

2019, Vol.24 No.2, 149-160

Article ID 1007-1202(2019)02-0149-12

DOI https://doi.org/10.1007/s11859-019-1380-z

A Method for Software Vulnerability
Detection Based on Improved Control
Flow Graph

□ ZHOU Minmin, CHEN Jinfu†, LIU Yisong,

ACKAH-ARTHUR Hilary, CHEN Shujie,
ZHANG Qingchen, ZENG Zhifeng
School of Computer Science and Communication Engineering,

Jiangsu University, Zhenjiang 212013, Jiangsu, China

© Wuhan University and Springer-Verlag GmbH Germany 2019

Abstract: With the rapid development of software technology,
software vulnerability has become a major threat to computer se-
curity. The timely detection and repair of potential vulnerabilities
in software, are of great significance in reducing system crashes
and maintaining system security and integrity. This paper focuses
on detecting three common types of vulnerabilities: Un-
used_Variable, Use_of_Uninitialized_Variable, and Use_After_
Free. We propose a method for software vulnerability detection
based on an improved control flow graph (ICFG) and several predi-
cates of vulnerability properties for each type of vulnerability. We
also define a set of grammar rules for analyzing and deriving the
three mentioned types of vulnerabilities, and design three vulnerabil-
ity detection algorithms to guide the process of vulnerability detec-
tion. In addition, we conduct cases studies of the three mentioned
types of vulnerabilities with real vulnerability program segments
from Common Weakness Enumeration (CWE). The results of the
studies show that the proposed method can detect the vulnerability in
the tested program segments. Finally, we conduct manual analysis
and experiments on detecting the three types of vulnerability program
segments (30 examples for each type) from CWE, to compare the
vulnerability detection effectiveness of the proposed method with that
of the existing detection tool CppCheck. The results show that the
proposed method performs better. In summary, the method proposed
in this paper has certain feasibility and effectiveness in detecting the
three mentioned types of vulnerabilities, and it will also have guiding
significance for the detection of other common vulnerabilities.
Key words: software security; software vulnerability; improved
control flow graph; vulnerability detection algorithm
CLC number: TP 305

Received date: 2018-07-01
Foundation item: Supported by the National Natural Science Foundation of
China (61202110 and 61502205) and the Project of Jiangsu Provincial Six
Talent Peaks (XYDXXJS-016)
Biography: ZHOU Minmin, female, Ph. D. candidate, research direction:
software analysis and trusted software. E-mail: minminzhou@stmail.ujs.edu.cn
† To whom correspondence should be addressed. E-mail: jinfuchen@ujs.edu.cn

0 Introduction

The security of computer and information systems
fundamentally depends on the quality and security of
their underlying software system. With the rapid devel-
opment of software technologies, various types of net-
work attacks and data leakage incidents emerge one after
another. The fundamental cause is that software devel-
opers are unavoidably making errors in the process of
developing applications. Therefore, software vulnerabil-
ity formed in software can easily be exploited by exter-
nal attackers. Software vulnerability refers to weaknesses,
defects, and errors that are valuable to attackers in the
software system. Once attackers exploit such vulnerabili-
ties, they will pose a huge threat to the integrity and secu-
rity of the information system, even with serious conse-
quences that causing the enormous economic losses [1-4].

The existing approaches to detect software vulner-
abilities are commonly divided into static and dynamic [5-8].
Dynamic approaches check the vulnerabilities in
run-time by supplying test cases, and they usually cannot
completely cover all the execution paths. The widely
used dynamic program analysis ranges from simple
fuzzy testing [9,10], advanced taint tracking to symbol
execution [11,12], and other technologies to further im-
prove the effectiveness of software vulnerability detec-
tion. Although these methods can find various defects,
they are difficult to operate effectively in practice, and do
not produce correct results due to the long running time
or the exponential growth of the execution path. On the
other hand, static approaches can make up for this defi-
ciency because they consider all the possible execution
paths, and even detect vulnerabilities without actually
running the program. Many researches have focused on

Wuhan University Journal of Natural Sciences 2019, Vol.24 No.2

150

this topic in the field of software security. Fagan [13] pro-
posed a technique called design code inspection that
helps software developers detect and fix errors at an
early stage of development, which can reduce the costs
of correcting software error. Viega et al [14] designed a
static vulnerability scanning tool named IST4. For C and
C++ source code, the tool can divide the program into
small slices and compare each one with the database to
detect vulnerabilities. It is characterized by high detec-
tion efficiency, and can be applied to detect vulnerabili-
ties in large-scale projects. However, its defect is that
only a few kinds of vulnerabilities are covered. Sands[15]
proposed a vulnerability detection method based on
theorem proof, in which they firstly converted the pro-
gram into a logical formula by semantic analysis, and
hence proved the validity of the logical formula using the
established axioms and rules. Clarke et al [16] proposed a
model detection technology as a formal verification
method for software vulnerability detection. This tech-
nology checks whether a given program model meets
certain predefined characteristics by traversing the state
space, but the defect is that it might just be suitable for
small-scale test programs.

In this paper, we propose a vulnerability detection
method based on an improved control flow graph to de-
tect three types of software vulnerabilities (Un-
used_Variable, Use_of_Uninitialized_Variable, and Use_
After_Free). The method uses the static semantic analy-
sis technique based on the improved control flow graph
to analyze the self-contained information in the vulner-
ability source code, and hence detects the potential vul-
nerabilities in the program under test. This paper expands
the data flow information into the classic control flow
graph and creates a novel form of code icon representa-
tion—improved control flow graph (ICFG). In addition,
we have formulated a set of vulnerability predicates and
grammar rules based on ICFG, for software vulnerability
analysis and detection. Finally, we have applied the pro-
posed method to analyze real and specific vulnerability
program segments obtained from a commu-
nity-developed list of common software security weak-
nesses, known as Common Weakness Enumeration
(CWE). Experimental results show that proposed method
can play a guiding role in detecting the three types of
software vulnerabilities.

