specific immunity was generated in 9 of 16 patients. One patient with clear
cell OC had a durable (18-month) clinical response [96•].

In a follow-up study [97], 26 patients were vaccinated with PANVAC
monthly. Side effects were largely injection-site reactions. Of the 14 OC pa-
tients, median time to progression was 2 months (range 1–6) and median
overall survival was 15.0 months. Patients with limited tumor burden and
minimal prior chemotherapy seemed to derive the most benefit from the
vaccine. An OC patient from the prior trial cited above [96•] progressed after
38 months. Additional studies are underway.

Adoptive cell transfers

Dendritic cells (DC)

The role of DC in cancer therapy has been reviewed [98]. Adoptive transfer of
tumor antigen-pulsed DC increases antitumor immunity by activating anti-
tumor T cells. In a phase I/II trial, 11 advanced-stageOCpatients receivedDC
loaded with Her2/neu, telomerase, and pan T helper cell stimulating
(PADRE) peptides ± low dose cyclophosphamide to deplete Tregs [99]. Cell
infusions were well tolerated and the most common side effects were low-
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grade hypersensitivity reactions with no treatment-related grade 3 events.
Only modest immunity was elicited by the vaccine (antigen-specific T cell
cytokines or tetramer labeling). However, of 11 patients, only 1 died within
3 years of vaccination. Of the remaining 10, 3 experienced chemotherapy-
responsive recurrences and the rest remained disease-free. Another recent
trial used autologous whole tumor lysate-pulsed DC plus bevacizumab,
cyclophosphamide, and autologous tumor lysate-primed T cells in recurrent
OCpatients [100]. Transfusionswerewell toleratedwith no grade 3 or higher
events. Two of 6 patients experienced partial responses, and 2 exhibited
stable disease. There were reduced circulating Tregs and increased tumor-
specific T cells at study end in the 4 patients that experienced clinical benefit.
Very recently, a phase II trial of 10 OC patients with minimal residual
disease tested subcutaneous autologous DC pulsed with tumor lysate and
keyhole limpet hemocyanin as an adjuvant plus adjuvant low-dose IL-2
[101]. Three of 10 patients maintained complete remissions for 38–83
months and a third with complete remission relapsed after 50 months. In
patients that experienced clinical benefit, multiple measures of antitumor
immunity increased, such as natural killer cell activity, interferon-γ+ T cells,
TH1-stimulating IL-12, and immunosuppressive TGF-β declined.

DC/tumor cell fusions

Reinfusion of autologous DC fused to OC cells could induce more efficient
presentation of the wide array of tumor antigens vs tumor alone. DC/tumor
cell fusion has been tested in various preclinical models [102, 103], but not
in human OC trials.

T cells

The goal of adoptive T cell transfer in cancer immunotherapy is to increase
numbers of activated, cancer-specific cytotoxic or helper T cells. Recent
technologies have been reviewed [104••]. In a pilot study, 7 subjects with
recurrent local OCwere givenmultiple cycles of intraperitoneal infusions of
autologous MUC1 peptide-stimulated cytotoxic T lymphocytes [105]. In-
fusions were well tolerated, multiple infusions did not offer greater benefit
over one, and clinical benefit was seen in only 1 patient who was disease
free 912 years.
Most recent adoptive T cell transfers use T cell receptor (TCR) transgenic or
chimeric antigen receptor (CAR) T cells. Recombinant TCRs give a T cell
fixed MHC-dependent specificity. CAR T cells express tumor-antigen spe-
cific antibody fragments on their surface, fused to intracellular activation
proteins (eg, CD3ζ, 4-1BB, OX40) and recognize antigen independent of
MHC. A preclinical study showed NKG2D-specific CAR T cells provide
protection and establish memory against distinct OC tumors where only
7 % of cells express NKG2D [106]. Despite inducing complete remissions
in leukemia patients, the efficacy of CAR T cells in solid tumors has been
more limited because of inefficient tumor homing. However, folate
receptor-α-specific CAR T cells expressing CD3ζ plus CD137 costimulatory
domains protected against established OC in immunodeficient mice,
underscoring the importance of the intracellular activation proteins. A
phase 1 trial of OC patients with recurrent OC used autologous folate
receptor-α –specific CAR (CD3ζ-CD137) T cells is planned [107].
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Oncolytic viruses
Myxoma virus is nonpathogenic in humans but infects human cancer cells and
exhibits oncolytic activity in preclinical models, reviewed elsewhere [108].
Myxoma virus possesses oncolytic activity against ascites-derived human OC
cells in vitro [109]. However, there are currently no reported OC clinical trials

