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Abstract: With the rapid development of software technology, 
software vulnerability has become a major threat to computer se-
curity. The timely detection and repair of potential vulnerabilities 
in software, are of great significance in reducing system crashes 
and maintaining system security and integrity. This paper focuses 
on detecting three common types of vulnerabilities: Un-
used_Variable, Use_of_Uninitialized_Variable, and Use_After_ 
Free. We propose a method for software vulnerability detection 
based on an improved control flow graph (ICFG) and several predi-
cates of vulnerability properties for each type of vulnerability. We 
also define a set of grammar rules for analyzing and deriving the 
three mentioned types of vulnerabilities, and design three vulnerabil-
ity detection algorithms to guide the process of vulnerability detec-
tion. In addition, we conduct cases studies of the three mentioned 
types of vulnerabilities with real vulnerability program segments 
from Common Weakness Enumeration (CWE). The results of the 
studies show that the proposed method can detect the vulnerability in 
the tested program segments. Finally, we conduct manual analysis 
and experiments on detecting the three types of vulnerability program 
segments (30 examples for each type) from CWE, to compare the 
vulnerability detection effectiveness of the proposed method with that 
of the existing detection tool CppCheck. The results show that the 
proposed method performs better. In summary, the method proposed 
in this paper has certain feasibility and effectiveness in detecting the 
three mentioned types of vulnerabilities, and it will also have guiding 
significance for the detection of other common vulnerabilities. 
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control flow graph; vulnerability detection algorithm 
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0  Introduction 

The security of computer and information systems 
fundamentally depends on the quality and security of  
their underlying software system. With the rapid devel-
opment of software technologies, various types of net-
work attacks and data leakage incidents emerge one after 
another. The fundamental cause is that software devel-
opers are unavoidably making errors in the process of 
developing applications. Therefore, software vulnerabil-
ity formed in software can easily be exploited by exter-
nal attackers. Software vulnerability refers to weaknesses, 
defects, and errors that are valuable to attackers in the 
software system. Once attackers exploit such vulnerabili-
ties, they will pose a huge threat to the integrity and secu-
rity of the information system, even with serious conse-
quences that causing the enormous economic losses [1-4]. 

The existing approaches to detect software vulner-
abilities are commonly divided into static and dynamic [5-8]. 
Dynamic approaches check the vulnerabilities in 
run-time by supplying test cases, and they usually cannot 
completely cover all the execution paths. The widely 
used dynamic program analysis ranges from simple 
fuzzy testing [9,10], advanced taint tracking to symbol 
execution [11,12], and other technologies to further im-
prove the effectiveness of software vulnerability detec-
tion. Although these methods can find various defects, 
they are difficult to operate effectively in practice, and do 
not produce correct results due to the long running time 
or the exponential growth of the execution path. On the 
other hand, static approaches can make up for this defi-
ciency because they consider all the possible execution 
paths, and even detect vulnerabilities without actually 
running the program. Many researches have focused on 
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this topic in the field of software security. Fagan [13] pro-
posed a technique called design code inspection that 
helps software developers detect and fix errors at an 
early stage of development, which can reduce the costs 
of correcting software error. Viega et al [14] designed a 
static vulnerability scanning tool named IST4. For C and 
C++ source code, the tool can divide the program into 
small slices and compare each one with the database to 
detect vulnerabilities. It is characterized by high detec-
tion efficiency, and can be applied to detect vulnerabili-
ties in large-scale projects. However, its defect is that 
only a few kinds of vulnerabilities are covered. Sands[15] 
proposed a vulnerability detection method based on 
theorem proof, in which they firstly converted the pro-
gram into a logical formula by semantic analysis, and 
hence proved the validity of the logical formula using the 
established axioms and rules. Clarke et al [16] proposed a 
model detection technology as a formal verification 
method for software vulnerability detection. This tech-
nology checks whether a given program model meets 
certain predefined characteristics by traversing the state 
space, but the defect is that it might just be suitable for 
small-scale test programs. 

In this paper, we propose a vulnerability detection 
method based on an improved control flow graph to de-
tect three types of software vulnerabilities (Un-
used_Variable, Use_of_Uninitialized_Variable, and Use_ 
After_Free). The method uses the static semantic analy-
sis technique based on the improved control flow graph 
to analyze the self-contained information in the vulner-
ability source code, and hence detects the potential vul-
nerabilities in the program under test. This paper expands 
the data flow information into the classic control flow 
graph and creates a novel form of code icon representa-
tion—improved control flow graph (ICFG). In addition, 
we have formulated a set of vulnerability predicates and 
grammar rules based on ICFG, for software vulnerability 
analysis and detection. Finally, we have applied the pro-
posed method to analyze real and specific vulnerability 
program segments obtained from a commu-
nity-developed list of common software security weak-
nesses, known as Common Weakness Enumeration 
(CWE). Experimental results show that proposed method 
can play a guiding role in detecting the three types of 
software vulnerabilities. 

