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Abstract: Nonparametric models are popular owing to their 
flexibility in model building and optimality in estimation. How-
ever nonparametric models have the curse of dimensionality and 
do not use any of the prior information. How to sufficiently mine 
structure information hidden in the data is still a challenging issue 
in model building. In this paper, we propose a parametric family of 
estimators which allows for penalizing deviation from linear 
structure. The new estimator can automatically capture the linear 
information underlying regressions function to avoid the curse of 
dimensionality and offers a smooth choice between the full non-
parametric models and parametric models. Besides, the new esti-
mator is the linear estimator when the model has linear structure, 
and it is the local linear estimator when the model has no linear 
structure. Compared with the complete nonparametric models, our 
estimator has smaller bias due to using linear structure information 
of the data. The new estimator is useful in higher dimensions; the 
usual nonparametric methods have the curse of dimensionality. 
Based on the projection framework, the theoretical results give the 
structure of the new estimator and simulation studies demonstrate 
the advantages of the new approach. 
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0  Introduction 

Let ( , ), ( 1,2, , )i iY i n X  be independent and 

identically distributed observations from ( , )YX  with 

smooth joint density ( , ) ( ) ( | )p y f g yx x x  and 
T

1 2( , , , ) ,d
i i i id iX X X Y  R RX . Consider the following 

regression: 
          ( )Y m  x                  (1) 

where ( ) ( | )m E Y x X x  is the conditional mean 
function, the error   with mean zero and variance 2  
is independent of X. In this work, our aim is to estimate 

( )m x  given the data ( , )i iYX . 
In typical regression models we assume that ( )m x  

is linear. For linear models, there exist fruitful results 
(see example Ref.[1]). Various models with given special 
structure have been extensively investigated in the lit-
eratures and widely applied in practice, such as paramet-
ric models (linear or nonlinear), semi-parametric models 
(partial linear model and general linear model), additive 
model and so on (Refs. [2-6]). If the underlying assump-
tions are correct, the fitted models can be easily inter-
preted and estimated. If they are incorrect, the special 
estimators may be inconsistent and give a misleading 
picture of the regression relationship.  

Models without restrictions fall into the broad class 
of nonparametric regression models which are called full 
models. In the full model, we only assume that ( )m x  is 
a smooth function. Some nonparametric estimators have 
been well studied, among which the local linear estima-
tor is minimax optimal in case of more than one dimen-
sion. The convergence rate of mean squared error of a 
common nonparametric estimator is of the order 

4

4( )dO n


 . The convergence rate is optimal and cannot be 

improved in some sense. Nonparametric regression esti-
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mators are very flexible but their statistical accuracy de-
creases greatly with the growth of the dimension of ex-
planatory variables in the model. The latter caveat has 
been appropriately called the curse of dimensionality 
(Refs. [7-12]). 

Therefore, researchers have tried to develop models 
and estimators to offer more flexibility than special cases 
and to overcome the curse of dimensionality. Whether or 
how to combine advantages of the stability of the special 
estimators and the optimality of the nonparametric esti-
mators is the key issue of the methods. 

We note that an adaptive combination between the 
full model and the additive model has been studied (see  
Refs. [13-15]). These methods solve the curse of dimen-
sionality and do not need any limitation for the regres-
sion function. At the same time, the methods mentioned 
above are combinations of two nonparametric estimators, 
hence the estimators can not obtain the optimal conver-
gence rate when the true regression function has para-
metric structure.  

Example: 1 2 1 2( ) 2 3m x x x x  x . 
Choosing the linear or additive model will lead to 

serious bias owing to neglecting the nonparametric com-
ponent of the regression function ( )m x . Fitting the full 
model also causes large bias because a large bandwidth 
must be used in order to achieve the same rate for vari-
ance and the squared bias. If the structure information in 
the data can be automatically captured and sufficiently 
used, the accuracy of estimator will be greatly improved. 

Based on the arguments above and motivated by 
Ref. [13], in this paper, we propose a continuous para-
metric family of estimators ˆ ( 0)m  ∨  which can auto-
matically capture the linear structure information of re-
gression function. The method has following advantages: 

1) It offers a continuous model choice via the tuning 
parametric  , including the full model ( 0)   and the 
linear model ( )    as special cases; 

2) It is an adaptive combination between the local 
linear estimator and the global linear estimator;  

3) It overcomes the curse of dimensionality and the 
convergence rate is the parametric rate when the true 
regression function is linear.  
 
