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Abstract: The recently proposed Cuckoo search algorithm is an 
evolutionary algorithm based on probability. It surpasses other 
algorithms in solving the multi-modal discontinuous and nonlinear 
problems. Searches made by it are very efficient because it adopts 
Levy flight to carry out random walks. This paper proposes an 
improved version of cuckoo search for multi-objective problems 
(IMOCS). Combined with nondominated sorting, crowding 
distance and Levy flights, elitism strategy is applied to improve 
the algorithm. Then numerical studies are conducted to compare 
the algorithm with DEMO and NSGA-II against some benchmark 
test functions. Result shows that our improved cuckoo search 
algorithm convergences rapidly and performs efficienly. 
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0  Introduction 

Multi-objective optimization (also vector optimiza-
tion) plays an extremely important part whether in scien-
tific research or engineering. A multi-objective optimiza-
tion problem with n decision variables and m objectives 
can be defined as follows[1]: 
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1 2( , , , )nx x x X x   is a decision vector in the deci-
sion space. 1 2( , , , )my y y Y y   is the objective vec-
tor in the objective space. q and p are the numbers of 
inequality and equality constraints, respectively. 

In general, there are two ways to tackle with 
multi-objective optimization. One is to combine the ob-
jective functions to form a single objective function, 
such as weighted sum method and utility theory. But the 
problem is that we cannot describe the decision maker’s 
preference accurately, and we may lose the solutions on 
a concave Pareto front. 

The other method is trying to find all the solutions 
in the Pareto optimal set, which contains all the 
non-dominated solutions. The Pareto optimal set is more 
acceptable because decision maker can check the 
trade-offs among these solutions with respect to their 
own preference. 

To find the Pareto optimal set is not an easy job as 
some traditional methods is inefficient. But the metaheu-
ristic algorithms based on mimicking nature outperform 
other algorithms. Lots of multi-objective evolutionary 
algorithms were proposed such as MOGA [2], NSGA [3], 
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SPEA2 [4] etc. Especially, NSGA-II [5] and MOPSO[6] are 
famous untill today. New strategies such as Pareto based 
selection and crowding distance were introduced to these 
population based algorithms to achieve a higher per-
formance. 

Cuckoo search is a relatively new algorithm, which 
has many advantages such as fast convergence, diversity 
in distribution of solutions, exploitation as well as ex-
ploration. This probability based metaheuristic algo-
rithms was proved to be efficient [7]. 

In this paper, combining the elitism strategy, we 
propose an improved multi-objective cuckoo search 
(IMOCS) algorithm. Numerical studies are performed 
against some benchmark problems, which also shows the 
proposed algorithm is efficient and time-saving. 

The rest of the paper is organized as follows. In 
Section 1 we introduce the original cuckoo search algo-
rithm and explain why it is efficient. In Section 2 we 
propose IMOCS and compare it with other famous algo-
rithms. Numerical studies are presented in Section 3 to-
gether with our analysis. Section 4 contains conclusion 
and further discussion about the algorithm. 

1  Cuckoo Search 

1.1  Original Cuckoo Search 
Cuckoo search imitates the parasite behaviors of 

cuckoo to search for the optimal solutions. At first, a 
fixed amount of nests are placed in the search space, and 
each nest has one “egg (candidate solution)”. Cuckoos 
search the whole decision space and record the fitness 
value of all the encountered candidate solution to find 
the optimal. The search pattern used is called Levy flight, 
which is widely adopted by birds, insect, herbivores and 
fishes in real world [8]. Its character is a series of straight 
flight paths punctuated by a sudden 90o turn. Drawn 
from the levy distribution, the step length can be occa-
sionally very big, which makes it more suitable for 
global search. As Yang indicated, Levy flight is more 
efficient than random walk and Brownian movement [9]. 

Single objective cuckoo search explores the whole 
search space by Levy flight and exploits the local area 
intensively by random walk. A parameter called “Dis-
covery probability”(Pr) is introduced to balance the 
global and local search, namely the intensification and 
diversification. The formula below describes how a Levy 
flight is performed. 

( 1) ( ) Levy( )t t
i i     x x 

where   is the step length decided by the specific prob-
lem. In most cases, Yang suggests we can use O(1) [10]. 
So   can be set by the difference of different solutions as: 

( ) ( )
0 ( )t t

j i  x x              (3) 

where 0  is a constant. Two solutions are randomly 
chosen from the current population. This comes from the 
fact that similar eggs are less likely to be discovered.  

Levy flight is supposed to provide a “random walk”, 
where its step sizes are drawn from a Levy distribution. 