The remainder of this paper is structured as follows. 
The related work is presented in Section 1. The overview 
of the proposed method framework is given in Section 2. 
The proposed approach and the methodology of the vul-

nerabilities detection algorithms are discussed in    
Section 3. The experimental analysis is detailed in Sec-
tion 4, and the conclusion and future work are presented 
in Section 5. 

1  Related Work 

1.1  Control Flow Graph 
Control flow graph (CFG) is a directed graph, and it 

is a graphical representation of the execution flow of 
each function in a program [17]. A CFG of a program can 
represent the control structure information of the func-
tion as well as the possible execution path of the program. 
A CFG corresponding to a program can generally be 
represented by GCFG = (V, E, entry, exit), where V is a set 
of nodes representing the program statements, and E is a 
set of directed edges that represent the control flow rela-
tionships between nodes. 

Due to the high availability of control flow graphs 
in static analysis of program code, the existing tech-
niques for generating control flow graphs are constantly 
being refined. Rothermel[18] designed an algorithm to 
obtain the basic “block” from the program using bound-
ary analysis techniques, but this algorithm cannot ana-
lyze the nesting between loop statements. Meanwhile, 
some researchers proposed an algorithm for generating 
control flow graph using path-sensitive approach, and a 
streamlined algorithm for generating control flow graph, 
both of which were devoted to optimizing the generation 
of control flow graph [19,20]. Gomes et al [21] proposed a 
technique for incremental, modular extraction of control 
flow graphs, which is suitable for model-checking of 
temporal control flow safety properties. These research 
contributions have verified the feasibility of generating 
control flow graphs, and the continuous development of 
static analysis technology makes it necessary for us to 
expand on the existing control flow graphs. 
1.2  Unused_Variable Software Vulnerability 

Unused_Variable is a common software vulnerabil-
ity [22]. It occurs in situations where a large number of 
variables are defined during a program development 
process, but the program does not use all of these vari-
ables. The defined but never used variables, also known 
as Unused_Variable, become a dead store that will not be 
used in the program. This bad programming habit will 
lead to a common vulnerability model. The consequence 
is that Unused_Variable may increase resistance to soft-
ware maintenance, or even cause more serious conse-
quences such as memory leaks in the system when at-
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tackers exploit those variables. 
1.3  Use_of_Uninitialized_Variable Software  
Vulnerability 

Use_of_Uninitialized_Variable is a common soft-
ware vulnerability in C/C++ programming [23-25]. In 
computer programming, an uninitialized variable is a 
variable that is declared but not set to a defined value. 
During program execution, an uninitialized variable will 
generally have an unpredictable value. For example, af-
ter defining a variable in C/C++, if programmers do not 
assign a value to this variable before using it, it may 
cause program failure because the program will refer-
ence an uninitialized variable. Also, when the program-
mers released the memory space of the pointer after as-
signing a value to a dynamically allocated pointer, the 
value of the memory space will still exist while the link 
between the pointer and the memory space is discon-
nected. In this case, if the program uses this pointer 
variable directly, it may also lead to program failure with 
reference to the uninitialized variable. The uninitialized 
variable, once used in a calculation, can quickly propa-
gate throughout the entire program and may affect the 
program in many ways. The results of each running of 
the program may be different, which may crash for no 
apparent reason, or may behave unpredictably. This vul-
nerability poses a serious threat to software security as it 
may result in incorrect results, memory violations,   
unpredictable behaviors, and program failure. 
1.4  Use_After_Free Software Vulnerability 

Referencing memory after it has been freed can 
cause a program to crash, use unexpected values, or 
execute code. Use_After_Free errors have two common 
and sometimes overlapping causes: Error conditions and 
other exceptional circumstances, and confusion over 
which part of the program is responsible for freeing the 
memory [26-28]. Use_After_Free vulnerabilities caused by 
the inadvertent use of dangling pointers are a major 
threat to systems security, which refers to pointers that 
point to freed memory, and lead to memory safety errors 
when accessed. A dangling pointer itself does not cause 
any memory safety problem, but accessing memory 
through a dangling pointer can lead to unsafe program 
behaviors and even security compromises, such as con-
trol-flow hijacking or information leakage [29]. By taking 
advantage of the Use_After_Free vulnerability in the 
web browsers or in the document viewers, attackers are 
able to execute arbitrary code in the context of applica-
tions and eventually control the computer or mobile 
phone remotely. Use_After_Free vulnerabilities are a 

major threat to systems security [30]. 

2  General Framework 

Figure 1 shows the general framework of software 
vulnerability detection method based on ICFG. This 
framework provides guidance and specification for the 
software vulnerability detection based on ICFG. The  
descriptions of its main function module and process are 
as follows. 

