

Wuhan University Journal of Natural Sciences

Article ID 1007-1202(2018)06-0461-04 DOI https://doi.org/10.1007/s11859-018-1348-4

Critical Chords of Convex Bodies of Constant Width

□ **ZHOU Xinyue, JIN Hailin**†

Department of Mathematics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China

© Wuhan University and Springer-Verlag GmbH Germany 2018

Abstract: In this paper, we show that when Minkowski measure of asymmetry of convex body *K* of constant width is bigger than α ($n-1$), K has at least $n+1$ critical chords, where

$$
\alpha(n) = \frac{n + \sqrt{2n(n+1)}}{n+2}.
$$

Key words: measure of asymmetry; critical chord; affine diameter; Grünbaum conjecture; constant width **CLC number:** O 186

Received date: 2017-10-20

Foundation item: Supported by the Innovative Project of College Students of Jiangsu Province (201710332019Z), the Natural Science Foundation of Jiangsu Province(BK20171218), and the National Natural Science Foundation of China (11671293)

Biography: ZHOU Xinyue, female, Master candidate, research direction: convex geometry. E-mail: 1426332914@qq.com

† To whom correspondence should be addressed. E-mail: jinhailin17*@*163.com

0 Introduction

Let *C* be a convex body (compact convex subset of \mathbb{R}^n). Affine diameter of *C* is a chord of *C* such that through the endpoints of this chord there exist two parallel support hyperplanes of *C*. For convex body of constant width *K*, each affine diameter is precisely a diameter.

In Ref.[1], Grünbaum conjectured that for each convex body *C*, there exists at least one point such that it is the intersection of at least $n+1$ affine diameters. It is called Grünbaum's conjecture for affine diameter (see Refs. [2, 3]).

In Ref. [4], Klee proved that if the Minkowski measure of asymmetry of *C*, $as_{\infty}(C) > n-1$, then *C* has unique critical point x_0 , and $x_0 \in \text{int conv } C^{\ell}$ (see below for definitions), which implies that *C* has at least $n+1$ critical chords. Since each critical chord is an affine diameter. Therefore, when $as_{\infty}(C) > n-1$, Grünbaum's conjecture for affine diameters is correct.

In Ref.[5], Jin and Guo showed that each convex body of constant width has unique critical point. In this paper, we prove that if K is a convex body of constant width, and $as_{\infty}(K) > \alpha(n-1)$, then the unique critical point *o* of *K* satisfies that $o \in \text{int} \text{conv } K^{\ell}$, which implies that *K* has at least $n+1$ critical chords, where $(n) = \frac{n + \sqrt{2n(n+1)}}{n+2}$ $\alpha(n) = \frac{1}{n}$ $=\frac{n+\sqrt{2n(n+1)}}{n+2}$. So, when $\text{as}_{\infty}(K) > \alpha(n-1)$,

Grünbaum's conjecture for affine diameters is correct.

1 Prelimilary

 \mathbb{R}^n denotes the usual *n*-dimensional Euclidean space with the canonical inner product $\langle \cdot, \cdot \rangle$. A bounded

closed convex subset C of \mathbb{R}^n is called a convex body (convex domain for $n = 2$) if it has non-empty interior (int for brief). The family of all convex bodies in \mathbb{R}^n is denoted by κ^n .

A convex body K is said to be of constant width ω if its projection on any straight line is a segment of universal length $\omega > 0$, which is equivalent to the geometrical fact that any two parallel support hyperplanes of *K* are always separated by a distance ω . Notice that the width ω of a constant width body is clearly its diameter. The convex bodies of constant width in \mathbb{R}^2 and \mathbb{R}^3 are also called *orbiforms* and *spheroforms*, respectively. Euclidean balls are obviously convex bodies of constant width, however, there are many others (see Refs. [6, 7]). We denote by $Wⁿ$ the set of all *n*-dimensional convex bodies of constant width. We refer readers to Ref. [8] for other notation and terms.

