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Abstract: Bilevel programming problems are of growing interest 
both from theoretical and practical points of view. In this paper, 
we study a pessimistic bilevel programming problem in which the 
set of solutions of the lower level problem is discrete. We first 
transform such a problem into a single-level optimization problem 
by using the maximum-entropy techniques. We then present a 
maximum entropy approach for solving the pessimistic bilevel 
programming problem. Finally, two examples illustrate the feasi-
bility of the proposed approach. 
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0  Introduction 

Bilevel programming is a sequence of two optimi-
zation problems where the constraint region of the upper 
level problem is determined implicitly by the lower level 
problem. It plays exceedingly important roles in different 
application fields, such as transportation, economics, 
ecology, and engineering[1]. The recent monographs and 
surveys can refer to Refs. [2-7]. 

A general formulation of bilevel programming 
problem can be written as follows: 

“ min ( , )F x y ” 
s.t. ( ) 0G x ≤

              
(1)

 
where y is the solution of the lower level problem,  

min ( , )
y

f x y
 

s.t. ( , ) 0h x y ≤
 

where ,nxR ,myR , : ,n mF f  R R R : nG R  
,qR : n m ph  R R R . 

Let  ( ) 0nX x G x R ≤ be a compact set of nR . 

For each x X , denote by ( )x  the set of solutions of 
the lower level problem. When the set ( )x is not a sin-
gleton, the upper level objective function value cannot be 
predicted in general without knowledge of the response 
of the lower level problem. In this case, the definition of 
problem (1) is unclear. That is the reason why we use the 
quotation marks in (1). To overcome this ambiguity, most 
of the authors used either the optimistic formulation or 
pessimistic formulation[3]. The corresponding problems 
are called strong and weak bilevel programming problem, 
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respectively[8]. For the optimistic bilevel programming 
problem, the leader can affect the follower’s decision, so 
that the follower always selects a strategy in ( )x  that 
suits the leader best. In a competitive world, on one hand, 
the cooperation between both the leader and the follower 
may not be allowed. In this case, the leader is not able to 
influence the follower’s choice. On the other hand, the 
leader may be risk-averse. Thus, the leader wishes to 
bound the damage resulting from an undesirable selec-
tion of the follower in ( )x , i.e. he minimizes the func-
tion max ( , )F x y which subjects to the constraint 

( )y x . This leads to the following pessimistic bilevel 
programming problem: 

( )
min sup ( , )
x X y x

F x y
                

(2) 

Several papers have been contributed to pessimistic 
bilevel programming problems from different subjects. 
For example, Refs. [9-14] discussed the existing results 
and approximations results of solutions. Using a variety 
of techniques from convex, nonconvex and nonsmooth 
analysis, Dassanayaka[15] presented first order necessary 
and sufficient optimality conditions for pessimistic bi-
level programming problems. Employing advanced tools 
of variational analysis and generalized differentiation, 
Dempe et al [16] derived lower (i.e. conventional) subdif-
ferential optimality conditions for pessimistic bilevel 
programming problem via the LLVF and KKT ap-
proaches. Wiesemann et al [17] analyzed the structural 
properties for the independent pessimistic bilevel pro-
gramming problem, and developed a solvable ε-appro- 
ximation algorithm. Cervinka et al [18] presented a new 
numerical method to compute approximate and the so- 
called relaxed pessimistic solutions to mathematical pro-
grams with equilibrium constraints which is a general-
ized bilevel programming problem. Based on an exact 
penalty function, Zheng et al [19] proposed an algorithm 
which can find at least a local solution for the weak lin-
ear bilevel programming problem. For a class of pessi-
mistic semivectorial bilevel programming, Liu et al 

[20] 

established the first-order necessary optimality condi-
tions by using the scalarization method and the general-
ized differentiation calculus of Mordukhovich [16]. Re-
cently, Zheng et al [21] developed a modified Kth-Best 
algorithm for the weak linear bilevel programming problem. 

It is worthwhile noting that Mallozzi et al [22] pre-
sented an intermediate method for solving static non-
zero-sum game, and supposed that the leader could ob-
tain or know a density function ( )p x  on ( )x  for 
each x X . Before using this method for all practical 

purposes, however, we need to know the density function 
( )p x . In general, the leader is difficult to obtain an exact 

description of such a function. In order to overcome this 
dilemma, the maximum entropy approach is considered 
since it can be used to estimate the probability distribu-
tion of the set ( )x . So, in this paper, the pessimistic 
bilevel programming problem is solved by using the 
maximum entropy approach. To the best knowledge of 
the authors, this is the first time that such a problem is 
solved via maximum entropy approach. 

