

Wuhan University Journal of Natural Sciences

Article ID 1007-1202(2018)06-0465-06 DOI https://doi.org/10.1007/s11859-018-1349-3

On the Dual p-Measures of Asymmetry for Star Bodies

□ **HUANG Xing1,2,3,4, ZHU Huawei1,2,3,4, GUO Qi5†**

1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 51006, Guangdong, China;

2. Academy for Intelligent Software, Guangzhou University, Guangzhou 51006, Guangdong, China;

3. Guangdong Provincial Engineering and Technology Research Center for Mathematical Education Software, Guangzhou University, Guangzhou 510006, Guangdong, China;

4. Institute of Mathematics and Computer Science, Guizhou Normal College, Guiyang 550018, Guizhou, China;

5. Department of Mathematics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China

© Wuhan University and Springer-Verlag GmbH Germany 2018

Abstract: Recently, the connection between *p*-measures of asymmetry and the L_p -mixed volumes for convex bodies was found soon after the *p*-measure of asymmetry was proposed, and the Orlicz-measures of asymmetry was proposed inspired by such a kind of connection. In this paper, by a similar way the dual *p* -measures of asymmetry for star bodies (naturally for convex bodies) is introduced first. Then the connection between dual *p* -measures of asymmetry and L_p -dual mixed volumes is established. Finally, the best lower and upper bounds of dual *p*-measures and the corresponding extremal bodies are discussed. **Key words:** convex body; dual *p*-measures of asymmetry;

 L_n -dual mixed volumes

CLC number: O 186.5

Received date: 2018-05-28

Foundation item: Supported by the National Natural Science Foundation of China (11671293, 11701118, U1201252), the National High Technology Research & Development Program of China (2015AA015408), the Special Fund for Science & Technology Platform and Talent Team Project of Guizhou Province (QianKe-HePingTai RenCai [2016]5609)

0 Introduction

As one of the most important geometric invariants, the measures of asymmetry (or symmetry) for convex bodies (i.e., compact convex sets in the Euclidean *n* -space with nonempty interior) initiated from the early Minkowski's work $^{[1]}$ and formulated in the well-known paper^[2] have stayed stably as a quite popular topic in convex geometry. Various kinds of measures of asymmetry or their extensions have been proposed and studied (see Refs.[3-9] and the references therein). Recently some new measures of asymmetry were discovered [10-19].

Among these measures of asymmetry proposed recently, the *p*-measures of asymmetry defined by the third named author in Ref.[10], is of some significance in the sense. The method used in Ref.[10] to construct the *p*-measures of asymmetry provides a new way to construct new geometric invariants (see Ref.[9]), e.g., soon after Ref.[10], Jin, Leng and Guo in Ref.[13] revealed a connection between the *p*-measures of asymmetry and the L_p -mixed volumes and further established the socalled Orlicz-measures of asymmetry.

In this article, we introduce the dual *p*-measure of asymmetry for star bodies (and naturally for convex bodies), which is a dual concept of the *p*-measure of asymmetry in some sense, and discuss its properties.

 \mathbb{R}^n denotes the usual *n*-dimensional Euclidean space with the canonical inner product $\langle \cdot, \cdot \rangle$. The family of all convex bodies is denoted by $Kⁿ$. For a convex set *C*, int *C*, ri*C* denote the interior and relative interior of *C* , respectively. We refer to Ref. [20] for general notations.

Biography: HUANG Xing, male, Ph. D., research direction: convex geometry. E-mail:yellowstar86@163.com

[†] To whom correspondence should be addressed. E-mail: guoqi@mail.usts.edu.cn

For $C \in K^n$, its support function $h(\cdot) = h(C, \cdot)$: $S^{n-1} \to [0, +\infty)$ is defined as $h(C, u) = \max_{y \in C} \langle x, u \rangle$, $u \in S^{n-1}$, where S^{n-1} is the $(n-1)$ -dimensional unit sphere. More generally, for $x \in \mathbb{R}^n$, we denote also

$$
h_x(C, u) = \max_{y \in C} \langle y - x, u \rangle, \ u \in S^{n-1},
$$

called the support function of *C* based on *x*. Clearly, $h_0(C, \cdot) = h(C, \cdot)$ and it is easy to see that

$$
h_x(C,\cdot) = h(C,\cdot) - \langle x,\cdot \rangle
$$

and

$$
h_x(C,\cdot) = h(C_x,\cdot)
$$

where $C_x := C - x$.