1Levy ~ , 0 2u t    ≤ ≤ 

Levy distribution was found to have an infinite 
variance and an infinite mean, which actually makes the 
consecutive jumps be a random walk process which obeys 
a power-law step-length distribution with a heavy tail. 

Furthermore, some of the worst solutions will be 
discarded with a probability of Pr to make room for new 
nests. New solutions can be obtained by random walk 
and mixing. Different permutation of existing solutions 
generates new mixing solutions. 

Apparently, our focus now is to generate the step 
lengths needed by the Levy flights. Yang et al gave a 
simple way below[7]: 
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where u and v obey the normal distributions below: 
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where   is the standard Gamma function. 
1.2  Standard Multi-Objective Cuckoo Search 

By modifying the Levy flight and the domination 
rules, we can get the multi-objective cuckoo search algo-
rithms. The MOCS proposed by Yang et al [7] asserts to 
keep the offspring only when they dominate their parents. 
This is too harsh for offspring because there are child solu-
tions on the Pareto front, but they may not dominate their 
parents. Obviously we want to keep those child solutions. 

The following MOCS algorithm combing the non- 
dominated sort and crowding distance was proposed by 
Syberfeldt et al [11] and Wang et al [12]. Here we present 
some basic concepts of the non-dominated sort and 
crowding distance. This process aims to compare and 
select better solutions generated by Levy flights for fur-
ther iterations. 

① Non-dominated sort: For solution p in popula-
tion, test every other solution in the population. Record 
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the solutions that p dominates and record the number of 
solutions dominating p. Rank the non-dominated solu-
tions as the first front. Then for solutions dominated by 
the first front, the number which dominates it minuses 
the number in the first front dominates it. Rank the 
non-dominated solutions as the second front, and so on. 

② Crowding distance: This approach is used to 
select solutions in the same front. Sort each solution in 
front i by the value of m-th objective. The difference of 
the m-th value prior and inferior to it divided by the range 
of m-th objective is the m-th distance. Crowding distance 
is the sum of all the objectives’ distance [5]. Here is the 
pseudo-code for the multi-objective cuckoo search [11]: 

 
Generate N parent solutions randomly and evaluate them 
while stopping criterion not met 

Levy flight among N parent population to generate N child 
population 

Evaluate the child population 
Combine the parent and child population and sort 
for (each solution in 2N) and (next generation＜N) 

add solutions to next generation according to their front  
number till next generation = N 
sort by crowding distance to fill the next generation to N 

end for 
Generate N solutions randomly with the discovery probability Pr 
Sort the 2 N population to select N solutions for the next step 
the chosen N solutions are the next generation 

end while 
print the results 

 

1.3  Advantages of the Cuckoo Search 
In fact cuckoo search makes a good combination of 

all the efficient techniques in the literatures, which 
makes it more promising. For instance, particle swarm 
optimization (PSO) algorithm updates the speed vector 
by calculating the difference between the current solu-
tion and the current global best. This is the main proce-
dure to ensure randomization. But this technique actually 
constrains the step size by using difference. In cuckoo 
search algorithms, due to the infinite mean and variance 
of Levy distribution, the step size consists of many small 
ones and occasionally big ones make the search even 
more efficient, especially for nonlinear problem with 
many local optimums [7]. 

2  Improved Multi-Objective  
Cuckoo Search 

2.1  Main Ideas 
Due to the step sizes drawn from the Levy distribu-

tion, many small steps already make the local search ef-

ficient. There is no need to use the “Discovery Probabil-
ity” Pr to generate random solutions in the process of 
exploiting local areas. This strategy not only searches 
repeatedly but also costs one more sort and selection op-
eration. This leads to a relatively high computational 
complexity, and takes more time.  

In the case of multi-objective optimization, the rela-
tion between solutions is more complicated. We cannot 
do the Levy flights referring to the global best, because 
there is no global best. There is a situation where no so-
lution dominates any other, e.g. solutions on the same 
Pareto front. Ordinary methods re-permute the current 
population, and then Levy flights are performed referring 
to the randomly permuted solutions. But the solution we 
referred to may not be non-dominated, even there might 
be many other solutions dominating it. Without moving 
towards the better solutions, we have a reason to doubt 
its efficiency. 

Given this, we propose the improved MOCS. It has 
the following characters. 

● Abandon the discovery process to reduce com-
putational complexity. Local searches are carried out at a 
reasonable level due to the small steps of Levy flights. 

