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Abstract: The variety membership problem for two classes of 
non-finitely based semigroups is considered. It is shown that a 
finite semigroup S belongs to the variety generated by one of these 
non-finitely based semigroups if and only if S satisfies four certain 
equations that involve at most 2|S|+1 distinct variables. 
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0  Introduction 
 

Recall that the variety generated by an algebra A, 
denoted by〈A〉, is the smallest class of algebras of the 
same type containing A that is closed under the forma-
tion of homomorphic images, subalgebras, and arbitrary 
direct products. By the celebrated theorem of Birkhoff [1], 
the variety〈A〉consists precisely of algebras that satisfy 
all equations of A. The variety membership problem for a 
finite algebra A, abbreviated by VMP( )A , is the prob-
lem of deciding if a finite algebra belongs to the variety 
〈A〉. In general, the problem VMP( )A  for a finite 
algebra A is 2-EXPTIME-complete [2,3]. For a finite 
semigroup S, the precise complexity of VMP( )S  has 
not been determined, but it is known to be NP-hard [4,5]. 
In any case, since an algebra A satisfies the same equa-
tions as the variety〈A〉, the problem VMP( )A  is solv-
able in polynomial time whenever A is finitely based in 
the sense that its equations are finitely axiomatizable. 
Hence the variety membership problem is nontrivial only 
for non-finitely based algebras. Finite algebras that are 
minimal with respect to being non-finitely based, or 
minimal non-finitely based, are naturally of interest. 

In general, a minimal non-finitely based algebra has 
at least three elements [6]. As for semigroups—the main 
algebras of the present article—minimal non-finitely 
based members are of order six; up to isomorphism, 
there are precisely four such semigroups: 

● The monoid 1
2B  obtained by adjoining an iden-

tity element 1 to the Brandt semigroup 
2 2

2 , | 0, ,B a b a b aba a bab b       , 
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● the monoid 1
2A  obtained by adjoining an identity 

element 1 to the orthodox 0-simple semigroup 
2 2

2 , | , , 0A a b a aba a bab b b        
● the semigroup 2

gA  obtained by adjoining an ex-
ternal element g to 2A  with multiplication involving g 
given by 2 2 { }gA A g g   and 2 0g  , and 

● the J-trivial semigroup 
2 2

3 , | , , 0L e f e e f f efe       

The absence of any other non-finitely based semi-
groups of order six or less follows from the solution to 
the finite basis problem for semigroups of order up to 
six[7-10]. Refer to Lee et al [11] for more information. 

The semigroup 2
gA , due to Volkov et al [12], is the 

first published example of a non-finitely based finite 
semigroup whose variety membership problem is solv-
able in polynomial time; one important step in checking 
if a finite semigroup S belongs to the variety 2

gA   is 
the computation of the core of S, that is, the subsemi-
group of S generated by its idempotents. Now since the 
equality 2 22

gA A       holds [13], where n  de-
notes the cyclic group of order n, it is instinctive to ex-
amine the problem 2VMP( )nA   for general n. For 
n=1, this problem is solvable in polynomial time because 
the semigroup 2 1 2A A   is finitely based [14]. If 

3n≥ , then even though the semigroup 2 nA   is 
non-finitely based [15], arguments from Volkov et al [12] 
can be repeated to solve the problem 2VMP( )nA   in 
polynomial time. Consequently, for all 1n≥ , the prob-
lem 2VMP( )nA   is solvable in polynomial time. 
 In contrast, Jackson [4] proved that the problem 

1
2VMP( )B  is NP-hard. The complexity of the problems 
1
2VMP( )A  and 3VMP( )L , however, is currently un-

known, and Jackson [4] questioned if they are solvable in 
polynomial time. 

The main objective of the present article is to ex-
hibit, in Sections 1 and 2, easily verifiable solutions to 
the problems 2VMP( )nA   and 3VMP( )nL  , re-
spectively. In each section, it is shown that a finite semi-
group of order 2r≥  belongs to the variety of the sec-
tion if and only if it satisfies four equations that involve 
at most 2 1r   distinct variables. Solutions with com-
plexity co-NP are therefore available for the problems 

2VMP( )nA   and 3VMP( )nL  . Although the solu-
tion for 2VMP( )nA   is less efficient than Volkov et 
al [12], it does not require the computation of cores of 
semigroups. On the other hand, the solution for the 
problem 3VMP( )nL   demonstrates the plausibility 
of it being solvable in polynomial time. 

