

Wuhan University Journal of Natural Sciences

Article ID 1007-1202(2018)06-0465-06 DOI https://doi.org/10.1007/s11859-018-1349-3

On the Dual *p*-Measures of Asymmetry for Star Bodies

□ HUANG Xing^{1,2,3,4}, ZHU Huawei^{1,2,3,4}, GUO Qi^{5†}

1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 51006, Guangdong, China;

 Academy for Intelligent Software, Guangzhou University, Guangzhou 51006, Guangdong, China;

3. Guangdong Provincial Engineering and Technology Research Center for Mathematical Education Software, Guangzhou University, Guangzhou 510006, Guangdong, China;

4. Institute of Mathematics and Computer Science, Guizhou Normal College, Guiyang 550018, Guizhou, China;

5. Department of Mathematics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China

© Wuhan University and Springer-Verlag GmbH Germany 2018

Abstract: Recently, the connection between *p*-measures of asymmetry and the L_p -mixed volumes for convex bodies was found soon after the *p*-measure of asymmetry was proposed, and the Orlicz-measures of asymmetry was proposed inspired by such a kind of connection. In this paper, by a similar way the dual *p*-measures of asymmetry for star bodies (naturally for convex bodies) is introduced first. Then the connection between dual *p*-measures of asymmetry and L_p -dual mixed volumes is established. Finally, the best lower and upper bounds of dual *p*-measures and the corresponding extremal bodies are discussed.

Key words: convex body; dual *p*-measures of asymmetry; L_p -dual mixed volumes

CLC number: O 186.5

Received date: 2018-05-28

0 Introduction

As one of the most important geometric invariants, the measures of asymmetry (or symmetry) for convex bodies (i.e., compact convex sets in the Euclidean n-space with nonempty interior) initiated from the early Minkowski's work^[1] and formulated in the well-known paper^[2] have stayed stably as a quite popular topic in convex geometry. Various kinds of measures of asymmetry or their extensions have been proposed and studied (see Refs.[3-9] and the references therein). Recently some new measures of asymmetry were discovered ^[10-19].

Among these measures of asymmetry proposed recently, the *p*-measures of asymmetry defined by the third named author in Ref.[10], is of some significance in the sense. The method used in Ref.[10] to construct the *p*-measures of asymmetry provides a new way to construct new geometric invariants (see Ref.[9]), e.g., soon after Ref.[10], Jin, Leng and Guo in Ref.[13] revealed a connection between the *p*-measures of asymmetry and the L_p -mixed volumes and further established the socalled Orlicz-measures of asymmetry.

In this article, we introduce the dual *p*-measure of asymmetry for star bodies (and naturally for convex bodies), which is a dual concept of the *p*-measure of asymmetry in some sense, and discuss its properties.

 \mathbf{R}^n denotes the usual *n*-dimensional Euclidean space with the canonical inner product $\langle \cdot, \cdot \rangle$. The family of all convex bodies is denoted by K^n . For a convex set C, int C, riC denote the interior and relative interior of C, respectively. We refer to Ref. [20] for general notations.

Foundation item: Supported by the National Natural Science Foundation of China (11671293, 11701118, U1201252), the National High Technology Research & Development Program of China (2015AA015408), the Special Fund for Science & Technology Platform and Talent Team Project of Guizhou Province (QianKe-HePingTai RenCai [2016]5609)

Biography: HUANG Xing, male, Ph. D., research direction: convex geometry. E-mail:yellowstar86@163.com

[†] To whom correspondence should be addressed. E-mail: guoqi@mail.usts.edu.cn

For $C \in K^n$, its support function $h(\cdot) = h(C, \cdot)$: $S^{n-1} \to [0, +\infty)$ is defined as $h(C, u) = \max_{y \in C} \langle x, u \rangle$, $u \in S^{n-1}$, where S^{n-1} is the (n-1)-dimensional unit sphere. More generally, for $x \in \mathbf{R}^n$, we denote also

$$h_x(C,u) = \max_{y \in C} \langle y - x, u \rangle, \ u \in S^{n-1},$$

called the support function of C based on x. Clearly, $h_0(C,\cdot) = h(C,\cdot)$ and it is easy to see that

$$h_x(C,\cdot) = h(C,\cdot) - \langle x,\cdot \rangle$$

and

$$h_x(C,\cdot) = h(C_x,\cdot)$$

where $C_x := C - x$.