● Apply the elitism strategy to adapt to the learn-
ing pattern of multi-objective optimization. We first sort 
the whole population to get the better half, or elites. Levy 
flights are then performed between these elites instead of 
randomly permutation to search more efficiently. 
2.2  Structure of the IMOCS 

Here is the pseudo-code for the IMOCS: 
 

Generate N parent solutions randomly and evaluate them 
Sort the evaluated population, and rank them 
while stopping criterion not met 

Screen sorted N population and keep the best N/2 elites
Levy flight between the elites to generate N child 

population 
Evaluate the child population 
Combine the parent and child population, sort and rank 

them 
Screen sorted 2N population and keep the best N as 

new generation 
end while 

print the results 

 
In the while loop, original MOCS needs to evaluate 

and sort twice because of the discovery process. But our 
IMOCS only has to evaluate the child population gener-
ated by Levy flight, and sort the combined population 
only once. 

The screen process, which does not take long, could 
pick out better individuals with lower ranks calculated by 
the non-dominated sort process. Further, the screen 
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process is conducted twice equally in IMOCS and 
MOCS, that costs almost the same time. 

Also, the new searching strategy abandons discovery 
process, keeping only one random solutions generation 
process (Levy flight), thereby saving lots of time. 
2.3  Process Comparison with Other Algorithms 

Table 1 compares the IMOCS with MOCS, Multi- 
objective Differential Evolution (MODE) and Non- 
dominated Sort Genetic Algorithm (NSGA-II). 

Table 1  Process comparison with other algorithms 

Algorithm Mutation Crossover Selection 
IMOCS Levy flights Learn from 

each other  
among elites 

Non-dominated 
sort, crowding  
distance 

MOCS 
 
 

Levy flights 
 
 

Random  
Discovery 
 

Non-dominated 
sort, crowding  

distance 

MODE Linear  
combination 
of parent  
solutions 

Fixed  
probability 

Abandon the parent 
if child dominates 
it, abandon the child 
conversely. 
Keep all of them if 
nondominated to 
each other, waiting 
for truncate 

NSGA-II  
 
 

Polynomial 
mutation 
 

Simulated 
binary cross-
over 

Non-dominated 
sort, crowding dis-
tance 

3  Experiments 

3.1  Test Functions 
Two objectives are already capable of reflecting the 

algorithms character, so here we choose 2-dimension ob-
jective functions. These are the benchmark test functions. 

ZDT1 

1 1 2 1( ) , ( ) ( )(1 / ( ))f x f g x g  x x x x       (8) 
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ZDT1 has a convex front. n is the dimension of the 
decision space, Pareto optimality is reached when g=1. 
Here n is set to 30. 

ZDT2 

 2
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ZDT2 has a concave front. n is the dimension of the 
decision space. Also Pareto optimality is reached when 

g=1. 
ZDT3 
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ZDT3 has a discontinuous front. n is the dimension 
of the decision space. Also Pareto optimality is reached 
when g=1. 

The test functions chosen are representative enough 
to show the algorithms’ features. In calculation, 300 
uniformly distributed points on the Pareto are chosen to 
imitate the real Pareto front. 
3.2  Metrics 

There are three main goals in multi-objective opti-
mization [13]: 

● The best known Pareto front should be as close 
to the real front as possible, say solutions on the Pareto 
front are the most wanted ones. 

● Solutions in the best known Pareto set should be 
evenly and diversely distributed on the Pareto front, 
which gives the decision maker more choices. 

● Best known Pareto front should depict the whole 
picture real front, including some extreme points in the 
objective space. 

These goals contradict each other on a regular basis. 
The first goal focuses on a particular region on the front 
while the second goal emphasizes on the global search to 
improve diversity on the front known. The third goal 
extends the search to the both ends of the front, to cover 
as many solutions as possible. 

Convergence metric: *

*
1 2 | |

( , , , )
P

P  p p p  are 

the solutions on the real Pareto front, 

1 2 3 | |( , , , , )AA  a a a a  is the best-known Pareto front 

estimated by our algorithm. For each ia  in A, the regu-

lar minimum distance to *P  is defined as: 

*

2

max min
1 1

( ) ( )
min

k
m i m j

i
j P m m m

f f
d

f f

 
   


≤ ≤

a p
(14)

Here max
mf is the maximum of the *P ’s m-th objec-

tive, while min
mf  is the minimum. Convergence metric is 

the average regularized distance of all the points in A. 
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Convergence metric reflects the distance between 
best known Pareto front and the real front. A lower value 
of it represents a better approximation. 