At the end of each section, it is also deduced that a 
finite semigroup generates the variety of the section if 
and only if it satisfies and violates certain equations from 
some finite list. 

Acquaintance with rudiments of universal algebra is 
assumed of the reader. Refer to Burris and Sankap-
panavar [16] for more information. 

1  The Varieties 2 nA    

Theorem 1  Suppose that S is any finite semigroup 
of order 2r≥ . Then the inclusion 2 nS A      
holds if and only if S satisfies the equations 

2 2nx x                    (1) 
1( )nx yx xyx                  (2) 

xyxzx xzxyx                 (3) 
3 2

1 1

:
r r

n n
r i i

i i

x x
 

   
      

   
   

Lemma 1  For each integer 1n≥ , the equations  
{(1), (2), (3), | 2,3,4, }r r   constitute an equational 
basis for the variety 2 nA   . 

Proof  This follows from Proposition 1.1(i) in Lee 
and Volkov [13]. 

Remark 1  If n = 1, then the equation (1) implies 
the equation r  for all 2r≥ . 

Lemma 2  The equations 1{(1), }r   imply the 
equation r . 

Proof  By Remark 1, it suffices to assume that 
2n≥ . Then by making the substitution 1r rx x   in 

the equation 1r   and applying the equation (1) to 
eliminate excessive copies of the variable rx  from both 
sides, the equation r  is obtained. 

Proof of Theorem 1  Necessity follows from 
Lemma 1. Conversely, suppose that the semigroup S  
satisfies the equations {(1), (2), (3), }r . If 1n  , then 

2 nS A     by Lemma 1 and Remark 1. Therefore it 
suffices to assume that 2n≥ . Then by Lemma 2, the 
semigroup S satisfies the equations 

2 3, , , r                  (4) 

In the following, it is shown that S satisfies the 
equation t  for all t r∨ , so that 2 nS A     by 
Lemma 1. 

Let  be any substitution into S. For notational 
brevity, write ( )i ix a  . Since | | 2S r ≥ , the list 

1 2 1, , , ra a a   of elements from S contains some repeti-
tion. Let   be the least integer such that ka a    for 
some 1k≥ . Then there are two cases to consider. 
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Case 1: 1a a   . Let 
d

d n
c i

i c

a


  . Then 

  
21 21 1

1 2
1

Θ Θ
r

n n n r
i

i

x a a


 




         
  
    

     2 31 1 1 1
1 2 1 2

(1) (4)

Θ Θ  Θ Θn r n ra a   
       

     

   
3131 1

1 2

1

1

( )

Θ Θ
r

n n r n
i

i

a a x


 




            


   . 

Case 2: ka a   for some 2k≥ . Then 

 
21 21 1 1

1 1 1
1

Θ Θ Θ
r

n n k n r
i k

i

x a a


   
  



         
   


  

     

   
211 1 1

1 1 1

(2)

Θ Θ Θ
nn k n r

ka a
   

      
 
 

 
     

   
2

1 1 1
1 1 1

(4)

Θ Θ Θ
nn k n r

ka a   
      

 
 

 
     

   1 1
3(4

1
1 1

)

1Θ Θ Θ
nn k n r

ka a   
      

 
 

 
     

   
311 1 1

1 1 1

(4)

Θ Θ Θ
nn k n r

ka a
   

      
 
 

 
     

   31 1 1
(

1

)

1

2

1Θ Θ Θn k n r
ka a   

       
     

  

31

1

r
n
i

i

x




         
  

Therefore in both cases, the semigroup S satisfies 
the equation 1r  . 

The preceding procedure can be repeated to show 
that the semigroup S satisfies the equation t  for each 
subsequent 1t r ∨ . 

Lemma 3  Let S be any semigroup that satisfies 
the equation 2 2nx x  . Then the inclusion n S    
holds if and only if S violates every equation in 

2 2{ |  is a maximal proper divisor of }dx x d n    (5) 

Proof  This follows from Lemma Ⅷ.6.14 in Pet-
rich and Reilly [17]. 

