

2017, Vol.22 No.4, 289-294

Article ID 1007-1202(2017)04-0289-06

DOI 10.1007/s11859-017-1249-y

An Improved Cuckoo Search Algorithm
for Multi-Objective Optimization

□ TIAN Mingzheng1, HOU Kuolin2,

WANG Zhaowei1 ,WAN Zhongping1†
1. School of Mathematics and Statistics, Wuhan University,

Wuhan 430072, Hubei, China;

2. Faculty of Foundational Education, Liming Vocational

University, Quanzhou 362000, Fujian, China

© Wuhan University and Springer-Verlag Berlin Heidelberg 2017

Abstract: The recently proposed Cuckoo search algorithm is an
evolutionary algorithm based on probability. It surpasses other
algorithms in solving the multi-modal discontinuous and nonlinear
problems. Searches made by it are very efficient because it adopts
Levy flight to carry out random walks. This paper proposes an
improved version of cuckoo search for multi-objective problems
(IMOCS). Combined with nondominated sorting, crowding
distance and Levy flights, elitism strategy is applied to improve
the algorithm. Then numerical studies are conducted to compare
the algorithm with DEMO and NSGA-II against some benchmark
test functions. Result shows that our improved cuckoo search
algorithm convergences rapidly and performs efficienly.
Key words: multi-objective optimization; evolutionary algorithm;
Cuckoo search; Levy flight
CLC number: O 224

Received date: 2017-01-10
Foundation item: Supported by the National Natural Science Foundation of
China (71471140)
Biography: TIAN Mingzheng, male, Master candidate, research direction:
optimization algorithm. E-mail: alvin_tian@foxmail.com
† To whom correspondence should be addressed. E-mail: zpwan-whu@126.com

0 Introduction

Multi-objective optimization (also vector optimiza-
tion) plays an extremely important part whether in scien-
tific research or engineering. A multi-objective optimiza-
tion problem with n decision variables and m objectives
can be defined as follows[1]:



T
1 2min () ((), (), , ())

s.t. () 0, 1,2, ,

() 0, 1,2, ,

m

i

i

f f f

g i q

h i p

  
 
  

≤

y F x x x x
x
x







1 2(, , ,)nx x x X x  is a decision vector in the deci-
sion space. 1 2(, , ,)my y y Y y  is the objective vec-
tor in the objective space. q and p are the numbers of
inequality and equality constraints, respectively.

In general, there are two ways to tackle with
multi-objective optimization. One is to combine the ob-
jective functions to form a single objective function,
such as weighted sum method and utility theory. But the
problem is that we cannot describe the decision maker’s
preference accurately, and we may lose the solutions on
a concave Pareto front.

The other method is trying to find all the solutions
in the Pareto optimal set, which contains all the
non-dominated solutions. The Pareto optimal set is more
acceptable because decision maker can check the
trade-offs among these solutions with respect to their
own preference.

To find the Pareto optimal set is not an easy job as
some traditional methods is inefficient. But the metaheu-
ristic algorithms based on mimicking nature outperform
other algorithms. Lots of multi-objective evolutionary
algorithms were proposed such as MOGA [2], NSGA [3],

Wuhan University Journal of Natural Sciences 2017, Vol.22 No.4

290

SPEA2 [4] etc. Especially, NSGA-II [5] and MOPSO[6] are
famous untill today. New strategies such as Pareto based
selection and crowding distance were introduced to these
population based algorithms to achieve a higher per-
formance.

Cuckoo search is a relatively new algorithm, which
has many advantages such as fast convergence, diversity
in distribution of solutions, exploitation as well as ex-
ploration. This probability based metaheuristic algo-
rithms was proved to be efficient [7].

In this paper, combining the elitism strategy, we
propose an improved multi-objective cuckoo search
(IMOCS) algorithm. Numerical studies are performed
against some benchmark problems, which also shows the
proposed algorithm is efficient and time-saving.

The rest of the paper is organized as follows. In
Section 1 we introduce the original cuckoo search algo-
rithm and explain why it is efficient. In Section 2 we
propose IMOCS and compare it with other famous algo-
rithms. Numerical studies are presented in Section 3 to-
gether with our analysis. Section 4 contains conclusion
and further discussion about the algorithm.