1  Definition of the Penalized  
Estimator 

This section is divided into two subsections. In the 
first subsection, we briefly give a review of the local 
linear estimator and the linear estimator for model (1) 

which can be viewed as a projection of the data with re-
spect to appropriate norms. The second subsection de-
velops the definition of our estimator. 
1.1  Simple Smoothers Viewed as Projections 

For a fixed T
1 2( , , , ) d

dx x x Rx , the local lin-
ear estimator for ( )m x  in the full model (1) is defined 

as ll 0ˆ ˆ( ) ( )m rx x  by minimizing  

2
0

1 1

SSR( ( ), ) ( ( ) ( ) ) ( , )
n d

ik k
i k h i

i k k

X x
r Y r r K

h 


   x x x x X x  

where ( , )h iK X x  is the d-dimensional kernel function 

of the observation iX  for the output point x. We as-

sume the bandwidths 1, , kh h  are of the same order.  

According to Ref. [16], many of smoothing meth-
ods are projections with respect to a particular norm.  

Define a normalized vector space of ( 1)n d   

functions  

 , ,( | 1, , ; 0,1, , ), :i l i l dr i n l d r    R R F r  

that contains the space of data vectors and the space of 
candidate regression functions. Let 

1 2( ,0, ,0, ,0, ,0, ,0, ,0)Y nY Y Y   r  

that is, within blocks of d+1, only the first entries may be 
nonzero, then Y Fr . Define  

 0 1 0 1
full ( , , , , , , , , , ) | :d d d l dr r r r r r r r  R R  F r  

that is, within blocks of d+1, , ( )i lr x  are independent of 
i. fullF  is a subspace of F. 

Define the seminorm 
2

*
.  on F by 

2

*

2

,,0 ,

1 0

)
1

( ) ( ) ( , ) (d
n d

i k ki i k
h i

i k k

r

X x
r r K v

n h 



 
 

 
  x x X x x

 

Hence, for fullr F , we have 
2

*

2

,0

1 0

)
1

( ) ( ) ( , ) (d

Y

n d
i k kk

i h i
i k k

X x
Y r r K v

n h 

 

 
  

 
 

r r

x x X x x
 

(2) 

The   can be removed because the minimum can be 

found for each x individually. The integration corre-
sponds to the minimization problem for the local linear 
estimator. Consequently, llm̂  is the projection of the 

response Y onto the subspace fullF  under the seminorm 
2

*
. .  

The centralized linear regression model assumes 
that 
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T

1

( ) ,  1, ,
d

i i i j ij i i i
j

Y m X i n  


       X X   

where 0iE   and 2
iD  . The least-squares esti-

mation for   is  

T 2 T 1 T

1

1ˆ arg min ( ) ( )
d

n

i i
i

Y X
n



 

  
R

X X X Y


   

where T
1 2( , , , )n X X X X , T

1 2( , , , )n Y Y Y Y . Then 

the linear estimator of regression function ( )m x  is 
Tˆˆ lm  x . The least- squares estimation has the para-

metric convergence rate 1/2( )pO n . Set 

 
linear

T T T( ,0, ,0, ,0, ,0, ,0, ,0) | d



 R  

F

r X X X   
  

it is obvious that linearF  is a subspace of fullF . 

Letting ( , )h iK CX x  and (d ) d( ( ))nv Fx x  in 

formula (2), we have, for linearr F , 

2 2T 2

* 2
1

1
( ) ˆ

n

Y i i Y
i

Y
n 

    r r X r r  

The formula is the minimization problem for the linear 
estimator ˆ lm . Hence, it is the projection of the response 

Y to subspace linearF  under the seminorm 
2

2
. . We use 

l  and *  to denote the 
2

2
.  orthogonal projection 

from fullF  onto linearF  and the 
2

*
.  orthogonal projec-

tion from F onto fullF , respectively. 

1.2  Definition of the Penalized Estimator 
In this subsection, we construct a family of estima-

tors connecting linearity with nonlinearity components. 
The approach offers us more flexibility in case of highly 
nonlinear functions and chooses a fit between the linear 
and the full model. The new method decomposes ( )m x  
into the linear part and the orthogonal components. Set 
the seminorm  

22 2

* 2
( ) ( ) ( )lP    r x I r x  

define the penalty estimator by 

full full

2
ˆ ( ) arg min ( ) arg minY

r
m 

 
  

F r F
x r r x  

2

,,0 ,

1 0

)
1

( ) ( ) ( , ) (d
n d

i k ki i k
h i

i k k

X x
r K v

n h 

 
 

 
  r x x X x x  

2

2
( ) ( )lI P r  x  

Let ,l   be the orthogonal projection from fullF  
onto linearF  under 

2
.  . Note that ˆ ( )m x  ( 0 ∨ ) is a 

parametric family of estimators which includes asymp-
totically optimal estimators for the full model ( ) =0 

and the linear model ( =) as special cases. It offers a 
continuous model via the tuning parameter  . For gen-
eral  , we get a family of estimators connecting the 
local linear estimator with the linear estimator. We call 
ˆ ( )m x  as a local linear-linear estimation (LLLE). 