A subset $C \subset \mathbf{R}^n$ is called a star-shaped set if there is $x \in C$ such that $\lambda x + (1 - \lambda)y \in C$ for all $y \in C$ and $0 \le \lambda \le 1$. For $C \subset \mathbf{R}^n$, we denote

$$\operatorname{cor} C := \{ x \in C \mid \lambda x + (1 - \lambda) y \in C \}$$

for all $y \in C$ and $0 \le \lambda \le 1$, called the core of *C*. Clearly *C* is star-shaped if and only if $\operatorname{cor}(C) \ne \emptyset$. We say *C* is a star-shaped about *x* whenever $x \in \operatorname{cor}(C)$. Observe that $\operatorname{cor}(C) = C$ for $C \in K^n$ and more generally, $\operatorname{cor}(C)$ is closed and convex for closed starshaped set *C*.

Given a compact star-shaped set $C \subset \mathbb{R}^n$ and $x \in \operatorname{cor}(C)$, we define its radial function $\rho_x(\cdot) = \rho_x(C, \cdot)$, $S^{n-1} \to [0, +\infty)$, with respect to (w.r.t. for brevity) x by

 $\rho_x(u) = \rho_x(c, u) = \max\{\lambda \ge 0 \mid \lambda u + x \in C\}, u \in S^{n-1}$

when x = 0, we often write ρ simply instead of ρ_0 . It is easy to see that $\rho(C_x, u) = \rho_x(C, u)$ and $\rho(C_x, u) = \rho(C_x, -u) = \rho_x(C, -u)$, $u \in S^{n-1}$, for every compact star-shaped set *C* and $x \in cor(C)$.

A compact star-shaped set K is called a star body about x if $x \in \operatorname{cor} K$ and $\rho_x(K, \cdot)$ is positive and continuous. Observe that if K is a star body about x, then $x \in \operatorname{int} K$. Denote φ^n the set of star bodies and φ_0^n the set of star bodies about 0.

Clearly, a convex set (respectively convex body) is a star-shaped set (respectively star body). In this article, we write customarily C, D for convex bodies or star bodies and K, L for star bodies about 0.

The Hausdorff metric $d_H(C,D)$ between $C, D \in K^n$ is defined as

$$d_H(C,D) \coloneqq \max_{u \in S^{n-1}} |h(C,u) - h(D,u)|$$

By $C_k \to C$ we mean $d_H(C_k,C) \to 0$ as $k \to +\infty$

1 *p*-Measures of Asymmetry and *Lp*-Mixed Volumes

In this section, we introduce some properties of the *p*-measures of asymmetry^[10] and L_p -mixed volumes ^[21] for convex bodies.

Given $C \in K^n$, for a fixed $x \in int(C)$, we define $m_x(C, \cdot)$, a probability measure on S^{n-1} , by

$$m_x(C,\omega) := \frac{\int_{\omega} h_x(C,u) \mathrm{d}S_{n-1}(C,u)}{nV_n(C)}$$

for any measurable $\omega \subset S^{n-1}$, where $S_{n-1}(C, \cdot)$ denotes the surface area measure of C on S^{n-1} and $V_n(C)$ denotes the *n*-dimensional volume of C. Then we write

$$\mu_p(C,x) := \begin{cases} \left(\int_{S^{n-1}} \alpha_x(C,u)^p \, \mathrm{d}m_x(C,u)\right)^{\frac{1}{p}}, & \text{if } 1 \leq p < +\infty \\ \sup_{u \in S^{n-1}} \alpha_x(C,u), & \text{if } p = +\infty \end{cases}$$

where $\alpha_x(C,u) = \frac{h(C_x, -u)}{h(C_x, u)}$.