1 Cuckoo Search

1.1 Original Cuckoo Search
Cuckoo search imitates the parasite behaviors of

cuckoo to search for the optimal solutions. At first, a
fixed amount of nests are placed in the search space, and
each nest has one “egg (candidate solution)”. Cuckoos
search the whole decision space and record the fitness
value of all the encountered candidate solution to find
the optimal. The search pattern used is called Levy flight,
which is widely adopted by birds, insect, herbivores and
fishes in real world [8]. Its character is a series of straight
flight paths punctuated by a sudden 90o turn. Drawn
from the levy distribution, the step length can be occa-
sionally very big, which makes it more suitable for
global search. As Yang indicated, Levy flight is more
efficient than random walk and Brownian movement [9].

Single objective cuckoo search explores the whole
search space by Levy flight and exploits the local area
intensively by random walk. A parameter called “Dis-
covery probability”(Pr) is introduced to balance the
global and local search, namely the intensification and
diversification. The formula below describes how a Levy
flight is performed.

(1) () Levy()t t
i i     x x 

where  is the step length decided by the specific prob-
lem. In most cases, Yang suggests we can use O(1) [10].
So  can be set by the difference of different solutions as:

() ()
0 ()t t

j i  x x (3)

where 0 is a constant. Two solutions are randomly
chosen from the current population. This comes from the
fact that similar eggs are less likely to be discovered.

Levy flight is supposed to provide a “random walk”,
where its step sizes are drawn from a Levy distribution.

1Levy ~ , 0 2u t    ≤ ≤ 

Levy distribution was found to have an infinite
variance and an infinite mean, which actually makes the
consecutive jumps be a random walk process which obeys
a power-law step-length distribution with a heavy tail.

Furthermore, some of the worst solutions will be
discarded with a probability of Pr to make room for new
nests. New solutions can be obtained by random walk
and mixing. Different permutation of existing solutions
generates new mixing solutions.

Apparently, our focus now is to generate the step
lengths needed by the Levy flights. Yang et al gave a
simple way below[7]:

() () () ()
0 0 1/
() Levy() ~ ()t t t t

j i j i

u
s

v
     x x x x (5)

where u and v obey the normal distributions below:
2 2~ (0,), ~ (0,)u vu N v N  (6)

1/

(1)/2

(1)sin(/ 2)
, 1

[(1) / 2] 2u v




  
  

       
 (7)

where  is the standard Gamma function.
1.2 Standard Multi-Objective Cuckoo Search

By modifying the Levy flight and the domination
rules, we can get the multi-objective cuckoo search algo-
rithms. The MOCS proposed by Yang et al [7] asserts to
keep the offspring only when they dominate their parents.
This is too harsh for offspring because there are child solu-
tions on the Pareto front, but they may not dominate their
parents. Obviously we want to keep those child solutions.

The following MOCS algorithm combing the non-
dominated sort and crowding distance was proposed by
Syberfeldt et al [11] and Wang et al [12]. Here we present
some basic concepts of the non-dominated sort and
crowding distance. This process aims to compare and
select better solutions generated by Levy flights for fur-
ther iterations.

① Non-dominated sort: For solution p in popula-
tion, test every other solution in the population. Record

TIAN Mingzheng et al : An Improved Cuckoo Search Algorithm for Multi-Objective …

291

the solutions that p dominates and record the number of
solutions dominating p. Rank the non-dominated solu-
tions as the first front. Then for solutions dominated by
the first front, the number which dominates it minuses
the number in the first front dominates it. Rank the
non-dominated solutions as the second front, and so on.

② Crowding distance: This approach is used to
select solutions in the same front. Sort each solution in
front i by the value of m-th objective. The difference of
the m-th value prior and inferior to it divided by the range
of m-th objective is the m-th distance. Crowding distance
is the sum of all the objectives’ distance [5]. Here is the
pseudo-code for the multi-objective cuckoo search [11]:

Generate N parent solutions randomly and evaluate them
while stopping criterion not met

Levy flight among N parent population to generate N child
population

Evaluate the child population
Combine the parent and child population and sort
for (each solution in 2N) and (next generation＜N)

add solutions to next generation according to their front
number till next generation = N
sort by crowding distance to fill the next generation to N

end for
Generate N solutions randomly with the discovery probability Pr
Sort the 2 N population to select N solutions for the next step
the chosen N solutions are the next generation

end while
print the results

1.3 Advantages of the Cuckoo Search
In fact cuckoo search makes a good combination of

all the efficient techniques in the literatures, which
makes it more promising. For instance, particle swarm
optimization (PSO) algorithm updates the speed vector
by calculating the difference between the current solu-
tion and the current global best. This is the main proce-
dure to ensure randomization. But this technique actually
constrains the step size by using difference. In cuckoo
search algorithms, due to the infinite mean and variance
of Levy distribution, the step size consists of many small
ones and occasionally big ones make the search even
more efficient, especially for nonlinear problem with
many local optimums [7].