As shown in Fig. 1, we firstly propose the concept 
of an improved control flow graph by adding the pro-
gram data flow information into the classical control 
flow graph. Hence, the subsequent analysis of vulner-
ability detections is defined based on ICFG. Then, we 
formulate some vulnerability predicates to describe the 
vulnerability features. Meanwhile, a set of vulnerability 
grammar rules are formulated to detect the three types of 
vulnerabilities (Unused_Variable, Use_of_Uninitilized_ 
Variable, and Use_After_Free). After that, we combine 
the defined predicates and vulnerability grammar rules, 
with the ICFG of some particular vulnerability code; and 
we utilize this combination in our proposed vulnerability 
detection algorithms. In this paper, we have proposed 
three vulnerability detection algorithms based on ICFG. 
The next section provides details of the proposed ICFG, 
predicates of vulnerability property, vulnerability gram-
mar rule sets and the vulnerability detection algorithms. 
 

 
 

Fig. 1  The general framework of software vulnerability de-

tection based on ICFG 
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3  The Proposed Approach 

3.1  Improved Control Flow Graph 
Since the traditional CFG introduced above can 

only reflect the characteristics of the control flow infor-
mation contained in the program code, we propose an 
improved CFG, which also includes the data flow infor-
mation of programs to compensate for such defect. This 
paper defines the ICFG as follows. 

Definition 1  An improved control flow graph 
GICFG=(V, E, λ, μ, Entry, Exit) is a directed, edge-labeled, 
and an attributed multi-graph. V is a set of nodes; E 
V×V is a set of directed edges; and λ is an edge label-
ing function that assigns a value from the set l= {ε, true, 
false}, which indicates the control flow information on 
the edge of graph. Properties can be assigned to nodes by 
the function μ=(k, s) where k is a set of property keys 
that assigns a value from the set k= {DEF, USE, FREE}, 
and s is the set of property values with si= {variable| 
variable is the variable in node Vi} (i refers to the num-
ber of a node in the graph). 

The main feature of the improved control flow 
graph is that while keeping the original control flow in-
formation of the program, it also considers the data flow 
information in the program segment to make the ICFG 
contain more semantic information. Therefore, ICFG is 
more applicable to the static analysis of a program. 

For each line in the code sample numbered 1 to 5, 
and for the code sample given in Fig. 2, hence an exam-
ple of an improved control flow graph is shown in Fig. 3. 

As shown in Fig. 3, there is no definition of a vari-
able in the code statement corresponding to node V1 in 
the example code. The variable x is defined at the node 
V2 so that the property of the node V2 is represented as 
DEF(2)=[x]. And the code statement at node V3 uses 
variable x, so variable V3 has the property USE(3)=[x]. 
The property values of the node V4 are DEF(4)=[y] and  

 

1 void foo() 

2 {  int x= SUM(); 

3 if (x < MAX) 

4 {  int y=5*x; 

5 sink(y);  } 

} 

 

Fig. 2  Example code sample 

  
Fig. 3  ICFG representation of code sample in Fig. 2 

 

USE(4)=[x]. Node V5 has the property USE(5)=[y]. 
Meanwhile, we can draw the edge labeling information 
in the ICFG for the example code. In Fig. 3, λ〈Entry, V1〉

=ε, λ〈V1, V2〉=ε, λ〈V2, V3〉=ε, λ〈V4, V5〉=ε, and        
λ〈V5, Exit〉= ε, because there is no control information 
transmitted through these five edges, and λ〈V3, V4〉

=true, λ〈V3, V5〉= false for the “if (x ＜ MAX)” 
statement existing in the code statement corresponding to 
node V3. 
3.2  The Predicates of Vulnerability Property 

To illustrate the feasibility of the proposed vulner-
ability detection method based on ICFG, this section 
presents some basic definitions of the ICFG, as well as 
the related predicates for the three kinds of software 
vulnerabilities based on ICFG. 

Definition 2  The properties of node Vi. Let k(i)= 
[si] denote the property value of node Vi, where k⊆{DEF, 
USE, FREE} and si={variable| refers to the variable that 
is defined or used at node Vi}. 

Definition 3 DEF~USE pairs. Use DEF~USE pair 
to describe the definition and use of variables in the pro-
gram. Let the predicate DEF(i)~USE(j)=[var] (i≤j and i, 
j refer to the node number in the ICFG) represent a 
DEF-USE pair for the variable var. 

Definition 4  Deep traversal a
bTraverse . Let 

a
bTraverse  represent a deep traversal from node a to 

node b, and this traversal returns all nodes at all reach-

able paths. 
Definition 5 Filtering traversal ( )pFilter V =  

{ ( )}v V: p v . This traversal returns the set of all nodes 
that satisfy the condition p, where V refers to the node set 
of all nodes of the ICFG. 

Definition 6  Forward traversal (FT) 

( ) { : ( , ) and ( , ) and (( ,k,s
l v VFT V =U u v u E  λ v  u =l  μ v 
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) ) }u k =s, . Let ( )k,s
lFT V  represent an ICFG-based for-

ward traversal which returns all nodes reachable over 
edges with label l and property k, s, where V refers to the 
node set of all nodes in the ICFG. 