Lemma 4 [18]  Let S be any semigroup that satisfies 
the equation (1). Then the inclusion 2A S    holds if 
and only if S violates the equation 

 ( ) ( ) ( )
nn n n n n n nx y yx x yx          (6) 

Corollary 1  Let S be any semigroup of order 
2r≥  that satisfies the equations {(1), (2), (3), }r   

and violates every equation in {(5),(6)}. Then the equal-
ity 2 nS A       holds. 

Proof  The inclusion 2 nS A       holds by 
Theorem 1, while the reverse inclusion 2 nS A        
holds by Lemmas 3 and 4. 

2  The Varieties 3 nL    

Theorem 2  Suppose that S is any finite semigroup 
of order 2r≥ . Then the inclusion 3 nS L     holds 
if and only if S satisfies the equations 

2 2nx x                     (7) 
1 1n nx yx xyx                     (8) 

xhykxty yhxkytx               (9) 

    †:r r rw w   

where 

 
1

r

r i i i
i

w x y h y x


 
   

 
  and  

1
†
r i i i

i r

w x y h y x


 
   

 
  

Lemma 5  For each integer 1n≥ , the equations 
{(7), (8), (9), | 2,3,4, }r r    constitute an equational 
basis for the variety 3 nL   . 

Proof  See Corollary 3.5 in Lee [19]. 
Lemma 6  The equations 1{(7), (8), }r   imply 

the equation r . 
Proof  This implication holds because 

 
)

1

(8 r
n n

r i i i
i

w xx y z y x x


 
  
 

   

     
1

(7) r
n n n n n

i i i
i

xx y z y x x x x x


 
  
 

   

     
1 1r

n n n n n
i i i

i r

xx x x x y z y x x
 



 
   

 
  

   
(7) (1

†
 

8)
n n

i i i r
i r

xx y z y x x w


 
  





  . 

Lemma 7  The equations 2{(7), (8), (9), }  imply 
the equations  

xyzxy xzyxy                  (10) 

xyzxy xyxzy                  (11) 

Proof  Since 

 1 2 1 1
(8) (7) (

1 1
8)

n n n n nx yx x yx x yx xyx        

 1 1 2 1
(8) (7) (8

1
)

1n n n n nxyx x yx x yx xyx        

 
2(8

2 2 2 3
)

3( )( ) ( ( ))n n n n n nx yx x x x xyx x x x xxyx x


   

 
(8) (7)

4 2 2nxyx xyx   
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(8) (9) (8)

( ) ( ) ( )n n n nxyzxy x x y z x x y yx xzyx x yxzyx    

 
(8) (9)

2 1( ) ( ) ( )n n nxzyxy x z y y x y y yzxy x   

 1 3
(8) (7) ( )

1 1 1
8

n n n ny zxy x y zxy x yzxyx       

the equations 2{(7), (8), (9), }  imply the equations 
1nx yx xyx                   (12) 

1nxyx xyx                   (13) 

2 2x yx xyx                  (14) 

xyzxy yxzyx                 (15) 

xzyxy yzxyx                 (16) 

Hence the equations 2{(7), (8), (9), }  imply the equa-
tion (10) because 

 
(16) (12) (16)

( )n nxzyxy yzxyx y y z xyx xy zyxy    

  1
(14) (15)

2 1( ) n nxy zy xyy yxzy xy    

  
(14) (15) (13

1
)

n nyxzyxy xyzxy xyzxy    

By symmetry, the equations 2{(7), (8), (9), }  also im-
ply the equation (11). 