Then, the *p*-measure of asymmetry $as_p(C)$ is defined by

$$\operatorname{as}_p(C) := \inf_{x \in \operatorname{int}(C)} \mu_p(C, x)$$

A point $x \in int(C)$ satisfying $\mu_p(C,x) = as_p(C)$ is called a *p*-critical point of *C*.

Remark 1 1) It is easy to see that as_{∞} is just the well-known Minkowski measure of asymmetry.

2) The following statements are confirmed in Ref.[10].

i) for $C \in K^n$ and $1 \le p \le +\infty$, $1 \le as_p(C) \le n$, and $as_p(C) = 1$ if and only if *C* is (centrally) symmetric; $as_p(C) = n$ if and only if *C* is a simplex.

ii) for any $C \in K^n$ and $1 \le p \le +\infty$, its *p*-critical point is unique; the set of ∞ -critical points is a non-empty closed convex set ^[2] while the set of 1-critical points is exactly int(*C*).

In Ref.[13], the authors observed a nice connection between the *p*-measures of asymmetry and the L_p mixed volumes (see Ref.[21] for definitions): for $1 \le p \le +\infty$,

$$\mu_p^p(C,x) = \frac{V_p(C_x, -C_x)}{V_p(C)}$$

and in turn

as_p(C) = inf_{x \in intC}
$$\left(\frac{V_p(C_x, -C_x)}{V_n(C)}\right)^{\frac{1}{p}}$$

 $V_p(\cdot,\cdot)$ denotes the L_p -mixed volume, and they thereby introduced the so-called Orlicz-measures of asymmetry for convex bodies which have similar properties to those of *p*-measures.

2 Dual *p*-measures of Asymmetry and *L_p*-dual Mixed Volumes

In this section, we define the dual *p*-measures of asymmetry for star bodies (automatically for convex bodies), starting with some necessary definitions and notations.

Definition $\mathbf{1}^{[21]}$ For $p \ge 1$ and $K, L \in \varphi_0^n$, the L_p - dual mixed volume $\tilde{V}_{-p}(K, L)$ is defined by

$$\tilde{V}_{-p}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^{n+p} \rho(L,u)^{-p} \, \mathrm{d}S(u)$$

where $S(\cdot)$ denotes the spherical Lebesgue measure on S^{n-1} , the unit sphere of \mathbf{R}^n .

Especially,
$$\tilde{V}_{-p}(K,K) = \int_{S^{n-1}} \rho(K,u)^n dS(u) = V_n(K)$$

for $K \in \varphi_0^n$.

If $p \ge 1$ and $K, L \in \varphi_0^n$, it is easy to check that, for any $T_0 \in GL(n)$, the general linear group,

$$\tilde{V}_{-n}(T_0K, T_0L) = |\det T_0| \tilde{V}_{-n}(K, L)$$

where "det" denotes the determinant. It is shown in Ref. [20] that the L_p -Minkowski dual mixed volumes inequality holds: for $K, L \in \varphi_0^n$ and $p \ge 1$,

$$\tilde{V}_{-p}(K,L)^{n} \ge V_{n}(K)^{n+p}V_{n}(L)^{-p}$$
(1)

and

 $\tilde{V}_{-p}(K,L)^n = V_n(K)^{n+p}V_n(L)^{-p}$ if and only if $K = \lambda L$ for some $\lambda > 0$.

Now, we introduce the dual *p*-measures of asymmetry for star bodies (automatically for convex bodies). First, given $C \in \varphi^n$, $x \in ri(corC)$, we define a probability measure $\tilde{m}_x(C,\cdot)$ on S^{n-1} by

$$d\tilde{m}_x(C,\omega) = \frac{\rho_x(C,u)^n dS(u)}{nV_x(C)}$$

for any measurable $\omega \subset S^{n-1}$.