The remainder of this paper is structured as follows.
The related work is presented in Section 1. The overview
of the proposed method framework is given in Section 2.
The proposed approach and the methodology of the vul-

nerabilities detection algorithms are discussed in
Section 3. The experimental analysis is detailed in Sec-
tion 4, and the conclusion and future work are presented
in Section 5.

1 Related Work

1.1 Control Flow Graph
Control flow graph (CFG) is a directed graph, and it

is a graphical representation of the execution flow of
each function in a program [17]. A CFG of a program can
represent the control structure information of the func-
tion as well as the possible execution path of the program.
A CFG corresponding to a program can generally be
represented by GCFG = (V, E, entry, exit), where V is a set
of nodes representing the program statements, and E is a
set of directed edges that represent the control flow rela-
tionships between nodes.

Due to the high availability of control flow graphs
in static analysis of program code, the existing tech-
niques for generating control flow graphs are constantly
being refined. Rothermel[18] designed an algorithm to
obtain the basic “block” from the program using bound-
ary analysis techniques, but this algorithm cannot ana-
lyze the nesting between loop statements. Meanwhile,
some researchers proposed an algorithm for generating
control flow graph using path-sensitive approach, and a
streamlined algorithm for generating control flow graph,
both of which were devoted to optimizing the generation
of control flow graph [19,20]. Gomes et al [21] proposed a
technique for incremental, modular extraction of control
flow graphs, which is suitable for model-checking of
temporal control flow safety properties. These research
contributions have verified the feasibility of generating
control flow graphs, and the continuous development of
static analysis technology makes it necessary for us to
expand on the existing control flow graphs.
1.2 Unused_Variable Software Vulnerability

Unused_Variable is a common software vulnerabil-
ity [22]. It occurs in situations where a large number of
variables are defined during a program development
process, but the program does not use all of these vari-
ables. The defined but never used variables, also known
as Unused_Variable, become a dead store that will not be
used in the program. This bad programming habit will
lead to a common vulnerability model. The consequence
is that Unused_Variable may increase resistance to soft-
ware maintenance, or even cause more serious conse-
quences such as memory leaks in the system when at-

ZHOU Minmin et al : A Method for Software Vulnerability Detection …

151

tackers exploit those variables.
1.3 Use_of_Uninitialized_Variable Software
Vulnerability

Use_of_Uninitialized_Variable is a common soft-
ware vulnerability in C/C++ programming [23-25]. In
computer programming, an uninitialized variable is a
variable that is declared but not set to a defined value.
During program execution, an uninitialized variable will
generally have an unpredictable value. For example, af-
ter defining a variable in C/C++, if programmers do not
assign a value to this variable before using it, it may
cause program failure because the program will refer-
ence an uninitialized variable. Also, when the program-
mers released the memory space of the pointer after as-
signing a value to a dynamically allocated pointer, the
value of the memory space will still exist while the link
between the pointer and the memory space is discon-
nected. In this case, if the program uses this pointer
variable directly, it may also lead to program failure with
reference to the uninitialized variable. The uninitialized
variable, once used in a calculation, can quickly propa-
gate throughout the entire program and may affect the
program in many ways. The results of each running of
the program may be different, which may crash for no
apparent reason, or may behave unpredictably. This vul-
nerability poses a serious threat to software security as it
may result in incorrect results, memory violations,
unpredictable behaviors, and program failure.
1.4 Use_After_Free Software Vulnerability

Referencing memory after it has been freed can
cause a program to crash, use unexpected values, or
execute code. Use_After_Free errors have two common
and sometimes overlapping causes: Error conditions and
other exceptional circumstances, and confusion over
which part of the program is responsible for freeing the
memory [26-28]. Use_After_Free vulnerabilities caused by
the inadvertent use of dangling pointers are a major
threat to systems security, which refers to pointers that
point to freed memory, and lead to memory safety errors
when accessed. A dangling pointer itself does not cause
any memory safety problem, but accessing memory
through a dangling pointer can lead to unsafe program
behaviors and even security compromises, such as con-
trol-flow hijacking or information leakage [29]. By taking
advantage of the Use_After_Free vulnerability in the
web browsers or in the document viewers, attackers are
able to execute arbitrary code in the context of applica-
tions and eventually control the computer or mobile
phone remotely. Use_After_Free vulnerabilities are a

major threat to systems security [30].

2 General Framework

Figure 1 shows the general framework of software
vulnerability detection method based on ICFG. This
framework provides guidance and specification for the
software vulnerability detection based on ICFG. The
descriptions of its main function module and process are
as follows.

As shown in Fig. 1, we firstly propose the concept
of an improved control flow graph by adding the pro-
gram data flow information into the classical control
flow graph. Hence, the subsequent analysis of vulner-
ability detections is defined based on ICFG. Then, we
formulate some vulnerability predicates to describe the
vulnerability features. Meanwhile, a set of vulnerability
grammar rules are formulated to detect the three types of
vulnerabilities (Unused_Variable, Use_of_Uninitilized_
Variable, and Use_After_Free). After that, we combine
the defined predicates and vulnerability grammar rules,
with the ICFG of some particular vulnerability code; and
we utilize this combination in our proposed vulnerability
detection algorithms. In this paper, we have proposed
three vulnerability detection algorithms based on ICFG.
The next section provides details of the proposed ICFG,
predicates of vulnerability property, vulnerability gram-
mar rule sets and the vulnerability detection algorithms.