The paper is organized as follows. We consider the 
case in which the set ( )x  is discrete for any x X  
in Section 1, and then give some examples to illustrate 
the feasibility of the maximum entropy approach in Sec-
tion 2. In Section 3, we give a conclusion. 

1  Maximum Entropy Approach for 
Discrete Reaction Set 

We first give the related definition of pessimistic 
solution. 

Definition 1 
(a) Constraint region of problem (2): 

 ( , ) , ( , ) 0 .S x y x X h x y  ≤  

(b) Projection of S onto the leader’s decision space: 

   ,such that ( , ) .S X x X y x y S     

(c) Feasible set for the follower: 

 ( ) ( , ) 0 .Y x y h x y ≤  

(d) The follower’s rational reaction set: 

  ( ) Arg min ( , ) ( ) .x y y f x y y Y x     

(e) Inducible region or feasible region of the leader: 

 IR ( , ) ( , ) , ( ) .x y x y S y x    

(f) Define a function ( )x  as follows: 

( )
( ) sup ( , ).

y x
x F x y





  

A point *x X with * *( )y x  is called a pessi-
mistic solution to (2), if 

            
* * *( ) ( , )x F x y   
*( ) ( ), ( , ) IR.x x x y   ≤  

Next, suppose that the set ( )x  has a finite num-
ber of elements. More precisely, let 

 ( ) ( ) 1,2, , .ix y x i m     

Let 

1
( ) sup ( , ( )).i

i m
x F x y x 

≤≤
 

Then, the pessimistic bilevel programming problem (2) 
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with discrete reaction set can be written as follows: 
min ( )
x X

x
                   

(3) 

Note that, it is difficult to solve problem (3), be-
cause ( )x  may be nondifferentiable at some points. To 
avoid this, a natural idea is to find a differentiable ap-
proximation of ( )x  to replace ( )x . 

Now, suppose that the leader would attribute prob-
ability distribution ( )ip x  on ( )iy x  ( 1,2, ,i m  ), 

where ( ) 0ip x ≥ , and 
1

( ) 1
m

i
i

p x


 . Note particularly 

that, the density function ( )ip x ( 1,2, ,i m  ) only play 

important roles in deriving the formulation of ( )x  

below, but they have no link to the function ( )x . 

Based on the maximum entropy approach solving 
constrained optimization[23], we consider the following 
problem: 

1

1
max ( ) ( , ( )) ( ) ln ( )

m

i i i i
i

p x F x y x p x p x


  
 

  

s.t. ( ) 0,ip x ≥  

1

( ) 1,
m

i
i

p x


                         (4) 

where 0 ∨  is a real parameter, and 
1

( )
m

i
i

H p x


   

ln ( )ip x is the Shannon information entropy. 

It follows from Templeman and Li[23] that the solu-
tion of problem (4) is written as: 

 
 

1

exp ( , ( ))
( ) , 1,2, , ,

exp ( , ( ))

i
i m

i
i

F x y x
p x i m

F x y x






 


  

and its optimal value is  
1

1
ln exp ( , ( )) .

m

i
i

F x y x
 

  

For any 0 ∨ , define: 

 
1

1
( ) ln exp ( , ( )) .

m

i
i

x F x y x 
 

   

Then, it is easy to obtain the following result. For details, 
see Ref.[23]. 

Theorem 1  For any x X , we have 
lim ( ) ( ).x x

 


  

The result above implies that we can use the func-
tion ( )x

 
to approximate ( )x . Thus, the problem (3) 

can be approximated by the following problem: 
min ( )
x X

x
                 (5) 

Theorem 2  Let x be a solution of problem (5). If 
*x x   as    , then *x  is a solution of problem 

(3). 

Proof  By the definition of x , for all x X , we 
find that 

( ) ( ).x x   ≤  

As    , for all x X , it follows that 
*( ) ( )x x ≤  

which implies that *x  is a solution of problem (3). This 
completes the proof.  

2  Maximum Entropy Approach and 
Numerical Examples 

In this section, we first present the following 
maximum entropy approach based on the mathematical 
results in Section 1. 

