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Abstract: PM2.5 has become an increasing public concern re-
cently because of its visibility reduction and severe health risks. 
For the whole year of 2013, hourly PM2.5 data of 496 monitoring 
sites scattered in 74 cities of China are collected to analyze tem-
poral and spatial variability of PM2.5 concentration. Different 
temporal scales (seasonal variation, monthly variation and daily 
variation) and spatial scales (urban versus rural, typical areas and 
national scale) are discussed. Results show that PM2.5 concentra-
tion changes significantly in both long-term and short-term scales. 
An apparent bimodal pattern exists in daily variation of PM2.5 
concentration and the daytime peak appears around 10:00 am 
while the lowest concentration appears around 16:00 pm. Spatial 
autocorrelation analysis and Ordinary Kriging are used to charac-
terize spatial variability. Moran’s I of PM2.5 concentration in three 
typical regions, the Beijing-Tianjin-Hebei region, the Yangtze 
River Delta region and the Pearl River Delta region, is 0.906, 
0.693, 0.746, respectively, which indicates that PM2.5 is strong 
spatial correlated. Spatial distribution of annual PM2.5 concentra-
tion simulated by Ordinary Kriging shows that 7.94 million km2 

(83%) areas fail in meeting the requirement of China’s National 
Ambient Air Quality Standards Level-2 (35 g/m3) and there are at 
least three concentrated highly polluted areas across the country. 
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0  Introduction 

No one can doubt China’s remarkable economic 

achievements in the past three decades. Although a great 

deal of efforts in air pollution reduction has been made, 

China is still suffering from severe air pollution largely 

due to the rapid economic growth and high population 

density [1, 2]. Recently, PM2.5 (particles with aerodynamic 

diameter less than 2.5 microns) has become a public con-

cern because of its visibility reduction and severe health 

impacts. Numerous epidemiological studies demonstrate 

that respiratory and cardiovascular diseases are closely 

associated with PM2.5 
[3-5]. What’s more, PM2.5 has been 

the primary air pollutant in many Chinese cities [2]. 
As any other air pollutants, PM2.5 concentration 

varies significantly whether at temporal scales or spatial 
scales. Imbalance of economic development and differ-
ences of geographical conditions lead to obvious re-
gional disparity (large scale) of PM2.5 pollution. In terms 
of city scale (small scale), PM2.5 concentration also 
shows apparent spatial heterogeneity and temporal vari-
ability due to ① Uneven distribution of emission sources; 
② Fluctuations of emissions; ③ Complexity of air dis-
persion condition [6, 7]. As spatial-temporal variability of 
PM2.5 concentration is of significant importance for air 
quality monitoring, assessing and controlling, many pre-
vious spatial-temporal analyses have been conducted on 
city or regional scale. Russell et al [8] found out obvious 
seasonal variation of PM2.5 concentration with higher 
concentration in late fall and pronounced morning peak 
in its daily variation in Southeast Texas. Strong seasonal 
and daily variations of PM2.5 concentration have also 
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been identified in other areas [9, 10]. However, because of 
the limited extent representativeness and small numbers 
of monitoring sites, spatial characterization analysis is 
much more difficult than temporal variability analysis. 
Many methods, including spatial interpolation, Land Use 
Regression (LUR) and satellite-derived aerosol optical 
depth (AOD), are introduced for high spatial resolution 
simulation of PM2.5 concentration at diverse scales from 
intra-city to globe [11-13]. As one of the most popular 
methods used for spatial interpolation, Kriging has been 
used in many disciplines, as well as in air pollution map-
ping and spatial variability analysis [14,15]. As other ecol-
ogy phenomenon, the spatial distribution of PM2.5 con-
centration is not independent but correlated with each 
other, which is called spatial autocorrelation. Spatial 
autocorrelation analysis was also used in some previous 
researches [16], but few are related to PM2.5 pollution. 

Although spatial or temporal variability of PM2.5 or 
PM10 concentration was analyzed in some typical cites or 
regions in China [17, 18], this study focuses on PM2.5 con-
centration variability at different temporal and spatial 
scales, especially in diverse aspects analysis of temporal 
variability. In this study, long-term variation (seasonal 
variation and monthly variation) and short-term variation 
(daily variation) of PM2.5 concentration from three as-
pects (types of monitoring sites, north-south gap and re-
gional disparity) will be characterized in Section 2.1 and 
Section 2.2. As for spatial variability, spatial autocorrela-
tion analysis will be applied into three typical regions 
followed by PM2.5 concentration spatial distribution 
simulation using Ordinary Kriging in Section 2.3 and 
Section 2.4. It is worth noting that spatial-temporal vari-
ability affects each other, for example, spatial variability 
of PM2.5 concentration is also reflected in temporal vari-
ability analysis from diverse aspects. 