Definition 7  Backward traversal (BT) 
( ) { : ( ) and ( ) andk,s

l u VBT V =U v v  u E  λ v u =l , ,

(( ) ) }μ v u k =s, , . Let ( )k,s
lBT V represent an ICFG-based 

backward traversal which returns all nodes reachable 
over edges with label l and property k, s, where V refers 
to the node set of all nodes in the ICFG. 

Definition 8  Counting function ({ })Calculate V . 
Let the function ({ })Calculate V  count and return the 
number of elements in the node set {V}. 

Definition 9  Connection operator between multi-
ple operations . The Connection operator between ◇

multiple operations regulates the execution from the 
back to the front. For x◇y, y is executed firstly, before x. 

Definition 10 ( )iFindDefvariable V . The function 
( )iFindDefvariable V  obtains and returns all variables 

defined at the node Vi. 
Definition 11 ( )iFindUsedvariable V . The function 

( )iFindUsedvariable V  obtains and returns all variables 
used at the node Vi. 

Definition 12 ( )iFindFreevariable V . The function 
( )iFindFreevariable V  obtains and returns all variables 

released at the node Vi. 
Definition 13 ( )FindAllvariable V . The function 

( )FindAllvariable V  obtains and returns all variables in 
the program. 

Definition 14 ( )Initialize variable . Use Initialize  
( )variable  to check whether the variable var has been 
initialized. The operation returns 1, if var has been ini-
tialized; otherwise, it will return 0. 
3.3  Vulnerability Grammar Rule Sets 

The method proposed in this section focuses on de-
tecting three types of vulnerabilities: Unused_Variable, 
Use_of_Uninitialized_Variable, and Use_After_Free. 
According to the causes and features of each type of 
vulnerability, this paper develops a set of vulnerability 
grammar rules to analyze the three types of vulnerabili-
ties. These vulnerability grammar rules describe and ex-
tract the vulnerability features of a program in order to 
derive and locate the vulnerability existing in the pro-
gram segment. 

1) Unused_Variable 
The feature of Unused_Variable is that some of the 

defined variables in program segment have never been 
used or referenced. That is to say, there are no DEF-USE 
pairs for the unused variables in the program segment. 

The key to detecting Unused_Variable is to check 
whether the DEF-USE pairs of each variable is complete. 
In this paper, we propose a grammar rule for deriving 
and detecting the Unused_Variable based on ICFG. The 
description of the process is as follows. 

Step 1: Use ( )iFindDefvariable V  to obtain and 
return all variables defined at the node Vi, then defined as 
the collection {variable}; 

Step 2: Execute FT to traverse each element in the 
collection {variable}, using the traversal formula 

( ) ( ) { : ( , ) and ( , )USE, variable i
l VFT V =U u v  u E  λ v u = l  

v
and 

( , ) } μ v USE = variable . For each element in {variable}, 
FT obtains and returns the all nodes in the ICFG that 
uses the variable, and store them in the collection 
{VUSE}. 

Step 3: For each {VUSE} obtained in Step 2, deter-
mine whether the collection {VUSE} is empty by execut-
ing Calculate {VUSE}. If for a {VUSE}, Calculate  
({VUSE}) returns 0, it means there exists some defined but 
never used variables which is an indication of Un-
used_Variable vulnerability; otherwise, it means no ex-
istence of Unused_Variable in the tested program 
segment. 

Summarizing the three steps above, we can con-
struct the grammar rules for Unused_Variable detection 
as: , ({ ( ) ( )}USE variable i

l iCalculate FT V FindDefvariable V) ◇ . 
2) Use_of_Uninitialized_Variable 
The vulnerability Use_of_Uninitialized_Variable is 

characterized by the use of variables that have not been 
defined or initialized before. That is to say, the DEF-USE 
pairs of some variables in the program segment are in-
complete or the used variables are declared but are not 
set to defined values. The key to detecting Use_of_ Un-
initialized_Variable is to verify that the variables in the 
program segment have been defined or initialized before 
they are used. Combining the features of Use_of_ Unini-
tialized_Variable and related predicates, we propose the 
grammar rules for Use_of_Uninitialized_ Variable detec-
tion based on ICFG. The derivation process is as follows. 

Step 1: Use ( )iFindUsedvariable V to obtain and 
return all variables used at the node Vi, then defined as 
the collection {variable}; 

Step 2: Execute BT to traverse each element in the 
collection {variable}, using the traversal formula: 

, ( ) ( ) { : ( , ) and ( , )DEF variable i
l VBT V =U u v  u E  λ v u = l 

v
and 

( , ) } μ v DEF = variable  . For each element in {variable}, 
BT obtains and returns all nodes in the ICFG that defines 
that variable, and store them in the collection {VDEF}. 