A subset $C \subset \mathbb{R}^n$ is called a star-shaped set if there is $x \in C$ such that $\lambda x + (1 - \lambda)y \in C$ for all $y \in C$ and $0 \le \lambda \le 1$. For $C \subset \mathbb{R}^n$, we denote

$$
\operatorname{cor} C := \{ x \in C \mid \lambda x + (1 - \lambda) y \in C \}
$$

for all $y \in C$ and $0 \le \lambda \le 1$, called the core of *C*. Clearly *C* is star-shaped if and only if $\text{cor}(C) \neq \emptyset$. We say *C* is a star-shaped about *x* whenever $x \in \text{cor}(C)$. Observe that $\text{cor}(C) = C$ for $C \in K^n$ and more generally, $cor(C)$ is closed and convex for closed starshaped set*C* .

Given a compact star-shaped set $C \subset \mathbb{R}^n$ and $x \in \text{cor}(C)$, we define its radial function $\rho_{\gamma}(\cdot) =$ $\rho_{\mathfrak{X}}(C, \cdot)$, $S^{n-1} \to [0, +\infty)$, with respect to (w.r.t. for brevity) *x* by

 $\rho_x(u) = \rho_x(c, u) = \max\{\lambda \ge 0 \mid \lambda u + x \in C\}, u \in S^{n-1}$

when $x = 0$, we often write ρ simply instead of ρ_0 . It is easy to see that $\rho(C_x, u) = \rho_x(C, u)$ and $\rho(C_x, u) =$ $\rho(C_x, -u) = \rho_x(C, -u)$, $u \in S^{n-1}$, for every compact star-shaped set *C* and $x \in \text{cor}(C)$.

A compact star-shaped set *K* is called a star body about *x* if $x \in \text{cor} K$ and $\rho_x(K, \cdot)$ is positive and continuous. Observe that if K is a star body about *x*, then $x \in \text{int } K$. Denote φ^n the set of star bodies and φ_0^n the set of star bodies about 0.

Clearly, a convex set (respectively convex body) is a star-shaped set (respectively star body). In this article, we write customarily *C D*, for convex bodies or star bodies and *K*, *L* for star bodies about 0.

The Hausdorff metric $d_H(C, D)$ between $C, D \in K^n$ is defined as

$$
d_H(C, D) := \max_{u \in S^{n-1}} |h(C, u) - h(D, u)|
$$

By $C_k \to C$ we mean $d_H(C_k, C) \to 0$ as $k \to +\infty$.

1 *p***-Measures of Asymmetry and** *Lp***-Mixed Volumes**

In this section, we introduce some properties of the *p*-measures of asymmetry^[10] and L_p -mixed volumes ^[21] for convex bodies.

Given $C \in K^n$, for a fixed $x \in \text{int}(C)$, we define $m_r(C, \cdot)$, a probability measure on S^{n-1} , by

$$
m_{x}(C,\omega) := \frac{\int_{-\infty}^{C} h_{x}(C,u) dS_{n-1}(C,u)}{n V_{n}(C)}
$$

for any measurable $\omega \subset S^{n-1}$, where $S_{n-1}(C, \cdot)$ denotes the surface area measure of *C* on S^{n-1} and $V_n(C)$ denotes the *n*-dimensional volume of *C*. Then we write

$$
\mu_p(C,x) = \begin{cases} \left(\int_{S^{n-1}} \alpha_x(C,u)^p \, dm_x(C,u)\right)^{\frac{1}{p}}, & \text{if } 1 \leq p < +\infty \\ \sup_{u \in S^{n-1}} \alpha_x(C,u), & \text{if } p = +\infty \end{cases}
$$

where $\alpha_x(C, u) = \frac{h(C_x, -u)}{h(C_x, u)}$ *x* $(C, u) = \frac{h(C_x, -u)}{h(C_x, -u)}$ $\alpha_{x}(C, u) = \frac{h(C_{x}, -u)}{h(C_{x}, u)}$.