Then we write

$$\mu_p^{\circ}(C, x) = \begin{cases} \left(\int_{S^{n-1}} \tilde{\alpha}_x(C, u)^p \, \mathrm{d}m_x(C, u)\right)^{\frac{1}{p}}, \text{ if } 1 \leq p < +\infty \\ \sup_{u \in S^{n-1}} \alpha_x(C, u), & \text{ if } p = +\infty \end{cases}$$

where $\tilde{\alpha}_x = \frac{\rho_x(C,u)}{\rho_x(C,-u)}$.

Definition 2 For $C \in \varphi^n$, $1 \le p \le +\infty$, we define dual *p*-measure of asymmetry $as_n^{\circ}(C)$ of *C* by

$$\operatorname{as}_{p}^{\circ}(C) \coloneqq \inf_{x \in \operatorname{ri}(\operatorname{cor}(C))} \mu_{p}^{\circ}(C, x)$$

A point $x^* \in ri(corC)$ satisfying $\mu_p^{\circ}(C, x^*) = as_p^{\circ}(C)$ is called a p° -critical point of *C*.

Remark 2 Clearly, $as_{\infty}^{\circ}(C) = as_{\infty}(C)$ for $C \in K^{n}$ (cf. Ref. [4] and the references therein). By the continuity of $\mu_{p}^{\circ}(C,x)$ w.r.t. x and $\lim_{x \to bd(C)} \mu_{p}^{\circ}(C,x) = +\infty$, we see that p° -critical points exist, i.e. $as_{p}^{\circ}(C)$ is attainable.

As an analogue of the volume-normalized version of L_p -mixed volumes introduced by Lutwak, Yang and Zhang in Ref.[22], we introduce the following volume-normalized version $\overline{V}_{-p}(\cdot,\cdot)$ of L_p -dual mixed volumes.

Given $K, L \in \varphi_0^n$, we denote, for each $p \ge 1$,

$$\overline{V}_{-p}(K,L) = \begin{cases} \left(\frac{\widetilde{V}_{-p}(K,L)}{V_{n}(K)}\right)^{\frac{1}{p}}, & \text{if } 1 \leq p < +\infty \\ \max\left\{\frac{\rho(K,u)}{\rho(L,u)} \mid u \in S^{n-1}\right\}, & \text{if } p = +\infty \end{cases}$$
(2)

Here, we mention without proofs some properties of $\overline{V}_{-p}(\cdot,\cdot)$, all of which can be checked by the definition and/or Jensen's inequality:

$$\overline{V}_{-p}(T_0K, T_0L) = \overline{V}_{-p}(K, L)$$
(3)

for all $T_0 \in GL(n)$, $p \in [1, +\infty]$;

$$\overline{V}_{-p}(K,L) \leq \overline{V}_{-q}(K,L) , 1 \leq p \leq q \leq +\infty , \text{ unless } \frac{\rho_K}{\rho_L}$$

is a constant on S^{n-1} ; And

$$\lim_{p \to p_0} \overline{V}_{-p}(K,L) = \overline{V}_{-p_0}(K,L), \, p_0 \in [1,+\infty]$$

We are now in the position to show the connection between dual *p*-measures and L_p -dual mixed volumes.

Theorem 1 For $C \in \varphi^n$, $x \in ri(corC)$ and $1 \le p \le +\infty$, we have

$$\mu_p^{\circ}(C, x) = \overline{V}_{-p}(C_x, -C_x)$$

and in turn $\operatorname{as}_{p}^{\circ}(C) = \inf_{x \in \operatorname{ri}(\operatorname{cor} C)} \overline{V}_{-p}(C_{x}, -C_{x}).$

Proof For $1 \le p \le +\infty$, by the definitions of $\mu_p^{\circ}(C,x)$ and $\tilde{V}_{-p}(C,D)$, we have

$$\mu_{p}^{\circ}(C,x)^{p} = \int_{S^{n-1}} \tilde{\alpha}_{x}(C,u)^{p} d\tilde{m}_{x}(C,u)$$

$$= \int_{S^{n-1}} \frac{\rho_{x}(C,u)^{p}}{\rho_{x}(C,-u)^{p}} \frac{\rho_{x}(C,u)^{n} dS(u)}{nV_{n}(C)}$$

$$= \frac{1}{nV_{n}(C)} \int_{S^{n-1}} \rho_{x}(C,u)^{n+p} \rho_{x}(C,-u)^{-p} dS(u)$$

$$= \frac{1}{nV_{n}(C)} \int_{S^{n-1}} \rho(C_{x},u)^{n+p} \rho(-C_{x},u)^{-p} dS(u)$$

$$= \frac{\tilde{V}_{-p}(C_{x},-C_{x})}{V_{n}(C)} = (\bar{V}_{-p}(C_{x},-C_{x}))^{p}$$