Step 3: For each {VDEF} obtained in Step 2, deter-
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mine whether the collections are empty, by execut-
ing Calculate ({VUSE}). If for a {VDEF}, Calculate  
({VDEF}) returns 0, it means there exists some used but 
never defined variables in the tested program segment, 
indicating the presence of Use_of_Uninitialized_Variable 
vulnerability; otherwise, turn to Step 4. 

Step 4: Check further whether the used variables are 
already initialized. Execute ({ })Initialize variable , if all 
collection elements are executed and the return of this 
formula contains 0 which means some variable in the 
program segment is being used without initialization, and 
therefore we can detect the Use_of_Uninitialized_ Vari-
able in the tested program segment; otherwise, the tested 
program segment does not include Use_of_Uninitial-
ized_Variable. 

Summarizing the four steps above, we can construct 
the grammar rules for Use_of_Uninitialized_Variable 
detection as:  

), ({ ( ) ( )}DEF variable i
l iCalculate BT V  FindUsedvariable V  

= 0, detect the vulnerability
0 ({ ( )})

true,  no existence of  vulnerability
false,  the vulnerability is detected

iInitialize FindUsedvariable V

  



 

3) Use_After_Free 
The value of the node property key k is assigned 

from the set k= {DEF, USE, FREE}, in which the ele-
ment FREE represents the release of some variable. 
Use_After_Free is characterized by the fact that the pro-
gram reuses a resource or variable that has already been 
released. Therefore, the key to detecting Use_After_Free 
is to identify the nodes of the ICFG that have released 
variables, then to track and confirm whether those vari-
ables are being used on subsequent paths. Combining the 
features of Use_After_Free vulnerability and related 
predicates, we propose a detection method based on 
ICFG to analyze and locate Use_After_Free. The analy-
sis process is detailed as follows. 

Step 1: Use ( )iFindFreevariable V to obtain and return 
all freed variables at the node Vi, then define them as the 
collection {variable}. In addition, record the nodes in which 
the variables have been released, and denote them as Vdst; 

Step 2: Execute src

end

V

VTraverse , where Vsrc represents 
the node that firstly initializes the variable, and Vend 
represents the last node to use the variable. This traversal 
returns all nodes on the path of the variable from its ini-
tialization to its last use, and then denoted the set as {V}. 

Step 3: Execute filtering traversal ( )pFilter V =  
{ : { }dstv V  V V  , where the node Vdst represents the 
node that has freed variables, and  p refers to the condi-

tion that node Vdst is included in the collection {V}. That 
is, condition p is satisfied if dstV {V} is true. This tra-
versal returns all nodes that satisfy the condition p and 
define it as a collection {Vp}. 

Step 4: Determine whether the collection {Vp} ob-
tained in Step 3 is empty. Execute ({ })pCalculate V . If 
its return is not always 0, it means there exist some free 
variables that are still being used in the program segment, 
so we can derive that the tested program segment con-
tains Use_After_Free; otherwise, it means no existence 
of Use_After_Free in the tested program segment. 

Summarizing the four steps above, we can formu-
late the vulnerability grammar rules for Use_After_Free 
detection as: ( ) src

end

V

p VFilter V Traverse◇ . 
3.4  The Detection Algorithms for the Software  
Vulnerabilities 

This section gives three detailed detection algo-
rithms (Algorithm 1- Algorithm 3) for detecting the three 
types of vulnerabilities. We discuss the flow of the algo-
rithm in the detection process, from the input of tested 
program segment to the output of vulnerability detection 
results. 

1) Unused_Variable detection algorithm 
In order to detect the Unused_Variable vulnerabil-

ity, we propose an algorithm based on ICFG, which ap-
plies the proposed detection process, as shown in Algo-
rithm 1. Algorithm 1 has one input, that is, the program 
segment to be tested. In Algorithm 1, we create three 
sets: V, Vuse, and variable_D to store all nodes of the 
ICFG, the nodes that used variables on the ICFG, and all 
the variables defined in the program segment, respec-
tively. By converting the program segment into its cor-
responding ICFG, all nodes in the ICFG can be obtained. 
The algorithm further determines whether all variables 
existing in these nodes are defined before they are used. 
Then the DEF~USE pair for each variable determine 
whether the program segment under test contains 
Unused_Variable vulnerability. After that, the algorithm 
will output the detection results for which true means the 
detection of Unused_Variable vulnerability and false 
means no vulnerability detected. 