Then, the *p*-measure of asymmetry $as_n(C)$ is defined by

$$
\operatorname{as}_p(C) := \inf_{x \in \operatorname{int}(C)} \mu_p(C, x)
$$

A point $x \in \text{int}(C)$ satisfying $\mu_p(C, x) = \text{as}_p(C)$ is called a *p*-critical point of *C*.

Remark 1 1) It is easy to see that as_{∞} is just the well-known Minkowski measure of asymmetry.

 2) The following statements are confirmed in Ref.[10].

i) for $C \in K^n$ and $1 \leq p \leq +\infty$, $1 \leq \text{as}_{n}(C) \leq n$, and as $_p(C) = 1$ *if and only if C is (centrally) symmetric;* as $(C) = n$ if and only if *C* is a simplex.

ii) for any $C \in K^n$ and $1 \leq p \leq +\infty$, its *p*-critical point is unique; the set of ∞ -critical points is a non-empty closed convex set $^{[2]}$ while the set of 1-critical points is exactly $int(C)$.

In Ref.[13], the authors observed a nice connection between the *p*-measures of asymmetry and the L_p mixed volumes (see Ref.[21] for definitions): for $1 \leqslant p \leqslant +\infty$,

$$
\mu_p^p(C, x) = \frac{V_p(C_x, -C_x)}{V_n(C)}
$$

and in turn 1

as_p(C) = inf_{x \in int} C
$$
\frac{V_p(C_x, -C_x)}{V_n(C)}
$$
 $\frac{1}{p}$

 $V_p(\cdot, \cdot)$ denotes the L_p -mixed volume, and they thereby introduced the so-called Orlicz-measures of asymmetry for convex bodies which have similar properties to those of *p*-measures.

2 Dual *p***-measures of Asymmetry and** *L*p**-dual Mixed Volumes**

In this section, we define the dual *p*-measures of asymmetry for star bodies (automatically for convex bodies), starting with some necessary definitions and notations.

Definition $\mathbf{1}^{[21]}$ For $p \ge 1$ and $K, L \in \varphi_0^n$, the L_p - dual mixed volume $\tilde{V}_{-p}(K,L)$ is defined by

$$
\tilde{V}_{-p}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^{n+p} \rho(L,u)^{-p} dS(u)
$$

where $S(\cdot)$ denotes the spherical Lebesgue measure on S^{n-1} , the unit sphere of \mathbb{R}^n .

Especially,
$$
\tilde{V}_{-p}(K,K)=\int_{S^{n-1}} \rho(K,u)^n dS(u) = V_n(K)
$$

for $K \in \varphi_0^n$.

If $p \ge 1$ and $K, L \in \varphi_{0}^{n}$, it is easy to check that, for any $T_0 \in GL(n)$, the general linear group,

$$
\tilde{V}_{-p}(T_0K, T_0L) = |\det T_0| \tilde{V}_{-p}(K, L)
$$

where "det" denotes the determinant. It is shown in Ref. [20] that the L_p -Minkowski dual mixed volumes inequality holds: for $K, L \in \varphi_0^n$ and $p \ge 1$,

$$
\tilde{V}_{-p}(K,L)^{n} \geq V_{n}(K)^{n+p}V_{n}(L)^{-p}
$$
\n(1)

and

 $\tilde{V}_{-p}(K,L)^n = V_n(K)^{n+p} V_n(L)^{-p}$ if and only if $K = \lambda L$ for some $\lambda > 0$.

Now, we introduce the dual *p*-measures of asymmetry for star bodies (automatically for convex bodies). First, given $C \in \varphi^n$, $x \in \text{ri}(\text{cor}C)$, we define a probability measure $\tilde{m}_m(C, \cdot)$ on S^{n-1} by

$$
d\tilde{m}_x(C,\omega) = \frac{\rho_x(C,u)^n dS(u)}{nV_n(C)}
$$

for any measurable $\omega \subset S^{n-1}$.

Then we write

$$
\mu_p^{\circ}(C, x) =
$$
\n
$$
\begin{cases}\n\left(\int_{S^{n-1}} \tilde{\alpha}_x(C, u)^p \, dm_x(C, u)\right)^{\frac{1}{p}}, \text{if} \quad 1 \leq p < +\infty \\
\sup_{u \in S^{n-1}} \alpha_x(C, u), \quad \text{if} \quad p = +\infty\n\end{cases}
$$

where
$$
\tilde{\alpha}_x = \frac{\rho_x(C, u)}{\rho_x(C, -u)}
$$
.