Spacing metric: A is the best-known Pareto front 
estimated by algorithm. Function S: 

2
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1
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i
i

S d d
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(17)  
d is the average of all the id . k is the number of 

objectives. If k = 0, then all the non-dominated solutions 
are evenly distributed in the objective space. As Man-
hattan distance is used in the definition, this metric 
works well in the non-continuous front’s cases too. 

3.3  Results 
We tested our algorithm along with 3 other well- 

known multi-objective algorithms. The software is 
MATLAB R2015b. The computer hardware: Processor 
Intel(R) Core(TM) i7-4712MQ CPU @2.30GHz 2.30 
GHz, RAM: 8.00GB. Parameters of the algorithms are 
set below: 

Population: 50; Maximum iteration: 500; Step 
length: 1; Number of times running independently: 20; 
Discovery probability of the standard MOCS (Pr): 0.25. 

Tables 2-7 show the statistics of the results at the 
100-th generation on test problem ZDT1, ZDT2 and 
ZDT3. t means the average time (s) needed running 
through all 500 generations. We run each algorithm 
against each problem 20 times independently. 

Table 2  Convergence metrics on ZDT1 

Algorithm Max Min Mean Variance 

IMOCS 0.0057 0.0022 0.0031 7.7089E-07 

MOCS 0.0048 0.0021 0.0037 4.3428E-07 

MODE 0.0464 0.0227 0.0323 2.9891E-05 

NSGA-II 1.7136 1.1239 1.5011 0.0198 

Table 3  Spacing metrics on ZDT1 

Algorithm Max Min Mean Variance t/s 

IMOCS 0.0173 0.0105 0.0141 3.8848E-06 2.4755

MOCS 0.0166 0.0101 0.0132 3.3793E-06 4.8566

MODE 0.0516 0.0136 0.0245 8.2196E-05 0.9351

NSGA-II 0.0331 0.0128 0.0232 3.4149E-05 2.7153

Table 4  Convergence metrics on ZDT2 

Algorithm Max Min Mean Variance 

IMOCS 0.0037 0.0021 0.0029 1.9669E-07

MOCS 0.0042 0.0028 0.0035 1.4518E-07

MODE 0.0598 0.0245 0.0399 9.4248E-05

NSGA-II 2.4114 1.3504 1.7923 0.0681 

Table 5  Spacing metrics on ZDT2 

Algorithm Max Min Mean Variance t/s 

IMOCS 0.016 0.0104 0.0143 1.9631E-06 2.6144

MOCS 0.0185 0.0100 0.0138 4.6533E-06 5.0495

MODE 0.1264 0.0305 0.066 4.7218E-04 0.938 

NSGA-II 0.0907
2.4491 

E-05 
0.012 3.8469E-04 5.5116

Table 6  Convergence metrics on ZDT3 

Algorithm Max Min Mean Variance 

IMOCS 0.0048 0.0018 0.0030 8.4771E-07 

MOCS 0.0049 0.0018 0.0029 4.7790E-07 

MODE 0.0413 0.0212 0.0300 3.4829E-05 

NSGA-II 1.1599 0.7099 0.9363 0.0186 

Table 7  Spacing metrics on ZDT3 

Algorithm Max Min Mean Variance t/s 

IMOCS 0.0227 0.0120 0.0176 7.4071E-06 4.8159

MOCS 0.0209 0.0119 0.016 6.8069E-06 9.0642

MODE 0.0799 0.0304 0.0507 1.9437E-04 0.9413

NSGA-II 0.032 0.0113 0.0188 3.1902E-05 3.5062

 
We can clearly see that solutions generated by 

MODE and NSGA-II are far from the real Pareto front at 
100-th generation, therefore their spacing metrics make 
no sense. MODE runs fast, but it converges slowly in the 
first 100 generations. 

We know from the results that the performance of 
IMOCS and MOCS are very close to each other. Some-
times IMOCS works even better. Because of the elitism 
strategy and the abandonment of the discovery process, 
IMOCS spends less time than MOCS. 

4  Conclusion 

We abandoned the discovery process of the stan-
dard MOCS and proposed an IMOCS using elite strategy. 
High efficiency is achieved by referring to better elite 
solutions when doing Levy flights. Considering that the 
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Levy distribution has already taken local searches into 
account, we delete the random discovery process in order 
to save time. Numerical studies have illustrated that 
IMOCS would take only half the needed by MOCS. The 
evidence proves that our IMOCS is a more efficient 
multi-objective algorithm. 

For further study, more test functions are welcomed 
to test the algorithm. Other learning mechanisms are also 
worth considering. Distributions other than Levy distri-
bution should also be examined to see if we can improve 
its efficiency. 
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