Fig. 1 The general framework of software vulnerability de-

tection based on ICFG

Wuhan University Journal of Natural Sciences 2019, Vol.24 No.2

152

3 The Proposed Approach

3.1 Improved Control Flow Graph
Since the traditional CFG introduced above can

only reflect the characteristics of the control flow infor-
mation contained in the program code, we propose an
improved CFG, which also includes the data flow infor-
mation of programs to compensate for such defect. This
paper defines the ICFG as follows.

Definition 1 An improved control flow graph
GICFG=(V, E, λ, μ, Entry, Exit) is a directed, edge-labeled,
and an attributed multi-graph. V is a set of nodes; E
V×V is a set of directed edges; and λ is an edge label-
ing function that assigns a value from the set l= {ε, true,
false}, which indicates the control flow information on
the edge of graph. Properties can be assigned to nodes by
the function μ=(k, s) where k is a set of property keys
that assigns a value from the set k= {DEF, USE, FREE},
and s is the set of property values with si= {variable|
variable is the variable in node Vi} (i refers to the num-
ber of a node in the graph).

The main feature of the improved control flow
graph is that while keeping the original control flow in-
formation of the program, it also considers the data flow
information in the program segment to make the ICFG
contain more semantic information. Therefore, ICFG is
more applicable to the static analysis of a program.

For each line in the code sample numbered 1 to 5,
and for the code sample given in Fig. 2, hence an exam-
ple of an improved control flow graph is shown in Fig. 3.

As shown in Fig. 3, there is no definition of a vari-
able in the code statement corresponding to node V1 in
the example code. The variable x is defined at the node
V2 so that the property of the node V2 is represented as
DEF(2)=[x]. And the code statement at node V3 uses
variable x, so variable V3 has the property USE(3)=[x].
The property values of the node V4 are DEF(4)=[y] and

1 void foo()

2 { int x= SUM();

3 if (x < MAX)

4 { int y=5*x;

5 sink(y); }

}

Fig. 2 Example code sample

Fig. 3 ICFG representation of code sample in Fig. 2

USE(4)=[x]. Node V5 has the property USE(5)=[y].
Meanwhile, we can draw the edge labeling information
in the ICFG for the example code. In Fig. 3, λ〈Entry, V1〉

=ε, λ〈V1, V2〉=ε, λ〈V2, V3〉=ε, λ〈V4, V5〉=ε, and
λ〈V5, Exit〉= ε, because there is no control information
transmitted through these five edges, and λ〈V3, V4〉

=true, λ〈V3, V5〉= false for the “if (x ＜ MAX)”
statement existing in the code statement corresponding to
node V3.
3.2 The Predicates of Vulnerability Property

To illustrate the feasibility of the proposed vulner-
ability detection method based on ICFG, this section
presents some basic definitions of the ICFG, as well as
the related predicates for the three kinds of software
vulnerabilities based on ICFG.

Definition 2 The properties of node Vi. Let k(i)=
[si] denote the property value of node Vi, where k⊆{DEF,
USE, FREE} and si={variable| refers to the variable that
is defined or used at node Vi}.

Definition 3 DEF~USE pairs. Use DEF~USE pair
to describe the definition and use of variables in the pro-
gram. Let the predicate DEF(i)~USE(j)=[var] (i≤j and i,
j refer to the node number in the ICFG) represent a
DEF-USE pair for the variable var.

Definition 4 Deep traversal a
bTraverse . Let

a
bTraverse represent a deep traversal from node a to

node b, and this traversal returns all nodes at all reach-

able paths.
Definition 5 Filtering traversal ()pFilter V =

{ ()}v V: p v . This traversal returns the set of all nodes
that satisfy the condition p, where V refers to the node set
of all nodes of the ICFG.

Definition 6 Forward traversal (FT)

() { : (,) and (,) and ((,k,s
l v VFT V =U u v u E λ v u =l μ v 

ZHOU Minmin et al : A Method for Software Vulnerability Detection …

153

)) }u k =s, . Let ()k,s
lFT V represent an ICFG-based for-

ward traversal which returns all nodes reachable over
edges with label l and property k, s, where V refers to the
node set of all nodes in the ICFG.

Definition 7 Backward traversal (BT)
() { : () and () andk,s

l u VBT V =U v v u E λ v u =l , ,

(()) }μ v u k =s, , . Let ()k,s
lBT V represent an ICFG-based

backward traversal which returns all nodes reachable
over edges with label l and property k, s, where V refers
to the node set of all nodes in the ICFG.

Definition 8 Counting function ({ })Calculate V .
Let the function ({ })Calculate V count and return the
number of elements in the node set {V}.

Definition 9 Connection operator between multi-
ple operations . The Connection operator between ◇

multiple operations regulates the execution from the
back to the front. For x◇y, y is executed firstly, before x.

Definition 10 ()iFindDefvariable V . The function
()iFindDefvariable V obtains and returns all variables

defined at the node Vi.
Definition 11 ()iFindUsedvariable V . The function

()iFindUsedvariable V obtains and returns all variables
used at the node Vi.

Definition 12 ()iFindFreevariable V . The function
()iFindFreevariable V obtains and returns all variables

released at the node Vi.
Definition 13 ()FindAllvariable V . The function

()FindAllvariable V obtains and returns all variables in
the program.