Definition 2 For $C \in \varphi^n$, $1 \leq p \leq +\infty$, we define dual *p*-measure of asymmetry $as_n^{\circ}(C)$ of *C* by

$$
\operatorname{as}_{p}^{\circ}(C) := \inf_{x \in \operatorname{ri}(\operatorname{cor}(C))} \mu_{p}^{\circ}(C, x)
$$

A point $x^* \in \text{ri}(\text{cor}C)$ satisfying $\mu_p^{\circ}(C, x^*) = \text{as}_p^{\circ}(C)$ is called a *p* -critical point of *C*.

Remark 2 Clearly, $as_n^{\circ}(C) = as_n(C)$ for $C \in K^n$ (cf. Ref. [4] and the references therein). By the continuity of $\mu_p^{\circ}(C, x)$ w.r.t. *x* and $\lim_{x \to \text{bd}(C)} \mu_p^{\circ}(C, x) = +\infty$, we see

that p° -critical points exist, i.e. $as_p^{\circ}(C)$ is attainable.

As an analogue of the volume-normalized version of *L_n*-mixed volumes introduced by Lutwak, Yang and Zhang in Ref.[22], we introduce the following volume-normalized version $\overline{V}_{-p}(\cdot, \cdot)$ of L_p -dual mixed volumes.

Given $K, L \in \varphi_0^n$, we denote, for each $p \ge 1$,

$$
\overline{V}_{-p}(K,L) = \begin{cases}\n(\frac{\tilde{V}_{-p}(K,L)}{V_n(K)})^{\frac{1}{p}}, & \text{if } 1 \leq p < +\infty \\
\max{\{\frac{\rho(K,u)}{\rho(L,u)} | u \in S^{n-1}\}, \text{if } p = +\infty}\n\end{cases}
$$
\n(2)

Here, we mention without proofs some properties of $\overline{V}_{-p}(\cdot, \cdot)$, all of which can be checked by the definition and/or Jensen's inequality:

 $\overline{V}_{-n}(T_0K, T_0L) = \overline{V}_{-n}(K, L)$ (3)

for all $T_0 \in GL(n)$, $p \in [1, +\infty]$;

$$
\overline{V}_{-p}(K,L) \le \overline{V}_{-q}(K,L)
$$
, $1 \le p \le q \le +\infty$, unless $\frac{\rho_K}{\rho_L}$

is a constant on S^{n-1} ; And

$$
\lim_{p \to p_0} \overline{V}_{-p}(K, L) = \overline{V}_{-p_0}(K, L), p_0 \in [1, +\infty]
$$

We are now in the position to show the connection between dual *p*-measures and L_p -dual mixed volumes.

Theorem 1 For $C \in \varphi^n$, $x \in \text{ri}(\text{cor} C)$ and $1 \leqslant p \leqslant +\infty$, we have

$$
\mu_p^{\circ}(C,x) = \overline{V}_{-p}(C_x, -C_x)
$$

and in turn $\text{as}_p^{\circ}(C) = \inf_{x \in \text{ri}(\text{cor}C)} \overline{V}_{-p}(C_x, -C_x)$.

Proof For $1 \leq p \leq +\infty$, by the definitions of $\mu_p^{\circ}(C, x)$ and $\tilde{V}_{-p}(C, D)$, we have

$$
\mu_p^{\circ}(C, x)^p = \int_{S^{n-1}} \tilde{\alpha}_x (C, u)^p d\tilde{m}_x (C, u)
$$

\n
$$
= \int_{S^{n-1}} \frac{\rho_x (C, u)^p}{\rho_x (C, -u)^p} \frac{\rho_x (C, u)^n dS(u)}{n V_n (C)}
$$

\n
$$
= \frac{1}{n V_n (C)} \int_{S^{n-1}} \rho_x (C, u)^{n+p} \rho_x (C, -u)^{-p} dS(u)
$$

\n
$$
= \frac{1}{n V_n (C)} \int_{S^{n-1}} \rho (C_x, u)^{n+p} \rho (-C_x, u)^{-p} dS(u)
$$