2) Use_of_Uninitialized_Variable detection algo-
rithm 

In order to detect the Use_of_Uninitialized_Vari-
able vulnerability, we proposed an algorithm shown as 
Algorithm 2. The algorithm has one input: the program 
segment to be tested, and three sets V, VDEF, variable_U 
are constructed to store all nodes of the ICFG, all nodes 
that define variables on the ICFG, and all variables that 
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used in the program segment, respectively. In addition, a 
flag is used to indicate the result of checking initializa-
tion of each variable. The algorithm firstly converts the 
program segment to be tested into an ICFG. It then ob-
tains all nodes of the ICFG and all variables that exist in 
the program segment. Then it checks whether the 
DEF~USE pair for each variable is complete. If the 

DEF~USE pairs of variables are not complete, the algo-
rithm will output a detection result, indicating the detec-
tion of the Use_of_Uninitialized_Variable vulnerability. 
Otherwise, it further checks the initialization of each 
variable. If there exists a variable that is not initialized, 
the algorithm will output true, which means Use_of_ 
Uninitialized_Variable has been detected.

 

Algorithm 1  Unused_Variable detection algorithm 

Input: the program segment to be tested 

Output: the detection results (true or false) 

1. Construct V ={} to store all the nodes on ICFG;  
2. Construct VUSE={} to store the nodes using variables; 

3. Construct variable_D={} to store the defined variables in the program segment; 

4. Convert the program segment to be tested into ICFG; 

5. V[i]= Deep traversal (ICFG); // To obtain all the nodes in ICFG. 

6. For each node Vi in V do 

7. variable_D[i]= FindDefvariable(Vi); 

8. End For 

9. For each variable in variable_D do 

10.   VUSE = , ( ) ( )USE variable_D i
lFT V ; 

11.   If (Calculate(VUSE) == 0) Then 

12.     Return true; // Detect the Unused_Variable vulnerability. 

13.   Else 

14.     Return false; //No Unused_Variable detected. 

15.   End If 

16. End For 
 

Algorithm 2  Use_of_Uninitialized_Variable detection algorithm 

Input: the program segment to be tested 

Output: the detection results (true or false) 

1. Construct V ={} to store all the nodes on ICFG; 

2. Construct VDEF={} to store the nodes defining variables; 

3. Construct variable_U={} to store the used variables in the program segment; 

4. Construct flag: the variable initialization tag (0: Uninitialized; 1: Initialized)  

5. Convert the program segment to be tested into ICFG; 

6.    V[i]= Deep traversal (ICFG); // To obtain all the nodes in ICFG. 

7. For each node Vi in V do 

8.    variable_U[i]= FindUsedvariable(Vi); 

9. End For 

10. For each variable in variable_U do 

11.    VDEF = , ( ) ( )DEF variable_U i
lBT V ; 

12.    If (Calculate(VDEF) == 0) Then 

13.      Return true; // Detect the Use_of_Uninitialized_Variable vulnerability. 

14.    Else 

15.      For each variable in variable_U do 

16.        flag = Initialize(variable); 

17.        If (flag == 0) Then 

18.          Return true; // Detect the Use_of_Uninitialized_Variable vulnerability. 

19.        Else 

20.          Return false; // No Use_of_Uninitialized_Variable detected. 
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21.        End If 

22.      End For 

23.    End If 

24. End For 

 

3) Use_After_Free detection algorithm 
We propose Algorithm 3 to detect Use_After_Free 

vulnerability. The input of this algorithm is the program 
segment to be tested. The algorithm firstly generates the 
corresponding ICFG according to the program code 
segment to be tested, and it obtains all nodes of the 
ICFG. The set Vdst stores nodes with released variables, 

and the algorithm stores the released variables in the set 
variable_F. It further checks whether each variable in 
the set variable_F has been released in their path, from 
the initial definition node to the node in which they were 
last used. If a variable satisfying this condition is found, 
it means Use_After_Free vulnerability has been detected 
in the tested program segment. 

 

Algorithm 3  Use_After_Free detection algorithm 

Input: the program segment to be tested 

Output: the detection results (true or false) 

1. Construct V ={} to store all the nodes on ICFG; 

2. Construct variable_F={} to store the freed variables in the program segment; 

3. Construct Vsrc={} to store the node in which the variable firstly been defined; 

4. Construct Vend={} to store the node in which the variable last been used; 

5. Construct Vdst={} to store the nodes releasing variable; 

6. Construct Vpath={} to store the nodes existing in the path from Vsrc to Vend; 

7. Construct Vp={} to store the nodes that satisfy the condition p; 

8. Convert the program segment to be tested into ICFG; 

9.    V[i]= Deep traversal (ICFG); // To obtain all the nodes in ICFG. 

10. For each node Vi in V do 

11.    variable_F[i]= FindFreevariable(Vi), Vdst= V[i]; 

12. End For 

13. For each variable in variable_F do 

14.    Vsrc = , ( ) ( )DEF variable_F i
lFT V ; //To obtain the node in which the variable been defined. 

15.    Vend= { , ( ) ( )USE variable_F i
lBT V }max; //To obtain the node in which the variable been last used. 

16.    Vpath[i] = src

end

V

VTraverse ; 

17.    Vp= Filterp(Vpath), where p refers to Vdst is included in the path from Vsrc to Vend 

18.    If (Calculate(Vp) == 0) Then 

19.      Return true; // Detect the Use_After_Free vulnerability. 

20.    Else 

21.      Return false; // No Use_After_Free detected. 

22.    End If 

23. End For 

 
 