Definition 14 ()Initialize variable . Use Initialize
()variable to check whether the variable var has been
initialized. The operation returns 1, if var has been ini-
tialized; otherwise, it will return 0.
3.3 Vulnerability Grammar Rule Sets

The method proposed in this section focuses on de-
tecting three types of vulnerabilities: Unused_Variable,
Use_of_Uninitialized_Variable, and Use_After_Free.
According to the causes and features of each type of
vulnerability, this paper develops a set of vulnerability
grammar rules to analyze the three types of vulnerabili-
ties. These vulnerability grammar rules describe and ex-
tract the vulnerability features of a program in order to
derive and locate the vulnerability existing in the pro-
gram segment.

1) Unused_Variable
The feature of Unused_Variable is that some of the

defined variables in program segment have never been
used or referenced. That is to say, there are no DEF-USE
pairs for the unused variables in the program segment.

The key to detecting Unused_Variable is to check
whether the DEF-USE pairs of each variable is complete.
In this paper, we propose a grammar rule for deriving
and detecting the Unused_Variable based on ICFG. The
description of the process is as follows.

Step 1: Use ()iFindDefvariable V to obtain and
return all variables defined at the node Vi, then defined as
the collection {variable};

Step 2: Execute FT to traverse each element in the
collection {variable}, using the traversal formula

() () { : (,) and (,)USE, variable i
l VFT V =U u v u E λ v u = l  

v
and

(,) } μ v USE = variable . For each element in {variable},
FT obtains and returns the all nodes in the ICFG that
uses the variable, and store them in the collection
{VUSE}.

Step 3: For each {VUSE} obtained in Step 2, deter-
mine whether the collection {VUSE} is empty by execut-
ing Calculate {VUSE}. If for a {VUSE}, Calculate
({VUSE}) returns 0, it means there exists some defined but
never used variables which is an indication of Un-
used_Variable vulnerability; otherwise, it means no ex-
istence of Unused_Variable in the tested program
segment.

Summarizing the three steps above, we can con-
struct the grammar rules for Unused_Variable detection
as: , ({ () ()}USE variable i

l iCalculate FT V FindDefvariable V) ◇ .
2) Use_of_Uninitialized_Variable
The vulnerability Use_of_Uninitialized_Variable is

characterized by the use of variables that have not been
defined or initialized before. That is to say, the DEF-USE
pairs of some variables in the program segment are in-
complete or the used variables are declared but are not
set to defined values. The key to detecting Use_of_ Un-
initialized_Variable is to verify that the variables in the
program segment have been defined or initialized before
they are used. Combining the features of Use_of_ Unini-
tialized_Variable and related predicates, we propose the
grammar rules for Use_of_Uninitialized_ Variable detec-
tion based on ICFG. The derivation process is as follows.

Step 1: Use ()iFindUsedvariable V to obtain and
return all variables used at the node Vi, then defined as
the collection {variable};

Step 2: Execute BT to traverse each element in the
collection {variable}, using the traversal formula:

, () () { : (,) and (,)DEF variable i
l VBT V =U u v u E λ v u = l 

v
and

(,) } μ v DEF = variable . For each element in {variable},
BT obtains and returns all nodes in the ICFG that defines
that variable, and store them in the collection {VDEF}.

Step 3: For each {VDEF} obtained in Step 2, deter-

Wuhan University Journal of Natural Sciences 2019, Vol.24 No.2

154

mine whether the collections are empty, by execut-
ing Calculate ({VUSE}). If for a {VDEF}, Calculate
({VDEF}) returns 0, it means there exists some used but
never defined variables in the tested program segment,
indicating the presence of Use_of_Uninitialized_Variable
vulnerability; otherwise, turn to Step 4.

Step 4: Check further whether the used variables are
already initialized. Execute ({ })Initialize variable , if all
collection elements are executed and the return of this
formula contains 0 which means some variable in the
program segment is being used without initialization, and
therefore we can detect the Use_of_Uninitialized_ Vari-
able in the tested program segment; otherwise, the tested
program segment does not include Use_of_Uninitial-
ized_Variable.

Summarizing the four steps above, we can construct
the grammar rules for Use_of_Uninitialized_Variable
detection as:

), ({ () ()}DEF variable i
l iCalculate BT V FindUsedvariable V

= 0, detect the vulnerability
0 ({ ()})

true, no existence of vulnerability
false, the vulnerability is detected

iInitialize FindUsedvariable V

  



3) Use_After_Free
The value of the node property key k is assigned

from the set k= {DEF, USE, FREE}, in which the ele-
ment FREE represents the release of some variable.
Use_After_Free is characterized by the fact that the pro-
gram reuses a resource or variable that has already been
released. Therefore, the key to detecting Use_After_Free
is to identify the nodes of the ICFG that have released
variables, then to track and confirm whether those vari-
ables are being used on subsequent paths. Combining the
features of Use_After_Free vulnerability and related
predicates, we propose a detection method based on
ICFG to analyze and locate Use_After_Free. The analy-
sis process is detailed as follows.

Step 1: Use ()iFindFreevariable V to obtain and return
all freed variables at the node Vi, then define them as the
collection {variable}. In addition, record the nodes in which
the variables have been released, and denote them as Vdst;

Step 2: Execute src

end

V

VTraverse , where Vsrc represents
the node that firstly initializes the variable, and Vend
represents the last node to use the variable. This traversal
returns all nodes on the path of the variable from its ini-
tialization to its last use, and then denoted the set as {V}.

Step 3: Execute filtering traversal ()pFilter V =
{ : { }dstv V V V  , where the node Vdst represents the
node that has freed variables, and p refers to the condi-

tion that node Vdst is included in the collection {V}. That
is, condition p is satisfied if dstV {V} is true. This tra-
versal returns all nodes that satisfy the condition p and
define it as a collection {Vp}.