\n
$$
= \frac{\tilde{V}_{-p} (C_x, -C_x)}{V_n (C)} = (\overline{V}_{-p} (C_x, -C_x))^p
$$

Observing $V_n(C) = V_n(C_\tau)$ and in turn

$$
as_p^{\circ}(C) = \inf_{x \in r(\text{corr})} \overline{V}_{-p}(C_x, -C_x)
$$

 $as_p^{\circ}(C) = \inf_{x \in \text{r}(C)} \overline{V}_{-\infty}(C_x, -C_x)$ follows directly

from the definitions of $\text{ as}_{\infty}^{\circ}(\cdot)$ and $\overline{V}_{-p}(\cdot,\cdot)$.

The following theorem ensures that the dual *p*-measures of asymmetry are indeed measures of asymmetry.

Theorem 2 For any $1 \leq p, q \leq +\infty$ and $C \in \varphi^n$, the following statements are true:

i) as^{ϕ}_p(\cdot) is continuous w.r.t. the Hausdorff metric and affine invariant.

ii) as $_{n}^{\circ}(C) \leq$ as $_{n}^{\circ}(C)$ for any $C \in \varphi^{n}$ and $1 \leq p \leq q$ $≤ + ∞$.

iii) $1 \leq as_{n}^{\circ}(C) \leq n$ and $as_{n}^{\circ}(C) = 1$ if and only if *C* is (centrally) symmetric.

Proof i) The continuity of as_p follows from the continuity of L_p -dual mixed volumes (noticing Theorem 1). We show only the affine invariance of as_{p}° . Let *T* be an invertible affine transform on \mathbb{R}^n , then $T = T_1 \circ T_0$, where $T_0 \in GL(n)$ and T_1 is a translation.

For $T_0 \in GL(n)$, since

$$
(T_0C)_{T_0y} = T_0C - T_0y = T_0(C - y) = T_0C_y,
$$

cor $(T_0C) = T_0(c$ or $C)$

and so $\text{ri}(\text{cor}(T_0 C)) = T_0(\text{ri}(\text{cor} C))$, we have by Theorem 1 (writing $x = T_0(y)$)

$$
as_p^{\circ}(T_0C) = \inf_{x \in \text{ri}(\text{cor}(T_0C))} \overline{V}_{-p}((T_0C)_x, -(T_0C)_x)
$$

\n
$$
= \inf_{y \in \text{ri}(\text{cor}(T_0C))} \overline{V}_{-p}((T_0C)_{T_0y}, -(T_1C)_{T_0y})
$$

\n
$$
= \inf_{y \in \text{ri}(\text{cor}(T_0C))} \overline{V}_{-p}(T_0(C_y), -T_0(-C_y))
$$

\n
$$
= \inf_{y \in \text{ri}(\text{cor}(T_0C))} \overline{V}_{-p}(C_y, -C_y)
$$

\n
$$
= as_p^{\circ}(C)
$$

For the translation T_1 , since $(T_1 C)_{T_1 y} = C_y$, we have by Theorem 1 (writing $x = T_1(y)$)

$$
as_p^{\circ}(T_1C) = \inf_{x \in \text{ri}(\text{cor}(T_1C))} \overline{V}_{-p}((T_1C)_x, -(T_1C)_x)
$$

$$
= \inf_{y \in \text{ri}(\text{cor}(T))} \overline{V}_{-p}((T_1C)_{T_1y}, -(T_1C)_{T_1y})
$$

$$
= \inf_{y \in \text{ri}(\text{cor}(T))} \overline{V}_{-p}(C_y, -C_y)
$$

$$
= as_p^{\circ}(C)
$$

Hence, $\text{as}_n^{\circ}(TC) = \text{as}_n^{\circ}(C)$.

ii) It follows from Theorem 1 and (3) .