2  Properties of the Estimator 

In this section, we study the properties of the esti-
mator given in Section 1. In order to investigate the as-
ymptotic properties, we give the following conditions: 

C1: The kernel K is bounded, and it has compact 
support [ , ]a a . The kernel K is symmetric about zero 
and Lipschitz continuity; 

C2: The d-dimensional vector X has compact sup-
port [ , ]da a  and its density f is bounded away from 
zero; 

C3: 1/5( ), 1, ,kh O n k d   ; 
C4: for some 5 / 2k ∨ , | |kE Y ∧ ; 
C5: ( )m x  is twice continuously differentiable and 

f  is once continuously differentiable. 
Let 

1,1 1 1,2 2 1,

1 2

2,1 1 2,2 2 2,

1 2

,1 1 ,2 2 ,

1 2

1             

1            
,

          

1             

d d

d

d d

d

n n n d d

d

X x X x X x

h h h

X x X x X x

h h h

X x X x X x

h h h

   
 
 
   
 

  
 
 
   
 
 





    



X  

1

2 )

( )    0         0

0         (      0

                                     

0                0        ( )

h

h

h n

K

K

K

 
 
   
  
 




   


X x
X x

W

X x

-

-

-

 

Then we have the following theorems. 
Theorem 1  Under the conditions C1-C3, we have 

 T 1 T
, ll llˆ ˆ ˆ( ) ( )l lm m m         x X WX I X WX I   

    (3) 

, llˆ ˆ( ) ( )l lm m  x x              (4) 

and 

   T 1 T
llˆ ˆ( ) ( )l lΡ m Ρ m        I x X WX I X WX I  (5) 

Proof  Let T( )   S x X WX  and T( )  L x X WY , 

then the normal equations for llm̂  and m̂  respectively 

are 

llˆ( ) ( )m LS x x  

and  
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llˆ ˆ( ( )) ( ) ( ) ( )l m m    S I x L x S x , 

We have  
1

llˆ ˆ( ) ( ( )) ( )lm m     x S I S x . 

The above equation is equivalent to 
1 1

, llˆ ˆ( ) {( ) ( ) }lm S m       x S I S I      (6) 

Since 1 1( ) ( )      S I S I S I , we obtain 

 T 1 T
, llˆ ˆ( ) { ( ) }l lm m         x X WX I X WX I  

Then equation (3) holds. Because , ll linearˆ ( )l m x F , so 

formula (4) holds. Let l l l S S , *, (l  S  
1) l I S . If lS  is invertible, then we define the pro-

jection 
1

*, *, ( )l l       S I S  

Then we have *, *,l      and  

1
*,

1 1 1
*, *,

( ( ) )

( ) ( )

l

l l



 

   

     



  

  

  

I S I

S I S S I S
    

(7)
 

By the definition of *, , *, ll linearr̂ F , 1( ) S I  
1( )   S I S I  and equation (7), we obtain  

1
*,( ) ( ) 0l     S I S I  

The above formula shows that the reminder is or-
thogonal to linearF . 

Remark 1  Formula (3) and (4) show that ˆ ( )r x  

is decomposed into the linear part and the orthogonal 
remainder, and it is a weighted sum of the local linear 
estimator and the linear estimator. The linear part is just 

the projection of ˆ ( )m x  with respect to the norm 
2

2
. . 

It is obvious that in sparse regions, the local linear esti-
mator is unstable and does not exist when T X WX  is 

singular. Formula (5) shows that our method solves this 
problem. When all eigenvalues of T X WX  are large, the 

effect of penalty vanishes. 
Theorem 2  Under the conditions C1-C4 and 
0  , we have 

ll 2
ˆ ˆ( ) ( ) ( )Pm m O  x x              (8)          

Proof  By Formula (6), we have  
1 1

, ll llˆ ˆ ˆ( ) ( ) ( )lm m m       x S I S I S  

1 , ll 2 llˆ ˆˆ lW m W m   

which shows that ˆ ( )m x  is some kind of convex 

combination of llˆ ( )m x  and , llˆ ( )lP r x . Let 1 ( )PW O   

and 2 1 ( )PW O   , then the result follows directly. 

Remark 2  The conclusion implies that when the 
regression function has no linear structure, the new esti-
mator behaves as well as the local linear estimator and 

therefore they can achieve the optimal convergence rate, 
provided that   is not very large.  