Given a convex body $C \in \kappa^n$ and $x \in \text{int}(C)$. For a chord *l* of *C* through *x*, let $\gamma(l, x)$ be the ratio, not less than 1, in which *x* divides the length of *l*, and denote $\gamma(C, x) = \max{\{\gamma(l, x) | x \in l\}}$, then the Minkowski measure of asymmetry of *C* is defined by

$$
\mathrm{as}_{\infty}(C) = \min_{x \in \mathrm{int}(C)} \gamma(C, x)
$$

A point $x \in \text{int}(C)$ satisfying $\gamma(C, x) = \text{as}(C)$ is called a *critical point* of *C*. The set of all critical points of *C* is denoted by *C*. It is known that *C* is a non-empty convex set ^[1]. A chord *l* satisfying $\gamma(C, x) = \text{as} (C)$ is called a critical chord of *C*. Recent results on Minkowski measure of asymmetry see Refs.[5, 9-11].

Denote for any $x \in \text{int}(C)$,

$$
S_C(x) = \left\{ p \in \text{bd}(C) \mid x \in pq(\text{chord}) \text{ and } \frac{xp}{xq} = \gamma(C, x) \right\}
$$

where bd denotes the boundary, and *pq* denotes the segment with endpoints *p*, *q* or its length alternatively if no confusing is caused. It is proved that $S_c(x) \neq \emptyset$ (see Ref.[4]).

The following is a list of some properties of the Minkowski measure of asymmetry (see Ref.[4] for proofs).

Property 1 If $C \in \mathcal{K}^n$, then 1 as (C) *n*. Equality holds on the left-hand side if and only if *C* is central, and on the right-hand side if and only if *C* is a simplex*.*

Property 2 For $C \in \kappa^n$, $\text{as}_{\infty}(C) + \dim C^*$ n.

Property 3 Given $x \in \text{ri}(C^*)$, the relative interior of *C*, then for any $y \in S_c(x)$,

$$
y + \frac{\mathrm{as}_{\infty}(C) + 1}{\mathrm{as}_{\infty}(C)}(C^* - y) \subset \mathrm{bd}(C)
$$

and

$$
y \in S_C(x')
$$
 for $\forall x' \in C^*$.

This property shows that the set $S_c(x)$ does not vary as *x* ranges over $\text{ri}(C^*)$. We denote this set by C^{ℓ} .

Property 4 C^{ℓ} contains at least $as_{\infty}(C) + 1$ points. It is well-known that each convex body *K* of constant width $\omega(K)$, the circum-sphere $S_0 K$ and the insphere $S_i(K)$ of K are concentric and their radii, denoted by $R(K)$ and $r(K)$, respectively, satisfy $R(K) + r(K) =$ $\omega(K)$ (see Ref.[6]). In Ref.[5], Jin and Guo got the following results.

Property 5 For
$$
K \in W^n
$$
, as _{∞} $(C) = \frac{R(K)}{r(K)}$, and K

has unique critical point which is the center of circumsphere of *K.*

2 Contact Points of Convex Body of Constant Width and Its Circumsphere

For convex body *K* of constant width $\omega(K)$, let *o* be the unique critical point and K^* be the set of contact points of *K* and its circumsphere. Now we give the following proposition.

Proposition 1 If $K \in W^n$, then $S_K(o) = K^*$. Recall that

$$
S_K(o) = \left\{ p \in bd(K) \mid q \in bd(K), o \in pq, \frac{op}{oq} = \gamma(K, o) = \text{as}_{\infty}(K) \right\}
$$

In order to prove Proposition 1, we need the following lemma.

Lemma $1^{[4]}$ If $C \in \kappa^n$, $x \in \text{int}(C)$ and *pq* is a chord through x with $p \in S_c(x)$, (i.e., $\frac{px}{xq} = \gamma(C,x)$),

then there exist two parallel hyperplane H_1, H_2 supporting C at p, q , respectively.