Proof of Theorem 2  Necessity follows from 
Lemma 5. Conversely, suppose that the semigroup S  
satisfies the equations {(7), (8), (9), }r . Then by Lem-
mas 6 and 7, the semigroup S also satisfies the equations 

2 3{ , , , , (10),(11)}r   . In the following, it is shown 
that S satisfies the equation t  for all t r∨ , so that 

3 nS L     by Lemma 5. 
Let  be any substitution into S. For notational 

brevity, write ( )x a  , ( )i iy b  , and ( )i iz c  . 
Since | | 2S r ≥ , the list 1 2 1, , , rc c c   of elements 
from S contains some repetition. Therefore there exist 
integers   and m with 1 1m r ≤ ≤  such 
that mc c . Hence 

1( )r m mw aP b c b Q b c b Ra          

where the products 
1

1

)( i i i
i

P b c b







, 
1

1

)(
m

i i i
i

bQ b c


 

 


, 

and 
1

1

)(
r

i i i
i m

R b c b


 

   are empty if 1 , 1m  , 

and 1m r  , respectively. Thus 

 1

(11)

)( r m mw aP b c Q b b c b Ra          

  
(10)

m maP b c b Q b c b Ra        

1 1

1 1

( ) ( )
r

i i i i i i
i i m

a b c b TQT b c b a
 

  

   
       

   
 


    (17) 

where mT b c b   . Note that the number p of terms in 
(17) of the form XYX that are sandwiched between the 
two occurrences of a is 

{1, , 1} 1 { 1, , 1}p m r         

          1r m     

where 1 p r≤ . If 2p≥ , then the equation p  
can be used to reverse the order of the product in (17), 
giving 

1 1

1
1 1

( ( ) () )
m

r i i i i i i
i r i

w a b c b TQT b c b a



   

   
       

   
 



   (18) 

If 1p  , so that P and R are empty, then (18) holds 
vacuously. Therefore (18) holds in any case. 

Now the number q of terms in Q of the form XYX is 
1q m   , so that 0 q r≤ ≤ . If 2q≥ , then the 

equation q  can be used to reverse the order of product  

in 
1

1

( )
m

i i i
i

TQT T b c b T


 

 
  
 

 


, giving 

1

1

( )i i i
i m

TQT T b c b T


 

 
   

 



          (19) 

If 1q , so that Q is either 1 1 1b c b      or empty, then 
(19) holds vacuously. Therefore (19) holds in any case, 
whence 

(19) 1

1

( )m i i i m
i m

TQT b c b b c b b c b


 

 
  
 

 


     

   
1(9)

1

( )m i i i m
i m

b c b b c b b c b


 

 
 
 

 


     

   
1

(10) 1

( )m i i i m
i m

b c b c b b b c b


 

 
  
 



     

   
1(11)

1

)(m m i i i
i m

b c b b c b b c b


 

 
  
 



     

   )( i i i
i m

b c b





 because mc c  

Since 

 
(18 1 1

1

)

1 1

( ) () )(
m

r i i i i i i
i r i

w a b c b TQT b c b a



   

   
      
  




 


 

  
1 1

1 1

) )( ( ( )
m

i i i i i i i i i
i r i m i

a b c b b c b b c b a


    

   
       

   
  





 

  
1

†
1

1) )( (i i i r
i r

a b c b a w 
 

 
   

 
 , 

the semigroup S satisfies the equation 1r  . 
The preceding procedure can be repeated to show 
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that the semigroup S satisfies the equation t  for each 
subsequent 1t r ∨ . 

Corollary 2  The problem 3VMP( )nL   is 
co-NP. 

Proof  Suppose that S is any finite semigroup of 
order 2r≥ . Then it follows from Theorem 2 that the 
exclusion 3 nS L     holds if and only if S violates 
some equation from {(7), (8), (9)}  or S violates the 
equation r . The former task is solvable in polynomial 
time, while the latter task has complexity NP. 

Remark 2  The non-finitely based semigroup 

3 nL  , when endowed with a certain unary operation, 
is an involution semigroup that is finitely based [20]. 
Therefore the variety membership problem for this invo-
lution semigroup is solvable in polynomial time. 

Lemma 8  Let S be any semigroup that satisfies 
the equation (7). Then the inclusion 3L S    holds if 
and only if S violates the equation 

1( )nn n n n n nx y x x y x             (20) 

Proof  See Proposition 3.3 in Ref.[21]. 
Corollary 3  Let S be any semigroup of order 
2r≥  that satisfies the equations {(7), (8), (9), }r  and 

violates every equation in {(5), (20)} . Then the equality 

3 nS L       holds. 
Proof  The inclusion 3 nS L       holds by 

Theorem 2, while the reverse inclusion 3 nS L        
holds by Lemmas 3 and 8. 
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