2 Improved Multi-Objective
Cuckoo Search

2.1 Main Ideas
Due to the step sizes drawn from the Levy distribu-

tion, many small steps already make the local search ef-

ficient. There is no need to use the “Discovery Probabil-
ity” Pr to generate random solutions in the process of
exploiting local areas. This strategy not only searches
repeatedly but also costs one more sort and selection op-
eration. This leads to a relatively high computational
complexity, and takes more time.

In the case of multi-objective optimization, the rela-
tion between solutions is more complicated. We cannot
do the Levy flights referring to the global best, because
there is no global best. There is a situation where no so-
lution dominates any other, e.g. solutions on the same
Pareto front. Ordinary methods re-permute the current
population, and then Levy flights are performed referring
to the randomly permuted solutions. But the solution we
referred to may not be non-dominated, even there might
be many other solutions dominating it. Without moving
towards the better solutions, we have a reason to doubt
its efficiency.

Given this, we propose the improved MOCS. It has
the following characters.

● Abandon the discovery process to reduce com-
putational complexity. Local searches are carried out at a
reasonable level due to the small steps of Levy flights.

● Apply the elitism strategy to adapt to the learn-
ing pattern of multi-objective optimization. We first sort
the whole population to get the better half, or elites. Levy
flights are then performed between these elites instead of
randomly permutation to search more efficiently.
2.2 Structure of the IMOCS

Here is the pseudo-code for the IMOCS:

Generate N parent solutions randomly and evaluate them
Sort the evaluated population, and rank them
while stopping criterion not met

Screen sorted N population and keep the best N/2 elites
Levy flight between the elites to generate N child

population
Evaluate the child population
Combine the parent and child population, sort and rank

them
Screen sorted 2N population and keep the best N as

new generation
end while

print the results

In the while loop, original MOCS needs to evaluate

and sort twice because of the discovery process. But our
IMOCS only has to evaluate the child population gener-
ated by Levy flight, and sort the combined population
only once.

The screen process, which does not take long, could
pick out better individuals with lower ranks calculated by
the non-dominated sort process. Further, the screen

Wuhan University Journal of Natural Sciences 2017, Vol.22 No.4

292

process is conducted twice equally in IMOCS and
MOCS, that costs almost the same time.

Also, the new searching strategy abandons discovery
process, keeping only one random solutions generation
process (Levy flight), thereby saving lots of time.
2.3 Process Comparison with Other Algorithms

Table 1 compares the IMOCS with MOCS, Multi-
objective Differential Evolution (MODE) and Non-
dominated Sort Genetic Algorithm (NSGA-II).

Table 1 Process comparison with other algorithms

Algorithm Mutation Crossover Selection
IMOCS Levy flights Learn from

each other
among elites

Non-dominated
sort, crowding
distance

MOCS

Levy flights

Random
Discovery

Non-dominated
sort, crowding

distance

MODE Linear
combination
of parent
solutions

Fixed
probability

Abandon the parent
if child dominates
it, abandon the child
conversely.
Keep all of them if
nondominated to
each other, waiting
for truncate

NSGA-II

Polynomial
mutation

Simulated
binary cross-
over

Non-dominated
sort, crowding dis-
tance

3 Experiments

3.1 Test Functions
Two objectives are already capable of reflecting the

algorithms character, so here we choose 2-dimension ob-
jective functions. These are the benchmark test functions.

ZDT1

1 1 2 1() , () ()(1 / ())f x f g x g  x x x x (8)

2

9
() 1 , [0,1], 1,2, ,30

1

n

i
i

i

x
g x i

n
   



x (9)

ZDT1 has a convex front. n is the dimension of the
decision space, Pareto optimality is reached when g=1.
Here n is set to 30.

ZDT2

 2
1 1 2 1() , () ()(1 (/ ()))f x f g x g  x x x x (10)

2

9
() 1 , [0,1], 1,2, ,30

1

n

i
i

i

x
g x i

n
   



x (11)

ZDT2 has a concave front. n is the dimension of the
decision space. Also Pareto optimality is reached when

g=1.
ZDT3

1 1
1 1 2 1() , () ()(1 sin(10))

() ()

x x
f x f g x

g g
    x x x

x x

(12)

2

9
() 1 , [0,1], 1,2, ,30

1

n

i
i

i

x
g x i

n
   



x (13)

ZDT3 has a discontinuous front. n is the dimension
of the decision space. Also Pareto optimality is reached
when g=1.