Step 4: Determine whether the collection {Vp} ob-
tained in Step 3 is empty. Execute ({ })pCalculate V . If
its return is not always 0, it means there exist some free
variables that are still being used in the program segment,
so we can derive that the tested program segment con-
tains Use_After_Free; otherwise, it means no existence
of Use_After_Free in the tested program segment.

Summarizing the four steps above, we can formu-
late the vulnerability grammar rules for Use_After_Free
detection as: () src

end

V

p VFilter V Traverse◇ .
3.4 The Detection Algorithms for the Software
Vulnerabilities

This section gives three detailed detection algo-
rithms (Algorithm 1- Algorithm 3) for detecting the three
types of vulnerabilities. We discuss the flow of the algo-
rithm in the detection process, from the input of tested
program segment to the output of vulnerability detection
results.

1) Unused_Variable detection algorithm
In order to detect the Unused_Variable vulnerabil-

ity, we propose an algorithm based on ICFG, which ap-
plies the proposed detection process, as shown in Algo-
rithm 1. Algorithm 1 has one input, that is, the program
segment to be tested. In Algorithm 1, we create three
sets: V, Vuse, and variable_D to store all nodes of the
ICFG, the nodes that used variables on the ICFG, and all
the variables defined in the program segment, respec-
tively. By converting the program segment into its cor-
responding ICFG, all nodes in the ICFG can be obtained.
The algorithm further determines whether all variables
existing in these nodes are defined before they are used.
Then the DEF~USE pair for each variable determine
whether the program segment under test contains
Unused_Variable vulnerability. After that, the algorithm
will output the detection results for which true means the
detection of Unused_Variable vulnerability and false
means no vulnerability detected.

2) Use_of_Uninitialized_Variable detection algo-
rithm

In order to detect the Use_of_Uninitialized_Vari-
able vulnerability, we proposed an algorithm shown as
Algorithm 2. The algorithm has one input: the program
segment to be tested, and three sets V, VDEF, variable_U
are constructed to store all nodes of the ICFG, all nodes
that define variables on the ICFG, and all variables that

ZHOU Minmin et al : A Method for Software Vulnerability Detection …

155

used in the program segment, respectively. In addition, a
flag is used to indicate the result of checking initializa-
tion of each variable. The algorithm firstly converts the
program segment to be tested into an ICFG. It then ob-
tains all nodes of the ICFG and all variables that exist in
the program segment. Then it checks whether the
DEF~USE pair for each variable is complete. If the

DEF~USE pairs of variables are not complete, the algo-
rithm will output a detection result, indicating the detec-
tion of the Use_of_Uninitialized_Variable vulnerability.
Otherwise, it further checks the initialization of each
variable. If there exists a variable that is not initialized,
the algorithm will output true, which means Use_of_
Uninitialized_Variable has been detected.

Algorithm 1 Unused_Variable detection algorithm

Input: the program segment to be tested

Output: the detection results (true or false)

1. Construct V ={} to store all the nodes on ICFG;
2. Construct VUSE={} to store the nodes using variables;

3. Construct variable_D={} to store the defined variables in the program segment;

4. Convert the program segment to be tested into ICFG;

5. V[i]= Deep traversal (ICFG); // To obtain all the nodes in ICFG.

6. For each node Vi in V do

7. variable_D[i]= FindDefvariable(Vi);

8. End For

9. For each variable in variable_D do

10. VUSE = , () ()USE variable_D i
lFT V ;

11. If (Calculate(VUSE) == 0) Then

12. Return true; // Detect the Unused_Variable vulnerability.

13. Else

14. Return false; //No Unused_Variable detected.

15. End If

16. End For

Algorithm 2 Use_of_Uninitialized_Variable detection algorithm

Input: the program segment to be tested

Output: the detection results (true or false)

1. Construct V ={} to store all the nodes on ICFG;

2. Construct VDEF={} to store the nodes defining variables;

3. Construct variable_U={} to store the used variables in the program segment;

4. Construct flag: the variable initialization tag (0: Uninitialized; 1: Initialized)

5. Convert the program segment to be tested into ICFG;

6. V[i]= Deep traversal (ICFG); // To obtain all the nodes in ICFG.

7. For each node Vi in V do

8. variable_U[i]= FindUsedvariable(Vi);

9. End For

10. For each variable in variable_U do

11. VDEF = , () ()DEF variable_U i
lBT V ;

12. If (Calculate(VDEF) == 0) Then

13. Return true; // Detect the Use_of_Uninitialized_Variable vulnerability.

14. Else

15. For each variable in variable_U do

16. flag = Initialize(variable);

17. If (flag == 0) Then

18. Return true; // Detect the Use_of_Uninitialized_Variable vulnerability.

19. Else

20. Return false; // No Use_of_Uninitialized_Variable detected.

Wuhan University Journal of Natural Sciences 2019, Vol.24 No.2

156

21. End If

22. End For

23. End If

24. End For

3) Use_After_Free detection algorithm
We propose Algorithm 3 to detect Use_After_Free

vulnerability. The input of this algorithm is the program
segment to be tested. The algorithm firstly generates the
corresponding ICFG according to the program code
segment to be tested, and it obtains all nodes of the
ICFG. The set Vdst stores nodes with released variables,

and the algorithm stores the released variables in the set
variable_F. It further checks whether each variable in
the set variable_F has been released in their path, from
the initial definition node to the node in which they were
last used. If a variable satisfying this condition is found,
it means Use_After_Free vulnerability has been detected
in the tested program segment.