Observing $V_n(C) = V_n(C_x)$ and in turn

$$\operatorname{us}_{p}^{\circ}(C) = \inf_{x \in \operatorname{ri}(\operatorname{cor} C)} \overline{V}_{-p}(C_{x}, -C_{x})$$

 $\operatorname{as}_{p}^{\circ}(C) = \inf_{x \in \operatorname{ri}(\operatorname{cor} C)} \overline{V}_{-\infty}(C_{x}, -C_{x})$ follows directly

from the definitions of $as_{\infty}^{\circ}(\cdot)$ and $\overline{V}_{-p}(\cdot, \cdot)$.

The following theorem ensures that the dual *p*-measures of asymmetry are indeed measures of asymmetry.

Theorem 2 For any $1 \le p, q \le +\infty$ and $C \in \varphi^n$, the following statements are true:

i) $as_p^{\circ}(\cdot)$ is continuous w.r.t. the Hausdorff metric and affine invariant.

ii) $\operatorname{as}_p^{\circ}(C) \leq \operatorname{as}_q^{\circ}(C)$ for any $C \in \varphi^n$ and $1 \leq p \leq q$ $\leq +\infty$.

iii) $1 \le as_p^{\circ}(C) \le n$ and $as_p^{\circ}(C) = 1$ if and only if *C* is (centrally) symmetric.

Proof i) The continuity of as_p° follows from the continuity of L_p -dual mixed volumes (noticing Theorem 1). We show only the affine invariance of as_p° . Let *T* be an invertible affine transform on \mathbf{R}^n , then $T = T_1 \circ T_0$, where $T_0 \in GL(n)$ and T_1 is a translation.

For $T_0 \in GL(n)$, since

$$(T_0C)_{T_0y} = T_0C - T_0y = T_0(C - y) = T_0C_y,$$

$$cor(T_0C) = T_0(corC)$$

and so $ri(cor(T_0C)) = T_0(ri(corC))$, we have by Theorem 1 (writing $x = T_0(y)$)

$$as_{p}^{\circ}(T_{0}C) = \inf_{x \in ri(cor(T_{0}C))} \overline{V}_{-p}((T_{0}C)_{x}, -(T_{0}C)_{x})$$

$$= \inf_{y \in ri(corC)} \overline{V}_{-p}((T_{0}C)_{T_{0}y}, -(T_{1}C)_{T_{0}y})$$

$$= \inf_{y \in ri(corC)} \overline{V}_{-p}(T_{0}(C_{y}), -T_{0}(-C_{y}))$$

$$= \inf_{y \in ri(corC)} \overline{V}_{-p}(C_{y}, -C_{y})$$

$$= as_{p}^{\circ}(C)$$

For the translation T_1 , since $(T_1C)_{T_1y} = C_y$, we have by Theorem 1 (writing $x = T_1(y)$)

$$as_{p}^{\circ}(T_{1}C) = \inf_{x \in ri(cor(T_{1}C))} \overline{V}_{-p}((T_{1}C)_{x}, -(T_{1}C)_{x})$$

$$= \inf_{y \in ri(corC)} \overline{V}_{-p}((T_{1}C)_{T_{1}y}, -(T_{1}C)_{T_{1}y})$$

$$= \inf_{y \in ri(corC)} \overline{V}_{-p}(C_{y}, -C_{y})$$

$$= as_{x}^{\circ}(C)$$

Hence, $\operatorname{as}_{p}^{\circ}(TC) = \operatorname{as}_{p}^{\circ}(C)$.