Remark 1 In Lemma 1, *pq* is an affine diameter of *C.* Particularly, each critical chord is an affine diameter*.*

Proof of Proposition 1

1) If $p \in S_K(o)$, then there exists $q \in bd(K)$ such

that $\frac{\partial p}{\partial q} = \gamma(K, o) = \text{as}_{\infty}(K)$. By Lemma 1, there exist two parallel hyperplanes H_1, H_2 supporting *K* at p, q , respectively. Since $K \in W^n$, have $pq \in \omega(K)$. By Property 5, we have $op = R(K)$, $og = r(K)$, which implies that $p \in K^*$.

2) If $p \in K^*$, then there exists $q \in bd(K)$ such that $o \in pq$. Since $pq = op + oq = R(K) + oq$ $\omega(K)$, we have *oq* $r(K)$, which implies that $\frac{\partial p}{\partial K} = \frac{R(K)}{(K)}$ (K) *op R K* $\frac{\partial p}{\partial q}$ $\frac{n(K)}{r(K)}$ $\gamma(K, o)$. By the definition of $\gamma(K, o)$, we have $\frac{op}{\rho q}$ $\frac{R(K)}{r(K)} = \gamma(K,o)$. So, $\frac{op}{og} = \frac{R(K)}{r(K)}$ $\frac{op}{og} = \frac{R(K)}{r(K)}$, which implies that $p \in S_K(o)$.

3 Main Theorem

For general convex body $C \in \kappa^n$, we have 1 as (C) *n*

Equality holds on the left-hand side if and only if *C* is central, and on the right-hand side if and only if *C* is a simplex. In Ref.[4], Klee proved the following theorem.

Theorem 1 For $C \in \kappa^n$, if $\text{as}_{\infty}(C) > n-1$, then *C* has unique critical point *o*, and $o \in \text{int} \text{ conv } C^{\ell}$.

Remark 2 Theorem 1 implies that *C* has at least $n+1$ critical chords. Since each critical chord is an affine diameter. Therefore, when $\text{as}_{\infty}(C) > n-1$, Grünbaum conjecture for affine diameters is correct.

In Ref.[12], we gain the following results:

Lemma 2 If $K \in W^n$, then 1 as (K) $\alpha(n)$ $n + \sqrt{2n(n)}$

where $\alpha(n) = \frac{n + \sqrt{2n(n+1)}}{n+2}$ *n* $\alpha(n) = \frac{m}{n}$ $=\frac{n+\sqrt{2n(n+1)}}{n+2}$. The equality holds on the

left-hand side if and only if *K* is an Euclidean ball and on the right-hand if and only if *K* is a completion of a regular simplex.

Now we give the main theorem.

Theorem 2 For $K \in W^n$, if $as_{\infty}(K) > \alpha(n-1)$, then the unique critical point *o* of *K* satisfies that $o \in \text{int} \text{ conv } K^{\ell}$, which implies that *K* has at least $n+1$

critical chords, where
$$
\alpha(n) = \frac{n + \sqrt{2n(n+1)}}{n+2}
$$
.

Remark 3 Theorem 2 shows that for $K \in W^n$, if $\operatorname{as}_{\infty}(K) > \alpha(n-1)$, then Grünbaum's conjecture for affine diameters is correct.

Proof of Theorem 2

Since *o* is the center of the circumsphere of *K* (see Property 5), we have $o \in \text{conv } K^*$. By Proposition 1, we have $o \in \text{conv } K^{\ell}$.