The test functions chosen are representative enough
to show the algorithms’ features. In calculation, 300
uniformly distributed points on the Pareto are chosen to
imitate the real Pareto front.
3.2 Metrics

There are three main goals in multi-objective opti-
mization [13]:

● The best known Pareto front should be as close
to the real front as possible, say solutions on the Pareto
front are the most wanted ones.

● Solutions in the best known Pareto set should be
evenly and diversely distributed on the Pareto front,
which gives the decision maker more choices.

● Best known Pareto front should depict the whole
picture real front, including some extreme points in the
objective space.

These goals contradict each other on a regular basis.
The first goal focuses on a particular region on the front
while the second goal emphasizes on the global search to
improve diversity on the front known. The third goal
extends the search to the both ends of the front, to cover
as many solutions as possible.

Convergence metric: *

*
1 2 | |

(, , ,)
P

P  p p p are

the solutions on the real Pareto front,

1 2 3 | |(, , , ,)AA  a a a a is the best-known Pareto front

estimated by our algorithm. For each ia in A, the regu-

lar minimum distance to *P is defined as:

*

2

max min
1 1

() ()
min

k
m i m j

i
j P m m m

f f
d

f f

 
   


≤ ≤

a p
(14)

Here max
mf is the maximum of the *P ’s m-th objec-

tive, while min
mf is the minimum. Convergence metric is

the average regularized distance of all the points in A.

1()

A

i
i

d
C A

A



 (15)

TIAN Mingzheng et al : An Improved Cuckoo Search Algorithm for Multi-Objective …

293

Convergence metric reflects the distance between
best known Pareto front and the real front. A lower value
of it represents a better approximation.

Spacing metric: A is the best-known Pareto front
estimated by algorithm. Function S:

2

1

1
()

1

A

i
i

S d d
A 


  (16)

where



1

min () () , , , , =1,2, ,
k

i m i m j i jj
m

d f f A i j A


    
 
 a a a a



(17)
d is the average of all the id . k is the number of

objectives. If k = 0, then all the non-dominated solutions
are evenly distributed in the objective space. As Man-
hattan distance is used in the definition, this metric
works well in the non-continuous front’s cases too.

3.3 Results
We tested our algorithm along with 3 other well-

known multi-objective algorithms. The software is
MATLAB R2015b. The computer hardware: Processor
Intel(R) Core(TM) i7-4712MQ CPU @2.30GHz 2.30
GHz, RAM: 8.00GB. Parameters of the algorithms are
set below:

Population: 50; Maximum iteration: 500; Step
length: 1; Number of times running independently: 20;
Discovery probability of the standard MOCS (Pr): 0.25.

Tables 2-7 show the statistics of the results at the
100-th generation on test problem ZDT1, ZDT2 and
ZDT3. t means the average time (s) needed running
through all 500 generations. We run each algorithm
against each problem 20 times independently.