ii) It follows from Theorem 1 and (3).

iii) First, by ii) and 2) in Remark 1, we have

$$\operatorname{as}_{p}^{\circ}(C) \leq \operatorname{as}_{\infty}^{\circ}(C) = \operatorname{as}_{\infty}(C) \leq n$$

Then, we show the other conclusions hold for as_1° . Since

as₁°(C) = $\inf_{x \in ri(corC)} \frac{\tilde{V}_{-1}(C_x, -C_x)}{V_n(C)}$ and the volume is transla-

tion-invariant, by (1) we have

$$\tilde{V}_{-1}(C_x, -C_x) \ge V_n(C_x)^{\frac{n+1}{n}} V_n(-C_x)^{-\frac{1}{n}}$$
$$= V_n(C), x \in \operatorname{ri}(\operatorname{cor} C)$$

which implies $as_1^{\circ}(C) \ge 1$.

Now

 $as_1^{\circ}(C) = 1 \Leftrightarrow \mu_1^{\circ}(C, x^*) = 1$ for some $x^* \in ri(corC)$ (by Remark 2)

 $\Leftrightarrow \overline{V}_{-1}(C_{x^*}, -C_{x^*}) = 1 \text{ for some } x^* \in \operatorname{ri}(\operatorname{cor} C) \text{ (by Theorem 1)}$

$$\Leftrightarrow \tilde{V}_{-1}(C_{x^*}, -C_{x^*}) = V_n(C) = V_n(C_{x^*})^{\frac{n+1}{n}} V_n(-C_{x^*})^{-\frac{1}{n}}$$

(by the definition of $\overline{V}_{-1}(\cdot, \cdot)$)

 $\Leftrightarrow C_{x^*}, -C_{x^*}$ are dilates (by (1))

and the last statement is equivalent to that C is symmetric w.r.t. x^* .

Next, we show the other conclusions hold for as_{∞}° : by ii) and what just confirmed for as_{1}° we have $as_{\infty}^{\circ} \ge as_{1}^{\circ} \ge 1$. If $as_{\infty}^{\circ}(C) = 1$, we have

$$1 \leq as_1^\circ(C) \leq as_\infty^\circ(C) = 1$$

by ii) which leads to $as_1^{\circ}(C) = 1$ and in turn that *C* is centrally symmetric by what just proved for as_1° . Conversely, if *C* is symmetric with the center x^* , then $\frac{\rho(C_{x^*}, u)}{\rho(C_{x^*}, -u)} = 1$ for all $u \in S^{n-1}$ which implies clearly

$$\operatorname{as}_{\infty}^{\circ}(C) = \mu_{\infty}^{\circ}(C, x^{*}) = 1$$

Finally, for $1 \le p \le +\infty$, the conclusion can be deduced simply by $as_1^{\circ} \le as_p^{\circ} \le as_{\infty}^{\circ}$ and what we proved for as_1° and as_{∞}° .

Remark 3 If $C \in K^n$, then cor(C) = C, so Theorem 1 and 2 hold for $C \in K^n$.

3 The Best Upper Bound of Dual *p*-Measure of Asymmetry and the Extremal Body

A set $C \in \varphi^n$ (respectively K^n) is called an extremal body w.r.t. as_n° if

as[°]_p(C₀)=min(or max){as[°]_p(C) | $C \in \varphi^n$ (respectively K^n)}

In Section 2, we see the best lower bound 1 for as_p° and the corresponding extremal bodies: symmetric star bodies. However, no information was given for the best upper bound and the corresponding extremal bodies, in contrast to the case of p measures of asymmetry for convex bodies. This seems not an easy task, so in this section we consider only the best upper bound and the corresponding extremal bodies in K^n . Even so our answers are still not satisfactory.

First, we show that the best upper bound of as_p° exists and is attainable.

Proposition 1 There exists $C_0 \in K^n$, such that $\operatorname{as}_n^{\circ}(C_0) = \sup \{\operatorname{as}_n^{\circ}(C) \mid C \in K^n\} = M_n$.