iii) First, by ii) and 2) in Remark 1, we have

$$
as_p^{\circ}(C) \le as_{\infty}^{\circ}(C) = as_{\infty}(C) \le n
$$

Then, we show the other conclusions hold for as_1 . Since

 $as_1^{\circ}(C) = \inf_{x \in \text{ri}(\text{cor}C)} \frac{\tilde{V}_{-1}(C_x, -C_x)}{V_n(C)}$ $x \in \text{ri}(\text{cor}C)$ V_n $V = \inf \frac{\tilde{V}_{-1}(C_x, -C)}{V_{-1}(C_x, -C)}$ $V_{n}(C)$ ÷ \int_{-1}^{∞} (C) = $\inf_{x \in \text{r}(corC)} \frac{\tilde{V}_{-1}(C_x, -C_x)}{V(C)}$ and the volume is transla-

tion-invariant, by (1) we have

$$
\tilde{V}_{-1}(C_x, -C_x) \ge V_n(C_x)^{\frac{n+1}{n}} V_n(-C_x)^{-\frac{1}{n}}
$$

= $V_n(C), x \in \text{ri}(\text{cor}C)$

which implies $as_i^{\circ}(C) \geq 1$.

Now

 $as_1^{\circ}(C) = 1 \Leftrightarrow \mu_1^{\circ}(C, x^*) = 1$ for some $x^* \in \text{ri} (\text{cor} C)$ (by Remark 2)

 $\Leftrightarrow \overline{V}_{-1}(C_{x}, -C_{x}) = 1$ for some $x^* \in \text{ri}(\text{cor}C)$ (by Theorem 1)

$$
\Leftrightarrow \tilde{V}_{-1}(C_{x^*}, -C_{x^*}) = V_n(C) = V_n(C_{x^*})^{\frac{n+1}{n}} V_n(-C_{x^*})^{-\frac{1}{n}}
$$

(by the definition of $\overline{V}_1(\cdot, \cdot)$)

 \Leftrightarrow C_{τ} , $-C_{\tau}$ are dilates (by (1))

and the last statement is equivalent to that *C* is symmetric w.r.t. x^* .

Next, we show the other conclusions hold for as_{∞}° : by ii) and what just confirmed for as_i^o we have $as_{\infty}^{\circ} \geq as_{1}^{\circ} \geq 1$. If $as_{\infty}^{\circ}(C) = 1$, we have

$$
1 \leqslant \operatorname{as}_{1}^{\circ}(C) \leqslant \operatorname{as}_{\infty}^{\circ}(C) = 1
$$

by ii) which leads to $as_1^{\circ}(C) = 1$ and in turn that *C* is centrally symmetric by what just proved for as_1 . Conversely, if *C* is symmetric with the center x^* , then * * $\frac{(C_{x^*}, u)}{2} = 1$ $(C_{n},-u)$ *x x* C_{u} , u $C_{1}, -u$ $\frac{\rho(C_{x^*}, u)}{\rho(C_{x^*}, -u)} = 1$ for all $u \in S^{n-1}$ which implies clearly $\operatorname{as}_{\infty}^{\circ}(C) = \mu_{\infty}^{\circ}(C, x^*) = 1$.

Finally, for $1 \leq p \leq +\infty$, the conclusion can be deduced simply by $as_1^{\circ} \leqslant as_p^{\circ} \leqslant as_{\infty}^{\circ}$ and what we proved for as_1° and as_{∞}° .

Remark 3 If $C \in K^n$, then $\text{cor}(C) = C$, so Theorem 1 and 2 hold for $C \in K^n$.

3 The Best Upper Bound of Dual *p***-Measure of Asymmetry and the Extremal Body**

A set $C \in \varphi^n$ (respectively K^n) is called an extremal body w.r.t. as_{p}° if

as_p^o(C₀)=min(or max)
$$
\{as_p^o(C) | C \in \varphi^n
$$
 (respectively K^n)\}

In Section 2, we see the best lower bound 1 for as_p° and the corresponding extremal bodies: symmetric star bodies. However, no information was given for the best upper bound and the corresponding extremal bodies, in contrast to the case of *p* measures of asymmetry for convex bodies. This seems not an easy task, so in this section we consider only the best upper bound and the corresponding extremal bodies in $Kⁿ$. Even so our answers are still not satisfactory.

First, we show that the best upper bound of as_{p}° exists and is attainable.

Proposition 1 There exists $C_0 \in K^n$, such that $\text{as}_{p}^{\circ}(C_{0}) = \text{sup} \{ \text{as}_{p}^{\circ}(C) | C \in K^{n} \} = M_{p}$.