Algorithm 3 Use_After_Free detection algorithm

Input: the program segment to be tested

Output: the detection results (true or false)

1. Construct V ={} to store all the nodes on ICFG;

2. Construct variable_F={} to store the freed variables in the program segment;

3. Construct Vsrc={} to store the node in which the variable firstly been defined;

4. Construct Vend={} to store the node in which the variable last been used;

5. Construct Vdst={} to store the nodes releasing variable;

6. Construct Vpath={} to store the nodes existing in the path from Vsrc to Vend;

7. Construct Vp={} to store the nodes that satisfy the condition p;

8. Convert the program segment to be tested into ICFG;

9. V[i]= Deep traversal (ICFG); // To obtain all the nodes in ICFG.

10. For each node Vi in V do

11. variable_F[i]= FindFreevariable(Vi), Vdst= V[i];

12. End For

13. For each variable in variable_F do

14. Vsrc = , () ()DEF variable_F i
lFT V ; //To obtain the node in which the variable been defined.

15. Vend= { , () ()USE variable_F i
lBT V }max; //To obtain the node in which the variable been last used.

16. Vpath[i] = src

end

V

VTraverse ;

17. Vp= Filterp(Vpath), where p refers to Vdst is included in the path from Vsrc to Vend

18. If (Calculate(Vp) == 0) Then

19. Return true; // Detect the Use_After_Free vulnerability.

20. Else

21. Return false; // No Use_After_Free detected.

22. End If

23. End For

4 Experimental Analysis

4.1 General Detection Process Based on ICFG

Figure 4 shows the process of the proposed method

in vulnerability detection. The detection process begins

with the generation of the corresponding ICFG from the

vulnerability source code, and then to analyze all nodes

in the graph. It further combines the result of predicates

analysis with the vulnerability grammar rule set to detect

the vulnerabilities in the tested program segment.
4.2 Cases Studies

In this section, we apply the proposed method to
analyze and detect the three mentioned types of vulner

ZHOU Minmin et al : A Method for Software Vulnerability Detection …

157

Fig. 4 Vulnerability detection process of the proposed method

abilities using program segments from CWE. The tested
program segments are from CWE563 Unused_variable,
CWE457 Use_of_Uninitialized_variable, and CWE416
Use_After_Free. The program segments and their corre-
sponding ICFGs are shown in Figs.5-10. The program
segments are shown in Fig. 5, Fig. 7, and Fig. 9, and
their corresponding ICFGs are given in Fig. 6, Fig. 8,
and Fig. 10, respectively. The purpose of cases studies is
to verify the validity of the proposed vulnerability detec-
tion method in detecting the three mentioned vulnerabili-
ties. The results obtained from cases studies show that
the proposed method is feasible and effective for the de-
tection of the three kinds of vulnerabilities. The detailed
process of cases studies is as follows.

1) The case study of Unused_Variable

1 void

CWE563_Unused_Variable__unused_uninit_variable_

char_09_bad()

2 {

char data;

 data = 'C';

3 if(GLOBAL_CONST_TRUE)

{

}

}

Fig. 5 The vulnerability program segment of

Unused_Variable

Fig. 6 ICFG for the program segment in Fig. 5

First, we pre-processed the program segment shown
in Fig. 5 by labeling its valid code lines with numbers
from 1 to 3. We then applied the grammar rule sets of
Unused_variable to the ICFG presented in Fig. 6; The
description of the detection process of Unused_variable
is as follows.

Step 1: Execute ()iFindDefvariable V where i= 1, 2,
3, and it returns all the defined variables in the program
segment: {data}.

Step 2: Execute , ()USE data
lFT V to traverse the col-

lection {data}. After that, FT returns the use node collec-
tion { VUSE } for which the variable data is  .

Step 3: Determine whether the collection {VUSE} for
each variable obtained in Step 2 is empty. Execute
Calculate ({VUSE}) () 0= Calculate =  .

After the process of static detection, the proposed
method with vulnerability grammar rules can detect Un-
used_variable in the program segment presented in
Fig. 5.

2) The case study of Use_of_Uninitialized_variable

1 void

CWE457_Use_of_Uninitialized_Variable_double

_array_declare_no_init_01_bad

2 {

 double * data;

 double dataUninitArray[10];

3 data = dataUninitArray;

4 {

int i;

5 for(i=0; i<10; i++)

 {

6 printDoubleLine(data[i]);

 }

 }

}

Fig. 7 The vulnerability program segment of Use_of_ Unini-
tialized_variable

Wuhan University Journal of Natural Sciences 2019, Vol.24 No.2

158

Fig. 8 ICFG for the program segment in Fig. 7

First, we pre-processed the program segment shown

in Fig. 7 by labeling its valid code lines with numbers
from 1 to 6, and then we applied the grammar rule sets of
Use_of_Uninitialized_variable to the ICFG presented in
Fig. 8; the description of the static detection process of
Use_of_Uninitialized_variable is as follows.

Step 1: Execute ()iFindUsedvariable V where i= 1, 2,
3, 4, 5, 6, and it returns all the used variables in the pro-
gram segment: {data, dataUninitArray, i}.

Step 2: Execute ,{ , , } ()DEF data dataUninitArray i
lBT V to ob-

tain the results of the variable definition node collection
{VDEF}= {V2, V4} for the three used variables.

Step 3: Determine whether all collections {VDEF}
obtained in Step 2 are empty. Execute Calculate

  2 4, 2 0} .{ ({ })DEFV =Calculate V V =  Therefore, the
analysis should turn to Step 4.

Step 4: Further check whether the used variables are
initialized. Execute ({ })Initialize variable , in which
variable= data, dataUninitArray, i. When variable=
data, the ({ })Initialize data returns 0, which means the
Use_of_Uninitialized_variable is detected.