Maximum entropy approach 
Step 1  Let 0 ∨ . Choose a sequence  k  

such that k    as k  , and let 1k  . 

Step 2  Compute the solution set ( )x of the low-
er level problem. 

Step 3  Solve problem (5) for k  , and denote 
its solution by kx . 

Step 4  If ( ) ( )
k k kx x   ∧ , then the algorithm 

terminates and kx is an approximate solution to problem 

(2). Otherwise, let 1k k  , and go to Step 3. 
To illustrate the feasibility of the proposed approach, 

we consider the following two examples which are 
adapted from Ref. [22]. 

Example 1 

( )
min max

x y x
x y


  

s.t. 1 1,x ≤ ≤  

where ( )x  is the set of solutions of the lower level 
problem,  

2 4min
y

y x
 

s.t. 1 1.y ≤ ≤  

For this example,  1,1 ,x     2 2( ) ,x x x   , 

and the pessimistic solution is * 0.5x   . 
Example 2 

( )
min max

x y x
xy

  
s.t. 1 1x ≤ ≤  

where ( )x  is the set of solutions of the lower level 
problem, 

1
min max 0,

2 2y

x
y y

     
    

s.t. 1 1.y ≤ ≤  
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The set of solutions of the lower level problem in Exam-

ple 2 is 
1

( ) ,0 .
2

x
x     

 

Any point *x in [0,1] is the pessimistic solution. 
The numerical tests were run on a PC(1.3GHz Inter 

Core i5, 4GB RAM). All nonlinear programming prob-
lems in Step 3 of the proposed maximum entropy ap-
proach are solved by GAMS/BARON[24]. BARON is one 
of the recently updated solvers on the NEOS server. In 
particular, it is commonly used for the global solution of 
nonconvex nonlinear programming problems. In our test, 
the parameters are set as follows: 810  , 1 1  , and 

1 10k k   . Let 0 ( ) ( )x x  . Furthermore, we can 
obtain the following results. 

(i)  Example 1 
From Table 1, it can be seen that when 100  , 

0.5x   , and ( ) ( ) 0x x     which shows that  
* 0.5x    is the pessimistic solution for this example. 

Moreover, ( )x is almost identical to 0 ( )x as 

100   in Fig. 1. 

Table 1  Computational results of Example 1 

 
Fig. 1  Comparison of Example 1 between ϕρ(x) and ϕ(x) 

(ii)  Example 2 
From Table 2, it can be seen that ( )x  will be 

close to ( )x
 

with  sufficiently large  . Obviously, 
* 0x   is an approximately pessimistic solution to Ex-

ample 2. Comparing the curves of upper level objective 
values of ( )x  in Fig. 2, we observe that the objective 
values achieved by the proposed maximum entropy ap-
proach are almost identical while 101 10   . Note that, 
this example has an infinite number of pessimistic solu-
tions. Our proposed approach only obtains an approxi-

mately pessimistic solution.  
Table 2  Computational results of Example 2 

 
Fig. 2  Comparison of Example 2 between ϕρ(x) and ϕ(x) 

These two examples show the feasibility of maxi-
mum entropy approach. With sufficiently large  , we 
could find an approximation solution of the pessimistic 
bilevel programming problem. Moreover, this method is 
easy to implement. Therefore, it will provide us with a 
new way to solve the pessimistic bilevel programming 
problems. 

3  Conclusion  

In this paper, we present a maximum entropy ap-
proach for solving pessimistic bilevel programming 
problems. Two examples show that the proposed ap-
proach is feasible. In fact, this approach would not be 
viable for an intricate pessimistic bilevel programming 
problem, because it needs to obtain the set of solutions of 
the lower level problem in advance. Clearly, it allows us 
to use the constrained nonlinear programming tools to 
solve the pessimistic bilevel programming problems. 
Therefore, it may provide us with a new way to discuss 
the pessimistic bilevel programming problems. 

[1] Dempe S. Annottated bibliography on bilevel programming 

and mathematical problems with equilibrium constraints [J]. 

Optimization, 2003, 52: 333-359. 

ρ xρ ϕρ(xρ) ϕ(xρ)

1  0.084  

10    

100    

ρ xρ ϕρ(xρ) ϕ(xρ)

1  0.062  

10    

100    

103   
104   
105   
1010   

References 
 



ZHENG Yue et al : Maximum Entropy Approach for Solving Pessimistic … 

 

67

[2] Bard J F. Practical Bilevel Optimization: Algorithms and 

Applications [M]. Dordrecht: Kluwer Academic, 1998. 