Table 2. Selected clinical trials in OC that use vaccines, adoptive cell transfers or oncolytic viruses

Clinical trial
approach

Clinical trial # OC patients Objective
responses

Reference or
trial ID

Vaccines Phase II trial of recombinant vaccinia
and fowlpox vaccines expressing
NY-ESO-1, 2012

22 21 mo PFS 90
4 y OS

Phase II trial of subcutaneous p53
peptide vaccination, 2012

13 4.2 mo PFS 92
41 mo OS

Phase I trial of p53-synthetic long
peptide vaccine, 2012

20 No increase in OS 93

Adoptive cell
transfers

Phase II trial of p53-pulsed dendritic
cells vaccine, 2012

6 8.7 mo PFS 92
29.6 mo OS

Phase I/II vaccination trial of Her2/
neu, telomerase, PADRE peptide-
pulsed DCs ± cyclophosphamide,
2012

11 90 % 3 y OS 99
NED in 6 pts at 3 y

Phase I trial of autologous tumor
lysate-pulsed dendritic cells +
bevacizumab, cyclophosphamide,
autologous tumor lysate-primed
T cells, 2013

6 2 – PR 100
2 – SD
2 – PD

Pilot study of MUC1-primed cytotoxic
T lymphocyte transfer, 2012

7 1 – CR 105
6 – PD

Phase I trial of anti-mesothelin CAR
T cells, ongoing

N/A N/A NCT02159716

Phase I trial of anti-mesothelin CAR
T cells + chemotherapy, ongoing

N/A N/A NCT01583686

Phase I trial of anti-VEGFR2 CD8+

CAR T cells + chemotherapy,
ongoing

N/A N/A NCT01218867

Oncolytic
viruses

Phase I trial of CA-125- or Na/I
symporter-expressing measles virus,
ongoing

N/A N/A NCT00408590

Phase I/II trial of Na/I symporter-
expressing measles virus infected
mesenchymal stem cells, ongoing

N/A N/A NCT02068794

Phase II trial of thymidine kinase-
inactivated vaccinia virus, ongoing

N/A N/A NCT02017678

Phase I/II trial of oncolytic adenovirus,
ongoing

N/A N/A NCT02028117

Phase II trial of oncolytic reovirus,
ongoing

N/A N/A NCT02028117

CCR continued clinical response, CR complete response, IR initial response, N/A not available, NED no evidence of disease, NR no response, OS
overall survival, PD progressive disease, PFS progression-free survival, PR partial response, SD stable disease
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with myxoma virus. Reovirus is also oncolytic against human OC cells in vitro
[110]. Neutralizing antibodies in malignant ascites can inactivate reovirus
oncolytic activity, which can be overcome by loading reovirus onto immature
DCs or lymphokine-activated killer cells [111]. A phase I trial of reovirus in
platinum-resistant OC patients is ongoing (NCT00602277).

A summary of recent clinical trials using vaccines, adoptive cell transfers, and
oncolytic viruses is summarized in Table 2.

Conclusions

Recent advances in understanding cancer immunotherapy and in developing
novel agents has led to significant improvements in immunotherapy, most
notably inmalignantmelanoma, but also in other cancers. There is currently no
FDA-approved immunotherapy for OC, but there is much promise from leads
developed in ongoing trials inOC and other cancers. Over the next several years,
we expect that important advances in OC immunotherapy will be made,
leading to important phase II and III trials. Because of a lack of curative salvage
treatment options for relapsed or refractory OC, clinicians should consider
referrals to early phase clinical trials, including OC immunotherapy trials.
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