1  Materials and Methods 

1.1  PM2.5 Data 

The Ministry of Environmental Protection of China 
enacted new Ambient Air Quality Standards (GB3095 
-2012) in February, 2012 and started PM2.5 routine 
monitoring from December, 2012. The first batch of 496 
monitoring sites in 74 cities are mainly located in three 
typical regions, the Beijing-Tianjin-Hebei (BTH) region, 
the Yangtze River Delta (YRD) region and the Pearl River 
Delta (PRD) region. Provincial capital cities and some 

other large cities are also included in the first batch. There 
are 10-15 monitoring sites in megacities, like Beijing and 
Shanghai, and 3-6 monitoring sites in other prefecture-level 

cities. Hourly PM2.5 data of 496 monitoring sites for the 
whole year of 2013, excluding Taiwan, Hong Kong and 
Macao, were collected from China National Environ-
mental Monitoring Center. 

1.2  Temporal Variability 

As for temporal variability, long-term variation 
(seasonal variation and monthly variation) and short-term 
variation (daily variation) of PM2.5 concentration will be 
characterized. However, temporal variability differs from 
each other in various places on consequence of large ar-
eas of China. Three aspects will be considered when we 
analyze temporal variability. 

1)  Types of monitoring sites 
Monitoring sites can be divided into two groups, 

urban-site and clean-site. Urban-sites are located in ur-
ban areas while clean-sites are located in suburban areas, 
usually in rural areas or nature protection areas. 
Clean-sites are used for representing the background 
concentration of air pollutants. There are differences 
between urban-sites and clean-sites, which reflects ru-
ral-urban disparity of PM2.5 pollution. Not all cities have 
clean-site and there are only 38 clean-sites among 496 
sites. The average distance between each clean-site and 
the nearest urban-site in the same city is 20.7 km for all 
38 clean-sites. 

2)  North-south gap 
Air pollution in northern China is much more seri-

ous than that in south. In addition to natural condition 
disparity between north and south, government-led heat-
ing operation exacerbates the severe air pollution in 
northern China in winter since coal burning for heating is 
the main source of air pollutants including PM2.5. Be-
cause of obvious differences of PM2.5 pollution in north 
and south, it is necessary to analyze temporal variability 
respectively. For the aspect of north-south gap, 496 
monitoring sites are divided into two parts, namely sites 
in the north and sites in the south, according to the 
Qinling Mountains-Huai River Line. 

For sites in northern China, temporal variability of 
heating season and non-heating season will be analyzed. 
Government-led heating is provided for all cities in win-
ter in the north of Qinling Mountains-Huai River Line. 
However, duration of heating is different among cities. 
For example, heating duration in Beijing starts on No-
vember 15 and terminates on March 15 next year, a total 
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of 4 months. While in higher-latitude (Harbin), it lasts 
from November 1 to March 31 in the next year, about 5 
months. For convenience, heating season is defined as 
November to March, and the rest of the year (from April 
to October) is non-heating season for sites in northern 
China in this study. 

In southern China, precipitation is the most signifi-
cant characteristic of seasonal change, based on which a 
year is divided into dry, wet and transition periods. The 
duration of each period is also different from city to city 
in southern China. Since most cities in southern China 
undergo rainy season (also called wet period) from May 
to August, while on the other hand, the corresponding 
season of dry period is winter. As a consequence, dry 
period is defined as the period from November to Febru-
ary in the next year, and wet period is from May to Au-
gust, and the rest (March, April, September and October) 
is transition period.  

Seasonal variation and daily variation of PM2.5 
concentration in both northern and southern China will 
be discussed in Section 2.1 and Section 2.2. 

3)  Regional disparity 
There are obvious regional disparity and spatial 

clusters of PM2.5 pollution level(average) in China. The 
monitoring sites are distributed in nine regions (Table 1). 

Table 1  Provinces included in nine regions 

Regions Provinces included 

North China Beijing, Tianjin, Hebei, Shanxi, Inner 
Mongolia, Shandong 

East China Shanghai, Jiangsu, Zhejiang, Anhui 

South China Guangdong, Fujian 

Southwest China Yunnan, Guizhou, Guangxi 

Central China Henan, Shaanxi, Hubei, Hunan, Sichuan, 
Chongqing, Jiangxi 

Northwest China Gansu, Qinghai, Ningxia 

Northeast China Heilongjiang, Jilin, Liaoning 

Xinjiang Xinjiang 

Tibet Tibet 

Geographical position of sites, administrative bound-
ary and PM2.5 pollution level are taken into consideration 
when dividing those regions. Division result differs from 
traditional geographical division of China in some parts. 
It is important to pay attention to the difference of  
North China and northern China defined in Section 1.2. 
The extent of North China is shown in Table 1, while 
northern China represents region in the north of Qinling 
Mountains-Huai River Line. The difference between 
South China and southern China is the same. Although 
there is only one city that has carried out PM2.5 monitor-

ing in both Xinjiang and Tibet respectively, they are di-
vided into two regions because PM2.5 concentration dif-
fers greatly from each other as Urumqi is surrounded by 
desert with high PM2.5 concentration while Lhasa is lo-
cated in plateau with clean air. 
1.3  Spatial Autocorrelation 