Proof First, by

$$\operatorname{as}_{n}^{\circ}(C) \leq \operatorname{as}_{\infty}^{\circ}(C) = \operatorname{as}_{\infty}(C) \leq n$$

(by 2) in Remark 1), we have $M_p \leq n$. Thus, by the definition of supremum there is a sequence $\{C_k\}_{k=1}^{\infty} \subset K^n$ such that $\operatorname{as}_p^{\circ}(C_k) \to M_p$ as $k \to +\infty$. Since for each $C \in K^n$ the Banach-Mazur distance

$$d_{\rm BM}(C, B_2^n) := \inf\{\lambda \ge 1 \mid B_2^n \subset TC \subset \lambda(B_2^n - x) + x\} \le n$$

where B_2^n is the Euclidean unit ball and the infimum is taken over all applicable invertible affine map T and $x \in \mathbf{R}^n$ (see, e.g. Ref.[23] or Ref.[3] and the references therein), and $\operatorname{as}_p^{\circ}$ is affinely invariant, without loss of generality we may assume $B_2^n \subset C_k \subset nB_2^n$ for all k. Thus, by the well-known Blaschke's selection theorem, there are $\{C_{k_j}\} \subset \{C_k\}$ and $C_0 \in K^n$ such that $C_{k_j} \to C_0 \in K^n$ as $j \to \infty$. Thus

$$\operatorname{as}_{p}^{\circ}(C_{0}) = \lim_{j \to +\infty} \operatorname{as}_{p}^{\circ}(C_{k_{j}}) = M_{p}$$

by the continuity of as_n° .

Since $as_{\infty}^{\circ} = as_{\infty}$, by 2) in Remark 1 we know that $M_{\infty} = n$ and the extremal bodies for the best upper

bound of as_{∞}° are simplices. However, we know neither the exact values of M_p nor their extremal bodies for $1 \le p \le +\infty$. What we know is just the following partial answer.

Theorem 3 $M_p < n$ for $1 \le p < +\infty$.

Proof Suppose $M_p = n$, then there is $C_0 \in K^n$ such that $\operatorname{as}_p^{\circ}(C_0) = n$. Thus we have $\operatorname{as}_{\infty}(C_0) = n$ since $\operatorname{as}_p^{\circ}(C_0) \leq \operatorname{as}_{\infty}^{\circ}(C_0) = \operatorname{as}_{\infty}(C_0) \leq n$. So C_0 is a simplex by 2) in Remark 1.

Let v_1, v_2, \dots, v_{n+1} be the vertices of C_0 and x^* be the centroid (i.e. the ∞ -critical point) of C_0 . Then since the continuous function (w.r.t.*u*)

$$\tilde{\alpha}_{x^{*}} = \frac{\rho_{x^{*}}(C_{0}, u)}{\rho_{x^{*}}(C_{0}, -u)} \leq n$$

and the equality holds only at points $u_i := \frac{v_i - x^*}{|v_i - x^*|}, 1 \le$

 $i \leq n+1$, and the measure

$$d\tilde{m}_{x^{*}}(C_{0},\omega) = \frac{\rho_{x^{*}}(C_{0},u)^{n} dS(u)}{nV_{n}(C_{0})}$$

is not concentrated at u_1, u_2, \dots, u_{n+1} , we have

$$\mu_{p}^{\circ}(C_{0}, x^{*}) = \left(\int_{S^{n-1}} \tilde{\alpha}_{x^{*}}(C_{0}, u)^{p} \, \mathrm{d}\tilde{m}_{x^{*}}(C_{0}, u)\right)^{\frac{1}{p}}$$
$$\leq \left(\int_{S^{n-1}} n^{p} \, \mathrm{d}\tilde{m}_{x^{*}}(C_{0}, u)\right)^{\frac{1}{p}} = n$$

1

which leads to $\operatorname{as}_p^{\circ}(C_0) \leq \mu_p^{\circ}(C_0, x^*) < n$, a contradiction.