[3] Dempe S. Foundations of Bilevel Programming ,Nonconvex 

Optimization and Its Applications Series[M]. Dordrecht: 

Kluwer Academic, 2002. 

[4] Colson B, Marcotte P, Savard G. An overview of bilevel 

optimization [J]. Annals of Operations Research, 2007, 153: 

235-256. 

[5] Shimizu K, Ishizuka Y, Bard J F. Nondifferentiable and 

Two-Level Mathematical Programming [M]. Dordrecht: 

Kluwer Academic, 1997. 

[6] Wang G, Wan Z, Wang X. Bibliography on bilevel program-

ming [J]. Advances in Mathematics, 2007, 36: 513-529(Ch). 

[7] Lu J, Han J, Hu Y, et al. Multilevel decision-making: A sur-

vey [J]. Information Sciences, 2016, 346: 463-487. 

[8] Loridan P, Morgan J. Weak via strong Stackelberg problem: 

New results [J]. Journal of Global Optimization, 1996, 8: 

263-287. 

[9] Aboussoror A, Mansouri A. Weak linear bilevel program-

ming problems: Existence of solutions via a penalty method 

[J]. Journal of Mathematical Analysis and Applications, 

2005, 304: 399-408. 

[10] Aboussoror A, Mansouri A. Existence of solutions to weak 

nonlinear bilevel problems via MinSup and d.c. problems [J]. 

RAIRO Operations Research, 2008, 42: 87-103. 

[11] Aboussoror A, Adly S, Jalby V. Weak nonlinear bilevel 

problems: existence of solutions via reverse convex and 

convex maximization problems [J]. Journal of Industrial and 

Management Optimization, 2011, 7: 559-571. 

[12] Lignola M B, Morgan J. Topological existence and stability 

for Stackelberg problems [J]. Journal of Optimization The-

ory Applications, 1995, 84: 145-169. 

[13] Loridan P, Morgan J. New results on approximate solutions 

in two-level optimization [J]. Optimization, 1989, 20: 819- 

836.  

[14] Loridan P, Morgan J. ε-regularized two-level optimization 

problems: approximation and existence results [C]// Pro-

ceeding of the Fifth French-German Optimization Confer-

ence. New York: Springer -Verlag, 1989: 99-113. 

[15] Dassanayaka S. Methods of Variational Analysis in Pessi-

mistic Bilevel Programming [D]. Detroit: Wayne State Uni-

versity, 2010. 

[16] Dempe S, Mordukhovich B S, Zemkoho A B. Necessary 

optimality conditions in pessimistic bilevel programming [J]. 

Optimization, 2014, 63: 505-533. 

[17] Wiesemann W, Tsoukalas A, Kleniati P, et al. Pessimistic 

bi-level optimisation [J]. SIAM Journal on Optimization, 

2013, 23: 353-380. 

[18] Cervinka M, Matonoha C, Outrata J V. On the computation 

of relaxed pessimistic solutions to MPECs [J]. Optimization 

Methods and Software, 2013, 28: 186-206. 

[19] Zheng Y, Wan Z, Sun K, et al. An exact penalty method for 

weak linear bilevel programming problem [J]. Journal of 

Applied Mathematics and Computing, 2013, 42: 41-49. 

[20] Liu B, Wan Z, Chen J, et al. Optimality conditions for pes-

simistic semivectorial bilevel programming problems [J]. 

Journal of Inequalities and Applications, 2014, 1: 1-26. 

[21] Zheng Y, Fang D, Wan Z. A solution approach to the weak 

linear bilevel programming problems [J]. Optimization, 2016, 

65: 1437-1449. 

[22] Mallozzi L, Morgan J. Hierarchical systems with weighted 

reaction set [C] // Nonlinear Optimization and Applications. 

New York:Springer-Verlag , 1996 :271-282. 

[23] Templeman A B, Li X. A maximum entropy approach to 

constrained non-linear programming [J]. Engineering Opti-

mization, 1987, 12: 191-205. 

[24] Tawarmalani M, Sahinidis N V. A polyhedral branch-and-cut 

approach to global optimization [J]. Mathematical Pro-

gramming, 2005, 103: 225-249. 

□ 
 
 
 
 