Proof First, by

$$
as_{p}^{\circ}(C) \leq as_{\infty}^{\circ}(C) = as_{\infty}(C) \leq n
$$

(by 2) in Remark 1), we have $M_p \le n$. Thus, by the definition of supremum there is a sequence ${C_k}_{k=1}^{\infty} \subset K^n$ such that $\text{as}_{p}^{\circ}(C_k) \to M_p$ as $k \to +\infty$. Since for each $C \in K^n$ the Banach-Mazur distance

$$
d_{BM}(C, B_2^n) = \inf \{ \lambda \geq 1 \mid B_2^n \subset TC \subset \lambda (B_2^n - x) + x \} \leq n
$$

where B_2^n is the Euclidean unit ball and the infimum is taken over all applicable invertible affine map *T* and $x \in \mathbb{R}^n$ (see, e.g. Ref.[23] or Ref.[3] and the references therein), and as_{p}° is affinely invariant, without loss of generality we may assume $B_2^n \subset C_k \subset nB_2^n$ for all *k*. Thus, by the well-known Blaschke's selection theorem, there are ${C_{k_j}} \subset {C_k}$ and $C_0 \in K^n$ such that $C_{k_j} \to C_0 \in K^n$ as $j \to \infty$. Thus

$$
as_p^{\circ}(C_0) = \lim_{j \to +\infty} as_p^{\circ}(C_{k_j}) = M_p
$$

by the continuity of as _{p}° .

Since $\text{as}_{\infty}^{\circ} = \text{as}_{\infty}$, by 2) in Remark 1 we know that M_{\odot} = *n* and the extremal bodies for the best upper

bound of as are simplices. However, we know neither the exact values of M_p nor their extremal bodies for $1 \leq p$ < + ∞ . What we know is just the following partial answer.

Theorem 3 *M_p* $\lt n$ for $1 \le p \le +\infty$.

Proof Suppose $M_p = n$, then there is $C_0 \in K^n$ such that $as_p^{\circ}(C_0) = n$. Thus we have $as_p^{\circ}(C_0) = n$ since $\text{as}_{n}^{\circ}(C_0) \leq \text{as}_{\infty}^{\circ}(C_0) = \text{as}_{\infty}^{\circ}(C_0) \leq n$. So C_0 is a simplex by 2) in Remark 1.

Let v_1, v_2, \dots, v_{n+1} be the vertices of C_0 and x^* be the centroid (i.e. the ∞ -critical point) of C_0 . Then since the continuous function (w.r.t.*u*)

$$
\tilde{\alpha}_{x^*} = \frac{\rho_{x^*}(C_0, u)}{\rho_{x^*}(C_0, -u)} \le n
$$

and the equality holds only at points * $:=\frac{v_i-x^*}{|v_i-x^*|}$ $i = \frac{v_i}{\sqrt{2}}$ *i* $u_i := \frac{v_i - x}{\sqrt{u_i}}$ *x* \boldsymbol{v} $=\hspace{-1em}\frac{\boldsymbol{v}_{\!\scriptscriptstyle 1}-\boldsymbol{x}^*}{\left|\,\boldsymbol{v}_{\!\scriptscriptstyle 1}-\boldsymbol{x}^*\,\right|},1\!\leqslant$

 $i \leq n+1$, and the measure

$$
d\tilde{m}_{x}(C_0, \omega) = \frac{\rho_{x}(C_0, u)^n dS(u)}{nV_n(C_0)}
$$

is not concentrated at u_1, u_2, \dots, u_{n+1} , we have

$$
\mu_p^{\circ}(C_0, x^*) = \left(\int_{S^{n-1}} \tilde{\alpha}_{x^*}(C_0, u)^p d\tilde{m}_{x^*}(C_0, u)\right)^{\frac{1}{p}}
$$

$$
< \left(\int_{S^{n-1}} n^p d\tilde{m}_{x^*}(C_0, u)\right)^{\frac{1}{p}} = n
$$

which leads to $\text{as}_{p}^{\circ}(C_0) \leq \mu_p^{\circ}(C_0, x^*) \leq n$, a contradiction.