4  Experimental Analysis 

4.1  General Detection Process Based on ICFG 

Figure 4 shows the process of the proposed method 

in vulnerability detection. The detection process begins 

with the generation of the corresponding ICFG from the 

vulnerability source code, and then to analyze all nodes 

in the graph. It further combines the result of predicates 

analysis with the vulnerability grammar rule set to detect 

the vulnerabilities in the tested program segment. 
4.2  Cases Studies 

In this section, we apply the proposed method to 
analyze and detect the three mentioned types of vulner 
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Fig. 4  Vulnerability detection process of the proposed method 
 
abilities using program segments from CWE. The tested 
program segments are from CWE563 Unused_variable, 
CWE457 Use_of_Uninitialized_variable, and CWE416 
Use_After_Free. The program segments and their corre-
sponding ICFGs are shown in Figs.5-10. The program 
segments are shown in Fig. 5, Fig. 7, and Fig. 9, and 
their corresponding ICFGs are given in Fig. 6, Fig. 8, 
and Fig. 10, respectively. The purpose of cases studies is 
to verify the validity of the proposed vulnerability detec-
tion method in detecting the three mentioned vulnerabili-
ties. The results obtained from cases studies show that 
the proposed method is feasible and effective for the de-
tection of the three kinds of vulnerabilities. The detailed 
process of cases studies is as follows. 

1) The case study of Unused_Variable 

 

1 void 

CWE563_Unused_Variable__unused_uninit_variable_ 

char_09_bad() 

2 { 

char data;    

    data = 'C'; 

3 if(GLOBAL_CONST_TRUE) 

{   

} 

} 
 

Fig. 5  The vulnerability program segment of  

Unused_Variable 
 

 
 

Fig. 6  ICFG for the program segment in Fig. 5 

First, we pre-processed the program segment shown 
in Fig. 5 by labeling its valid code lines with numbers 
from 1 to 3. We then applied the grammar rule sets of 
Unused_variable to the ICFG presented in Fig. 6; The 
description of the detection process of Unused_variable 
is as follows. 

Step 1: Execute ( )iFindDefvariable V where i= 1, 2, 
3, and it returns all the defined variables in the program 
segment: {data}. 

Step 2: Execute , ( )USE data
lFT V  to traverse the col-

lection {data}. After that, FT returns the use node collec-
tion { VUSE } for which the variable data is  . 

Step 3: Determine whether the collection {VUSE} for 
each variable obtained in Step 2 is empty. Execute 
Calculate ({VUSE}) ( ) 0= Calculate =  .  

After the process of static detection, the proposed 
method with vulnerability grammar rules can detect Un-
used_variable in the program segment presented in   
Fig. 5. 

2) The case study of Use_of_Uninitialized_variable 

 

1 void 

CWE457_Use_of_Uninitialized_Variable_double 

_array_declare_no_init_01_bad 

2 { 

  double * data; 

  double dataUninitArray[10]; 

3 data = dataUninitArray; 

4 { 

int i; 

5 for(i=0; i<10; i++) 

  { 

6           printDoubleLine(data[i]); 

        } 

    } 

} 

 

Fig. 7  The vulnerability program segment of Use_of_ Unini-
tialized_variable 



Wuhan University Journal of Natural Sciences 2019, Vol.24 No.2 

 

158 

 

  
Fig. 8  ICFG for the program segment in Fig. 7 

 
First, we pre-processed the program segment shown 

in Fig. 7 by labeling its valid code lines with numbers 
from 1 to 6, and then we applied the grammar rule sets of 
Use_of_Uninitialized_variable to the ICFG presented in 
Fig. 8; the description of the static detection process of 
Use_of_Uninitialized_variable is as follows.  

Step 1: Execute ( )iFindUsedvariable V where i= 1, 2, 
3, 4, 5, 6, and it returns all the used variables in the pro-
gram segment: {data, dataUninitArray, i}. 

Step 2: Execute ,{ , , } ( )DEF data dataUninitArray i
lBT V  to ob-

tain the results of the variable definition node collection 
{VDEF}= {V2, V4} for the three used variables. 

Step 3: Determine whether all collections {VDEF} 
obtained in Step 2 are empty. Execute Calculate  

  2 4, 2 0} .{ ({ })DEFV =Calculate V V =   Therefore, the 
analysis should turn to Step 4. 

Step 4: Further check whether the used variables are 
initialized. Execute ({ })Initialize variable , in which 
variable= data, dataUninitArray, i. When variable= 
data, the ({ })Initialize data returns 0, which means the 
Use_of_Uninitialized_variable is detected. 