Now we prove that $d := \dim(\text{conv } K^{\ell}) = n$. In fact, if *d* $n-1$, let $H_0 = \text{aff} \left(\text{conv } K^{\ell} \right)$, the affine hull of conv K^{ℓ} , then $K^{\ell} = H_o \cap S_o(K) \cap \text{bd}(K)$. Le $P_{H_o}K$ be the projection of *K* onto H_o . Then $P_H K$ is *d*-dimensional convex body of constant width $\omega(K)$. So, the *d* dimensional ball $B_o := H_o \cap B_o(K) \supset P_{H_o} K$ and $B_i = H_o \cap B_i(K) \subset P_{H_o}K$, where $B_o(K) = \text{conv}$ $(S_a(K))$ and $B_i(K) = \text{conv}(S_i(K))$. Let $S_a = \text{relbd}$ (B_0) , the relative boundary of B_0 , and $S_i = \text{relbd}(B_i)$. Therefore, $S_o \bigcap P_{H_o} K = K^{\ell} = K^{\#}$. Since $o \in \text{conv } K^{\#}$, we have S_0 is the circumsphere of $P_H K$ in the *d*-dimensional affine subspace H_o . In H_o , we have

$$
as_{\infty}(P_{H_o}K) = \frac{R(K)}{r(K)} = as_{\infty}(K) \qquad \alpha(d) \qquad \alpha(n-1)
$$

it is a contradiction.

Then we prove that $o \in \text{int} \text{ conv } K^{\ell}$. If not, then $o \in \text{bd}$ conv K^{ℓ} . So, there exists $L \subset K^{\ell}$ such that $o \in \text{conv } L$ and dim $(\text{conv } L)$ $n-1$. Let $H_o := \text{aff}$ $\text{(conv } L)$. By the same argument as above, we can get a contradiction.

By Property 4, it is easy to get that for $C \in \kappa^n$, any point $x \in C^*$ belongs to at least 3 affine diameters of *C*. In Ref.[13], Soltan gave an example to show that there exists a convex body *T*, which has only three affine diameters (critical chords) through the unique critical point of *T*. However, for convex bodies of constant width, we can still conjecture that each convex body of constant width in \mathbb{R}^n has at least $n+1$ critical chords through the unique critical point, which means for convex bodies of constant width, Grünbaum conjecture for affine diameters is correct.

References

[1] Grünbaum B. Measures of symmetry for convex sets[C]// *Convexity*, *Proceedings of Symposia in Pure Mathematics* 7. Providence: American Math Society, 1963: 233-270.

- [2] Guo Q , Toth G. Dual mean Minkowski measures and the Grünbaum conjecture for affine diameters [J]. *Pacific J Math*, 2017, **292**: 117-137.
- [3] Toth G. *Measures of Symmetry for Convex Sets and Stability*[M]. Berlin: Springer-Verlag, 2015.
- [4] Klee V L Jr. The critical set of a convex set[J]. *Amer J Math*, 1953, **75**: 178-188.
- [5] Jin H L, Guo Q. Asymmetry of convex bodies of constant width[J]. *Discrete Comput Geom*, 2012, **47**: 415-423.
- [6] Chakerian G D, Groemer H. Convex bodies of constant width[C]// *Convexity and Its Applications*. Basel: Birkhäuser, 1983: 49-96.
- [7] Heil E, Martini H. Special convex bodies[C]// *Handbook of Convex Geometry*. Amsterdam: North-Holland, 1993: 347- 358.
- [8] Schneider R. *Convex Bodies*: *The Brunn-Minkowski Theory*[M]. Cambridge: Cambridge University Press, 1993.
- [9] Groemer H. Stability theorems for two measures of symmetry[J]. *Discrete Comput Geom*, 2000, **24**: 301-311.
- [10] Guo Q. Stability of the Minkowski measure of asymmetry for convex bodies[J]. *Discrete Comput Geom*, 2005, **34**: 351-362.
- [11] Schneider R. Stability for some extremal properties of the simplex[J]. *J Geom*, 2009, **96**: 135-148.
- [12] Jin H L, Guo Q. A note on the extremal bodies of constant width for the Minkowski measure[J]. *Geom Dedicata*, 2013, **164**: 227-229.
- [13] Soltan V. Affine diameters of convex bodies a survey[J]. *Expo Math*, 2005, **23**: 47-63.

□