3) The case study of Use_After_Free
For the case of the Use_After_Free vulnerability, we

pre-processed the program segment shown in Fig. 9 by
labeling its valid code lines with numbers from 1 to 9.
We subsequently applied the grammar rule sets of
Use_After_Free to the ICFG presented in Fig. 10; the
description of the static detection process of
Use_After_Free is as follows.

Step 1: Execute ()iFindFreevariable V , where i=1, 2,
3,…, 9, and it returns all the freed variables in the pro-
gram segment: {data} as well as the node Vdst= {V7}
where the variable data has been released.

Step 2: Execute 2

9

V

VTraverse , and it returns all nodes

on the path of the data from its initialization to its last
use: {V}={V2, V4, V5, V6, V7, V9}.

Step 3: Execute () { : { }}p dstFilter V = v V V V  ,
in which the node Vdst= V7, and the condition p refers to
the node V7 is included in {V2, V4, V5, V6, V7, V9}. After
that, we obtain {Vp}= {V7}.

Step 4: Determine whether the collection {Vp} ob-

tained in Step 3 is empty. Execute  { }pCalculate V =

 7 1{ }Calculate V = . This result indicates the detection of

Use_After_Free in the tested program segment.

1 void

CWE416_Use_After_Free__malloc_free_char_03_bad()

{

2 char * data;

data = NULL;

3 if(5==5)

 {

4 data = (char *)malloc(100*sizeof(char));

5 memset(data, 'A', 100-1);

6 data[100-1] = '\0';

7 free(data);

 }

8 if(5==5)

 {

9 printLine(data);

 }

}

Fig. 9 The vulnerability program segment of Use_After_Free

Fig. 10 ICFG for the program segment in Fig. 9

ZHOU Minmin et al : A Method for Software Vulnerability Detection …

159

4.3 Experimental Analysis
To verify the effectiveness of the proposed method

in detecting the three kinds of vulnerabilities (Un-
used_Variable, Use_of_Uninitialized_Variable, and Use_
After_Free), we conducted experiments based on the
three types of vulnerabilities and using program seg-
ments from CWE. For each type of vulnerability, we
randomly selected 30 program segments to test. Then we
applied the method proposed in this paper to manually
detect the vulnerabilities in the program segments under
test, and compared the results with those of the existing
vulnerability detection tool CppCheck. Table 1 presents
the detection results of these two detection methods for
the three types of vulnerabilities (Vulnerabilities: Vuls.,
CWE563: Unused_Variable, CWE457: Use_of_ Unini-

tialized_Variable and CWE416: Use_After_Free).

The results from Table 1 show that, the method

proposed in this paper can detect more vulnerabilities

than CppCheck, after executing the same number of

vulnerability program segments for each type of vulner-

ability. Compared with CppCheck, the method proposed

in this paper achieved improvements of 40%, 43.3%, and

40% in detecting Unused_Variable, Use_of_Uninitial-

ized_Variable, and Use_After_Free, respectively. The

experimental results show that the proposed method has

strong applicability and effectiveness in the detection of

the three mentioned types of vulnerabilities, and it can

have guiding significance in the analysis and detection of

other types of vulnerabilities.

Table 1 The detection results of the two methods

The proposed method CppCheck

Name of Vuls.
Total number

of Vuls. Number of the

detected Vuls.

Detection rate

/%

Number of the

detected Vuls.

Detection rate

/%

CWE563 30 14 46.7 2 6.7

CWE457 30 19 63.3 6 20.0

CWE416 30 21 70.0 9 30.0

5 Conclusion

In this paper, we propose a method for software
vulnerability detection based on an improved control
flow graph to detect three common vulnerabilities: Un-
used_Variable, Use_of_Uninitialized_Variable, and Use_
After_Free. We firstly proposed the definition of the im-
proved control flow graph, and several predicates of
vulnerability properties. For each type of vulnerability,
we constructed a corresponding vulnerability grammar
rule sets based on ICFG for the software vulnerability
detection. In addition, we designed three vulnerability
detection algorithms, which can detect specific type of
vulnerability in the program segment to be tested. The
results of the cases studied in this paper showed that the
proposed method is feasible and effective in analyzing
and detecting the three mentioned types of vulnerability
existing in the tested program segments. Finally, the ex-
perimental analysis section compared the vulnerability
detection effectiveness of the proposed method with that
of an existing vulnerability detection tool CppCheck, by
using the vulnerability program segments selected from
CWE. The results showed that the proposed vulnerability

detection method has a better performance than
CppCheck, in detecting the three types of vulnerabilities.
The results illustrate that the software vulnerability de-
tection method based on ICFG plays a certain guiding
role in the common vulnerability detection field.

Future work of this research mainly includes reduc-
ing the generation cost of ICFG, improving the detection
accuracy of the method, and further extending the uni-
versality of the proposed method.

[1] Liu B, Shi L, Cai Z, et al. Software vulnerability discovery

techniques: A survey[C]// Proc 4th International Conference

on Multimedia Information Networking and Security. Pis-

cataway: IEEE, 2012: 152-156.

[2] Liu P, Su J, Yang X. Research on software security vulner-

ability detection technology[C]// Proc 2nd International

Conference on Computer Science and Network Technology.

Piscataway: IEEE, 2012, 3: 1873-1876.

[3] Kumar M, Sharma A. An integrated framework for software

vulnerability detection, analysis and mitigation: An auto-

nomic system[J]. Sādhanā, 2017, 42(9): 1481-1493.

References

Wuhan University Journal of Natural Sciences 2019, Vol.24 No.2

160

[4] Rahimi S, Zargham M. Vulnerability scrying method for

software vulnerability discovery prediction without a vul-

nerability database[J]. IEEE Transactions on Reliability,

2013, 62(2): 395-407.