Theorem 3 Under the conditions C1-C5, and 
  , we have 

2

1
ˆ ˆ( ) ( ) ( )l d
m m O

nh



 x x          (9) 

Proof  If the regression function is linear, then the 
variance term is the nonlinear part. It indicates  

2
*, ll 2

1
ˆ|| ( ) || ( )p d
m O

nh I  

By Theorem 1, we have 

  *,ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )l l lm m m m m          x x x x I x  

   * ˆ ˆ( ) ( )l lm m      I x I x  

 * ˆ( ) ( )l m   I I x  

 1
* *, llˆ( )( ) ( )m     I S I S I x   

Under the condition 1
2,sup 2,sup|| ( ) || 1 / || || S I S S≤ , 

we obtain Theorem 3.  
Remark 3  Formula (9) indicates that ˆ ( )m x  and 

ˆ ( )lm x  are equivalent if the true regression function is 
linear for 1/5( )h O n  and /101 / ( ).dO n   That is to 
say, the estimator performs as the linear estimator and 
has parametric convergence rate. 

All the properties aforementioned reveal that the 
new estimator can adapt to the global and local linearity 
of the regression function by choosing regularization 
parameter  . 

3  Simulation Studies 

3.1  The Choice of Tuning Parametric 
In this section we consider the choice of the tuning 

parametric   and the bandwidth h. It is observed from 
formula (3) that the first part of bias of ˆ ( )m x  is ir-
relevant to   if the study model is linear. Now the pa-
rameter selection is asymptotically equivalent to the 
classical variance/bias compromise, that is to say 

1/5h n  and   . Next we investigate the rate of 
  for the general case. Set 

T T T 1 Tˆ [( ( ( ) )] ˆY            X WX X X X X I X WY M Y  

which is a linear function of Y. M  is called the hat 
matrix. Consider the following criteria: 

2AIC( , ) log( ) 2tr( ) /h n   M  
2 2GCV( , ) / (1 tr( ) / )h n   M  

2 1 tr( ) /
ˆAIC ( , ) log( )

(1 (tr( ) 2) /C

n
h

n




  
 

 
M

M
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where 
22 1

ˆ Y
n   Y M . AIC and GCV criteria are 

classical model selection (see Ref. [6]). Here we use 
AICC  criteria which was proposed by Ref. [17]. By the 

Taylor expansion,  
2

2 2
2

ˆ 2
ˆlog( ) log( ) 1 tr( )

n 
 


    M , 

we have 
2

2
2

ˆ 2
AIC AIC log( ) 1 tr( )C n 




     M  

Under the AICC  criteria, similar to Ref. [13], we obtain 
/101 / ( )dO n  .  

3.2  Numerical Simulations 
In this section, we conduct a simulation study to 

compare our method with the local linear estimation, 
linear estimation, additive estimation, the local additive 
estimation and locally linear-additive estimation. Con-
sider the following regression function: 

1 2 1 2( ) 2 3m x x x x  x  

In this model, x is uniformly distributed in 
[ 1,1] [0,1]   and the error is normally distributed with 
mean zero and variance 0.25. We generate 400 datasets 
from the model. The mean squared errors (MSE) for our 
estimator and the other five estimators are 5.6, 8.5, 7.4, 
13.1, 11.2, 6.3, respectively. It is obvious that the MSE 
of our estimator is smaller than those of other five esti-
mators and our estimator is more efficient than them. 

Figures 1-7 are the true regression function surface 
contour and six estimation surface contours. It is ob-
served that even though the true regression function is 
clearly nonlinear, penalizing the nonlinear part leads to a 
remarkable improvement in optimal MSE. 

4  Conclusion 

Semiparametric models have been widely used in 
practice, but how to consistently distinguish parametric 
and nonparametric terms for the full models is still a chal-
lenging problem. In this paper, motivated by Ref. [13], 

 

 
Fig. 1  Contour lines of true regression function            Fig. 2  Contour of local linear estimation 

 

 

Fig. 3  Contour of linear estimation                Fig. 4  Contour of additive estimation 
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Fig. 5  Contour of local additive estimation 

 

 
Fig. 6  Contour of local linear-additive estimation 

 

 
Fig. 7  Contour of local linear-linear estimation 

 

we propose a continuous parametric family of estimators, 
which can automatically capture the linear structure in-
formation of regression function. The new method is an 
adaptive combination between the local linear estimator 
and the global linear estimator, including the full model 
and the linear model as special cases. The estimator avoids 
the curse of dimensionality and the convergence rate is the 

parametric rate when the true regression function is linear.  
Note that the new method only captures the linear 

parametric term behind the data and the remainder fitted 
local linear estimator. It would be interesting to extend 
the approach to other parametric and nonparametric 
terms, such as generalized linear-local linear, linear-B- 
Spline, generalized linear-B-Spline, etc. 
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