Final Remark In this article, we introduce the so-called dual *p*-measures of asymmetry for star bodies (automatically for convex bodies) and study their basic properties. Some properties of the dual *p*-measure for convex bodies are exactly the same as those of the *p*-measures. However, unfortunately, the most important conclusion for the extremal bodies corresponding to best upper bounds is missing and even the values of best upper bounds are not known. So, a valuable (probably hard as well) problem left is to find the exact values of M_p and those mysterious extremal bodies which might have some interesting properties.

References

- Minkowski H. Allegemeine Lehrsätze über die convexen polyeder[J]. Nachr Ges Wiss Göttingen, 1897,(2): 198-219.
- [2] Grünbaum B. Measures of symmetry for convex sets [C]// Proc Symp Pure Math, Vol. , Providence: Amer Math Soc,

1963: 233- 270.

- [3] Guo Q. Stability of the Minkowski measure of asymmetry for convex bodies[J]. *Discrete Comput Geom*, 2005, 34: 351-362.
- [4] Guo Q, Kaijser S. On asymmetry of some convex bodies[J]. Discrete Comput Geom, 2002, 27: 239-247.
- [5] Jin H, Guo Q. On the asymmetry for convex domains of constant width[J]. *Commun Math Res*, 2010, 26(2):176-182.
- [6] Jin H L, Guo Q. Asymmetry of convex bodies of constant width[J]. Discrete Comput Geom, 2012, 47: 415-423.
- [7] Jin H L, Guo Q. A note on the extremal bodies of constant width for the Minkowski measure [J]. *Geom Dedicata*, 2013, 164: 227-229.
- [8] Guo Q, Guo J F, Su X L. The measures of asymmetry for coproducts of convex bodies [J]. *Pacific J Math*, 2015, 276: 401-418.
- [9] Toth G. Measures of Symmetry for Convex Sets and Stability[M]. Berlin: Springer-Verlag, 2015.
- [10] Guo Q. On *p*-measures of asymmetry for convex bodies[J]. *Adv Geom*, 2012, **12**(2): 287-301.
- [11] Guo Q, Toth G. Dual mean Minkowski measures of symmetry for convex bodies [J]. *Science China: Mathematics*, 2016, 59(7): 1383-1394.
- [12] Guo Q, Toth G. Dual mean Minkowski measures and the Grünbaum conjecture for affine diameters[J]. *Pacific J Math*, 2017, **292**: 117-137.
- [13] Jin H L, Leng G S, Guo Q. Mixed volumes and measures of asymmetry [J]. Acta Math Sinica (Eng Series), 2014, 30(11): 1905-1916.

- [14] Jin H L. The log-Minkowski measures of asymmetry for convex bodies [J/OL]. *Geom Dedicata*, http://doi.org.10./ 1007/s10711-017-0302-5, 2017.
- [15] Meyer M, Schütt C, Werner E M. New affine measures of symmetry for convex bodies [J]. *Adv Math*, 2011, **228**: 2920-2942.
- [16] Guédon O, Litvak A E. On the symmetric average of a convex body [J]. Adv Geom, 2011, 11: 615-622.
- [17] Toth G. A measure of symmetry for the moduli of spherical minimal immersions [J]. *Geom Dedicata*, 2012, 160:1-14.
- [18] Toth G. On the shape of the moduli of spherical minimal immersions}[J]. *Trans Amer Math Soc*, 2006, **358**(6): 2425-2446.
- [19] Toth G. Asymmetry of convex sets with isolated extreme points[J]. Proc Amer Math Soc, 2009, 137:287-295.
- [20] Schneider R. Convex Bodies: The Brunn-Minkowski Theory [M]. 2nd ed. Cambridge: Camb Univ Press, 2014.
- [21] Lutwak E. The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas[J]. Adv Math, 1996, 118(2): 244-294.
- [22] Lutwak E, Yang D, Zhang G. L_p John ellipsoids[J]. Proc London Math Soc, 2005, 90(2): 497-520.
- [23] Shao Y C, Guo Q. The equivalence and estimates of several affine invariant distances between convex bodies [J]. J of Math (PRC), 2015, 35(2): 287-293(Ch).