Table 2 Convergence metrics on ZDT1

Algorithm Max Min Mean Variance

IMOCS 0.0057 0.0022 0.0031 7.7089E-07

MOCS 0.0048 0.0021 0.0037 4.3428E-07

MODE 0.0464 0.0227 0.0323 2.9891E-05

NSGA-II 1.7136 1.1239 1.5011 0.0198

Table 3 Spacing metrics on ZDT1

Algorithm Max Min Mean Variance t/s

IMOCS 0.0173 0.0105 0.0141 3.8848E-06 2.4755

MOCS 0.0166 0.0101 0.0132 3.3793E-06 4.8566

MODE 0.0516 0.0136 0.0245 8.2196E-05 0.9351

NSGA-II 0.0331 0.0128 0.0232 3.4149E-05 2.7153

Table 4 Convergence metrics on ZDT2

Algorithm Max Min Mean Variance

IMOCS 0.0037 0.0021 0.0029 1.9669E-07

MOCS 0.0042 0.0028 0.0035 1.4518E-07

MODE 0.0598 0.0245 0.0399 9.4248E-05

NSGA-II 2.4114 1.3504 1.7923 0.0681

Table 5 Spacing metrics on ZDT2

Algorithm Max Min Mean Variance t/s

IMOCS 0.016 0.0104 0.0143 1.9631E-06 2.6144

MOCS 0.0185 0.0100 0.0138 4.6533E-06 5.0495

MODE 0.1264 0.0305 0.066 4.7218E-04 0.938

NSGA-II 0.0907
2.4491

E-05
0.012 3.8469E-04 5.5116

Table 6 Convergence metrics on ZDT3

Algorithm Max Min Mean Variance

IMOCS 0.0048 0.0018 0.0030 8.4771E-07

MOCS 0.0049 0.0018 0.0029 4.7790E-07

MODE 0.0413 0.0212 0.0300 3.4829E-05

NSGA-II 1.1599 0.7099 0.9363 0.0186

Table 7 Spacing metrics on ZDT3

Algorithm Max Min Mean Variance t/s

IMOCS 0.0227 0.0120 0.0176 7.4071E-06 4.8159

MOCS 0.0209 0.0119 0.016 6.8069E-06 9.0642

MODE 0.0799 0.0304 0.0507 1.9437E-04 0.9413

NSGA-II 0.032 0.0113 0.0188 3.1902E-05 3.5062

We can clearly see that solutions generated by

MODE and NSGA-II are far from the real Pareto front at
100-th generation, therefore their spacing metrics make
no sense. MODE runs fast, but it converges slowly in the
first 100 generations.

We know from the results that the performance of
IMOCS and MOCS are very close to each other. Some-
times IMOCS works even better. Because of the elitism
strategy and the abandonment of the discovery process,
IMOCS spends less time than MOCS.

4 Conclusion

We abandoned the discovery process of the stan-
dard MOCS and proposed an IMOCS using elite strategy.
High efficiency is achieved by referring to better elite
solutions when doing Levy flights. Considering that the

Wuhan University Journal of Natural Sciences 2017, Vol.22 No.4

294

Levy distribution has already taken local searches into
account, we delete the random discovery process in order
to save time. Numerical studies have illustrated that
IMOCS would take only half the needed by MOCS. The
evidence proves that our IMOCS is a more efficient
multi-objective algorithm.

For further study, more test functions are welcomed
to test the algorithm. Other learning mechanisms are also
worth considering. Distributions other than Levy distri-
bution should also be examined to see if we can improve
its efficiency.

[1] Purshouse R C, Deb K, Mansor M M, et al. A review of hy-

brid evolutionary multiple criteria decision making meth-

ods[C]// Evolutionary Computation. Piscataway: IEEE Press,

2014: 1147-1154.

[2] Fonseca C M, Fleming P J. Genetic algorithms for multiob-

jective optimization: Formulation discussion and generaliza-

tion [C] // International Conference on Genetic Algorithms.

New York: Morgan Kaufmann Publishers Inc, 1999: 416-

423.

[3] Srinivas N, Deb K. Multiobjective optimization using non-

dominated sorting in genetic algorithms [J]. Evolutionary

Computation, 2014, 2(3): 221-248.

[4] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the

strength Pareto evolutionary algorithm [C]// Evolutionary

Methods for Design Optimization and Control with Applica-

tions to Industrial Problems. Berlin: Springer-Verlag, 2001:

95-100.

[5] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiob-

jective genetic algorithm: NSGA-II [J]. IEEE Transactions

on Evolutionary Computation, 2002, 6(2): 182-197.

[6] Coello C A C, Lechuga M S. MOPSO: A proposal for multi-

ple objective particle swarm optimization [C] // Evolutionary

Computation, 2002. CEC '02. Proceedings of the 2002 Con-

gress on. Piscataway: IEEE Xplore, 2002: 1051-1056.

[7] Yang X S, Deb S. Multiobjective cuckoo search for design

optimization [J]. Computers & Operations Research, 2013,

40(6): 1616-1624.

[8] Viswanathan G M, Buldyrev S V, Havlin S, et al. Optimizing

the success of random searches [J]. Nature, 1999, 401(6756):

911-914.

[9] Yang X S. Nature-Inspired Metaheuristic Algorithms: Second

Edition [M]. Bristol: Luniver Press, 2010.

[10] Yang X S, Deb S. Engineering optimisation by Cuckoo

search [J]. International Journal of Mathematical Modelling

& Numerical Optimisation, 2010, 1(4): 330-343.

[11] Syberfeldt A, Ng A, John R I, et al. Multi-objective evolu-

tionary simulation-optimization of a real-world manufactur-

ing problem [J]. Robotics and Computer-Integrated Manu-

facturing, 2009, 25(6): 926-931.

[12] Wang Q, Liu S M, Wang H, et al. Multi-Objective cuckoo

search for the optimal design of water distribution syst-

ems [C] // Civil Engineering and Urban Planning. Yantai:

American Society of Civil Engineers, 2012: 402- 405.

[13] Zitzler E, Deb K, Thiele L. Comparison of multiobjective

evolutionary algorithms: Empirical results [J]. Evolutionary

Computation, 2006, 8(2):173.

□

References