Final Remark In this article, we introduce the so-called dual *p*-measures of asymmetry for star bodies (automatically for convex bodies) and study their basic properties. Some properties of the dual *p*-measure for convex bodies are exactly the same as those of the *p*-measures. However, unfortunately, the most important conclusion for the extremal bodies corresponding to best upper bounds is missing and even the values of best upper bounds are not known. So, a valuable (probably hard as well) problem left is to find the exact values of M_p and those mysterious extremal bodies which might have some interesting properties.

References

- [1] Minkowski H. Allegemeine Lehrsätze über die convexen polyeder[J]. *Nachr Ges Wiss Göttingen*, 1897,(2): 198-219.
- [2] Grünbaum B. Measures of symmetry for convex sets [C]// *Proc Symp Pure Math*, Vol. , Providence: Amer Math Soc,

1963: 233- 270.

- [3] Guo Q. Stability of the Minkowski measure of asymmetry for convex bodies[J]. *Discrete Comput Geom*, 2005, **34**: 351- 362.
- [4] Guo O, Kaijser S. On asymmetry of some convex bodies[J]. *Discrete Comput Geom*, 2002, **27**: 239-247.
- [5] Jin H, Guo Q. On the asymmetry for convex domains of constant width[J]. *Commun Math Res*, 2010, **26**(2):176-182.
- [6] Jin H L, Guo Q. Asymmetry of convex bodies of constant width[J]. *Discrete Comput Geom*, 2012, **47**: 415-423.
- [7] Jin H L, Guo Q. A note on the extremal bodies of constant width for the Minkowski measure [J]. *Geom Dedicata*, 2013, **164**: 227-229.
- [8] Guo Q, Guo J F, Su X L. The measures of asymmetry for coproducts of convex bodies [J]. *Pacific J Math*, 2015, **276**: 401-418.
- [9] Toth G. *Measures of Symmetry for Convex Sets and Stability*[M]. Berlin: Springer-Verlag, 2015.
- [10] Guo Q. On *p*-measures of asymmetry for convex bodies[J]. *Adv Geom*, 2012, **12**(2): 287-301.
- [11] Guo Q, Toth G. Dual mean Minkowski measures of symmetry for convex bodies [J]. *Science China*: *Mathematics*, 2016, **59**(7): 1383-1394.
- [12] Guo Q, Toth G. Dual mean Minkowski measures and the Grünbaum conjecture for affine diameters[J]. *Pacific J Math*, 2017, **292**: 117-137.
- [13] Jin H L, Leng G S, Guo Q. Mixed volumes and measures of asymmetry [J]. *Acta Math Sinica* (*Eng Series*), 2014, **30**(11): 1905-1916.
- [14] Jin H L. The log-Minkowski measures of asymmetry for convex bodies [J/OL]. *Geom Dedicata*, *http*://*doi*.*org*.10./ 1007 /*s*10711-017-0302-5, 2017.
- [15] Meyer M, Schütt C, Werner E M. New affine measures of symmetry for convex bodies [J]. *Adv Math*, 2011, **228**: 2920- 2942.
- [16] Guédon O, Litvak A E. On the symmetric average of a convex body [J]. *Adv Geom*, 2011, **11**: 615-622.
- [17] Toth G. A measure of symmetry for the moduli of spherical minimal immersions [J]. *Geom Dedicata*, 2012, **160**:1-14.
- [18] Toth G. On the shape of the moduli of spherical minimal immersions}[J]. *Trans Amer Math Soc*, 2006, **358**(6): 2425- 2446
- [19] Toth G. Asymmetry of convex sets with isolated extreme points[J]. *Proc Amer Math Soc*, 2009, **137**:287-295.
- [20] Schneider R. *Convex Bodies*: *The Brunn-Minkowski Theory* [M]. 2nd ed. Cambridge: Camb Univ Press, 2014.
- [21] Lutwak E. The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas[J]. *Adv Math*, 1996, **118**(2): 244-294.
- [22] Lutwak E, Yang D, Zhang G. *Lp* John ellipsoids[J]. *Proc London Math Soc*, 2005, **90**(2): 497-520.
- [23] Shao Y C, Guo O. The equivalence and estimates of several affine invariant distances between convex bodies [J]. *J of Math* (*PRC*), 2015, **35**(2): 287-293(Ch).

□