3) The case study of Use_After_Free 
For the case of the Use_After_Free vulnerability, we 

pre-processed the program segment shown in Fig. 9 by 
labeling its valid code lines with numbers from 1 to 9. 
We subsequently applied the grammar rule sets of 
Use_After_Free to the ICFG presented in Fig. 10; the 
description of the static detection process of 
Use_After_Free is as follows. 

Step 1: Execute ( )iFindFreevariable V , where i=1, 2, 
3,…, 9, and it returns all the freed variables in the pro-
gram segment: {data} as well as the node Vdst= {V7} 
where the variable data has been released. 

Step 2: Execute 2

9

V

VTraverse , and it returns all nodes 

on the path of the data from its initialization to its last 
use: {V}={V2, V4, V5, V6, V7, V9}. 

Step 3: Execute ( ) { : { }}p dstFilter V = v V V V  , 
in which the node Vdst= V7, and the condition p refers to 
the node V7 is included in {V2, V4, V5, V6, V7, V9}. After 
that, we obtain {Vp}= {V7}. 

Step 4: Determine whether the collection {Vp} ob-

tained in Step 3 is empty. Execute  { }pCalculate V =  

 7 1{ }Calculate V = . This result indicates the detection of 

Use_After_Free in the tested program segment. 
 

1 void 

CWE416_Use_After_Free__malloc_free_char_03_bad()

{ 

2 char * data; 

data = NULL; 

3 if(5==5) 

      { 

4 data = (char *)malloc(100*sizeof(char)); 

5 memset(data, 'A', 100-1); 

6     data[100-1] = '\0'; 

7 free(data); 

      } 

8 if(5==5) 

    { 

9 printLine(data); 

        } 

} 
 

Fig. 9  The vulnerability program segment of Use_After_Free 
 

 

Fig. 10  ICFG for the program segment in Fig. 9 
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4.3  Experimental Analysis 
To verify the effectiveness of the proposed method 

in detecting the three kinds of vulnerabilities (Un-
used_Variable, Use_of_Uninitialized_Variable, and Use_ 
After_Free), we conducted experiments based on the 
three types of vulnerabilities and using program seg-
ments from CWE. For each type of vulnerability, we 
randomly selected 30 program segments to test. Then we 
applied the method proposed in this paper to manually 
detect the vulnerabilities in the program segments under 
test, and compared the results with those of the existing 
vulnerability detection tool CppCheck. Table 1 presents 
the detection results of these two detection methods for 
the three types of vulnerabilities (Vulnerabilities: Vuls., 
CWE563: Unused_Variable, CWE457: Use_of_ Unini-

tialized_Variable and CWE416: Use_After_Free).  

The results from Table 1 show that, the method 

proposed in this paper can detect more vulnerabilities 

than CppCheck, after executing the same number of 

vulnerability program segments for each type of vulner-

ability. Compared with CppCheck, the method proposed 

in this paper achieved improvements of 40%, 43.3%, and 

40% in detecting Unused_Variable, Use_of_Uninitial-

ized_Variable, and Use_After_Free, respectively. The 

experimental results show that the proposed method has 

strong applicability and effectiveness in the detection of 

the three mentioned types of vulnerabilities, and it can 

have guiding significance in the analysis and detection of 

other types of vulnerabilities. 
 

Table 1  The detection results of the two methods 
 

The proposed method CppCheck 

Name of Vuls. 
Total number 

of Vuls. Number of the 

detected Vuls. 

Detection rate

/% 

Number of the 

detected Vuls. 

Detection rate

/% 

CWE563 30 14 46.7 2 6.7 

CWE457 30 19 63.3 6 20.0 

CWE416 30 21 70.0 9 30.0 
 

5  Conclusion  

In this paper, we propose a method for software 
vulnerability detection based on an improved control 
flow graph to detect three common vulnerabilities: Un-
used_Variable, Use_of_Uninitialized_Variable, and Use_ 
After_Free. We firstly proposed the definition of the im-
proved control flow graph, and several predicates of 
vulnerability properties. For each type of vulnerability, 
we constructed a corresponding vulnerability grammar 
rule sets based on ICFG for the software vulnerability 
detection. In addition, we designed three vulnerability 
detection algorithms, which can detect specific type of 
vulnerability in the program segment to be tested. The 
results of the cases studied in this paper showed that the 
proposed method is feasible and effective in analyzing 
and detecting the three mentioned types of vulnerability 
existing in the tested program segments. Finally, the ex-
perimental analysis section compared the vulnerability 
detection effectiveness of the proposed method with that 
of an existing vulnerability detection tool CppCheck, by 
using the vulnerability program segments selected from 
CWE. The results showed that the proposed vulnerability 

detection method has a better performance than 
CppCheck, in detecting the three types of vulnerabilities. 
The results illustrate that the software vulnerability de-
tection method based on ICFG plays a certain guiding 
role in the common vulnerability detection field. 

Future work of this research mainly includes reduc-
ing the generation cost of ICFG, improving the detection 
accuracy of the method, and further extending the uni-
versality of the proposed method. 
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