[5] Kim S, Kim R Y C, Park Y B. Software vulnerability detection

methodology combined with static and dynamic analysis[J].

Wireless Personal Communications, 2016, 89(3): 777-793.

[6] Chernis B, Verma R. Machine learning methods for software

vulnerability detection[C]// Proc 4th ACM International

Workshop on Security and Privacy Analytics. New York:

ACM, 2018: 31-39.

[7] Shuai B, Li M, Li H, et al. Software vulnerability detection

using genetic algorithm and dynamic taint analysis[C]// Proc

4th International Conference on Consumer Electronics, Com-

munications and Networks. Piscataway: IEEE, 2014: 589-593.

[8] Huang C C, Lin F Y, Lin Y S, et al. A novel approach to

evaluate software vulnerability prioritization[J]. Journal of

Systems & Software, 2013, 86(11): 2822-2840.

[9] Kapur P K, Yadavali V S S, Shrivastava A K. A comparative

study of vulnerability discovery modeling and software reli-

ability growth modeling[C]// Proc 1st International Confer-

ence on Futuristic Trends on Computational Analysis and

Knowledge Management. Piscataway: IEEE, 2015: 246-251.

[10] Bekrar S, Bekrar C, Groz R, et al. Finding software vulner-

abilities by smart fuzzing[C]// Proc 4th IEEE Fourth Inter-

national Conference on Software Testing, Verification and

Validation. Piscataway: IEEE, 2011: 427-430.

[11] Woo M, Sang K C, Gottlieb S, et al. Scheduling black-box

mutational fuzzing[C]// Proc 20th ACM Sigsac Conference

on Computer & Communications Security. New York: ACM,

2013: 511-522.

[12] Avgerinos T, Sang K C, Rebert A, et al. Automatic exploit gen-

eration[J]. Communications of the ACM, 2014, 57(2): 74- 84.

[13] Fagan M E. Design and code inspections to reduce errors in

program development[J]. IBM Systems Journal, 2001:

15(3):182-211.

[14] Viega J, Bloch J T, Kohno Y, et al. ITS4: A static vulnerabil-

ity scanner for C and C++ code[C]// Proc 16th Computer

Security Applications. Piscataway: IEEE, 2000: 257-267.

[15] Sands D. A theorem proving approach to analysis of secure

information flow[C]// Proc 2nd International Conference on

Security in Pervasive Computing. Berlin: Springer-Verlag,

2005, 3450(10): 193-209.

[16] Clarke E M, Grumberg O, Peled D A. Model checking [C]//

Proc 17th International Conference on Foundations of

Software Technology & Theoretical Computer Science. Ber-

lin: Springer-Verlag, 1997, 1346: 54-56.

[17] Nguyen M H, Nguyen T B, Quan T T, et al. A hybrid ap-

proach for control flow graph construction from binary

code[C]// Proc 20th Asia-Pacofic Software Engineering

Conference. Piscataway: IEEE, 2013, 2: 159-164.

[18] Rothermel G. Representation and analysis of software[J].

Angewandte Chemie, 2005, 46(31): 5896-900.

[19] Gold R. Control flow graphs and code coverage[J]. Versita,

2010, 20(4): 739-749.

[20] Sun X, Zhongyang Y B, Xin Z, et al. Detecting code reuse in

Android applications using component-based control flow

graph[J]. IFIP Advances in Information & Communication

Technology, 2016, 428: 142-155.

[21] Gomes P D C, Picoco A, Gurov D. Sound control flow graph

extraction from incomplete Java bytecode programs[C]//

Proc 17th International Conference on Fundamental Ap-

proaches to Software Engineering. Berlin: Springer-Verlag,

2014, 8411: 215-229.

[22] Sasaki S, Tanabe K, Fujita M. Using SpecC program slicing

to detect uninitialized variables and unused variables[J].

Technical Report of Ieice Vld, 2005, 104(708): 59-64.

[23] Lin W, Liu J, Wang Q, et al. Method of uninitialized variable

detecting for C++ Program[J]. International Journal of

Education & Management Engineering, 2011, 1(1): 63-67.

[24] Jana A, Naik R. Precise detection of uninitialized variables

using dynamic analysis—Extending to aggregate and vector

types[C]// Proc 19th Working Conference on Reverse Engi-

neering. Piscataway: IEEE, 2012: 197-201.

[25] Xu W, Li J, Shu J, et al. From collision to exploitation:

Unleashing Use-After-Free vulnerabilities in Linux ker-

nel[C]// Proc 22nd ACM Conference on Computer and

Communications Security. New York: ACM, 2015:414-425.

[26] Yan H, Sui Y, Chen S, et al. Machine-Learning-Guided

typestate analysis for static Use-After-Free detection[C]//

Proc 33rd Computer Security Applications Conference. New

York: ACM, 2017: 42-54.

[27] Feist J, Mounier L, Potet M L. Statically detecting use after

free on binary code[J]. Journal of Computer Virology &

Hacking Techniques, 2014, 10(3): 211-217.

[28] Kouwe E V D, Nigade V, Giuffrida C. DangSan: Scalable

Use-after-free detection[C]// Proc 12th European Conference

on Computer Systems. New York: ACM, 2017: 405- 419.

[29] Caballero J, Grieco G, Marron M, et al. Undangle: Early detec-

tion of dangling pointers in use-after-free and double-free vul-

nerabilities[C]// Proc International Symposium on Software

Testing and Analysis. New York: ACM, 2012: 133-143.

[30] Han X, Wei S, Ye J Y, et al. Detect use-after-free vulnerabili-

ties in binaries[J]. Journal of Tsinghua University, 2017,

57(10): 1022-1029(Ch).

□