The basic hypothesis of classical statistics is that the 
samples are independent. It often cannot meet the re-
quirement when samples are geo-referenced because 
they are associated with each other called spatial de-
pendence. Spatial autocorrelation refers to the relation-
ship between certain attribution of one geographical ob-
ject and the same attribution of other objects in the same 
geographical space. It is based on the first law of geog-
raphy, which is “Everything is related to everything else, 
but near things are more related than distant things”[19]. 
Spatial autocorrelation is usually used to identify spatial 
distribution pattern of some phenomena (air pollution) 
and its associated values (concentration).  

Positive spatial autocorrelation indicates that 
neighboring values are similar while negative spatial 
autocorrelation indicates dissimilar values. Moran’s I [20] 
statistic is the most commonly used measures of spatial 
autocorrelation and there are some other measures in-
cluding Geary’s C [21]. Global Moran’s I statistics put 
forward by Cliff [22] is used to examine whether spatial 
autocorrelation exists or not but it cannot tell where exist 
spatial clusters. Therefore, Anselin put forward local 
Moran’s I statistics [23]. 

The global Moran’s I statistic is as follows: 
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where iZ  is the deviation of an attribute for feature i 
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In general, the value of Moran’s I varies between -1 
and 1, representing negative and positive spatial auto-
correlation, respectively. The absolute value is closer to 
zero, which represents the weaker spatial autocorrelation.  
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where xi is an attribute for feature j, X  is the mean of 
the corresponding attribute, w i,j is the spatial weight 
between feature i and j, and 
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Since spatial distribution of PM2.5 emissions (facto-
ries, traffic, etc.) is agglomerated coupled with the inter-
action of air diffusion and regional transportation, PM2.5 
values are highly auto-correlated [24]. Owing to monitor-
ing sites are points, spatial weight matrix will be created 
using distance weight (Euclidean Distance) in GeoDA1.4.0. 
Results will be displayed using ArcGIS10.0. 

As what mentioned before, monitoring sites are 
largely located in three typical regions, the BTH region, 
the YRD region and the PRD region, partly correspond-
ing to North China, East China and South China. Spatial 
autocorrelation analysis will be applied in these three 
representative regions, not in the whole country. Other 
four cities (Jinan, Qingdao, Taiyuan and Hohhot) are 
added in the BTH region. Fuzhou, Xiamen and Haikou 
are excluded due to their large distances from the YRD 
region, although those three cities are included in South 
China area for regional temporal variability analysis. 

1.4  Ordinary Kriging 

Geostatistics refers to techniques used for mapping 
of surfaces from limited sample data and the estimation 
of values at unsampled locations. As one of the most 
popularly used methods, Kriging was first developed by 
Matheron [25] from an idea of Krige [26] and it was first 
used in mineral industry. Recently, Kriging has been 
widely used in many other fields including air pollution 
mapping [27, 28]. Kriging estimation is a three stages 
process: ① Estimation of the semi-variogram; ② Fit-
ting the semi-variogram; ③  Punctual Kriging [14]. 
Firstly, semi-variogram  ( ) is used to characterize the 
spatial correlation of monitoring data as follows: 
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where h is the distance between two monitoring sites and 
N(h) is the number of pairs with the same distance h. 
Secondly, three frequently referenced spatial models 
(spherical, exponential and Gaussian) are used to obtain 
the optimal semi-variogram parameters (range, partial 
sill and nugget) [29]. Finally, values at those unobserved 
locations will be estimated. As for the basic technique, 
Ordinary Kriging uses a weighted average of observed 

neighboring values to estimate the unobserved values at 
a given location as follows: 
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where i is calculated by introducing a Lagrange multi-
plier  and solving the system: 
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Under the constraint: 
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where S is the predictive position; Z(S) is the predictive 
value of point without observation; Z(Si) is the measure-
ment of position i; i is the weight of Z(Si) and N is 
number of measurement. The process will be carried out 
using Geostatistics Analyst in ArcGIS10.0 and as a result, 
spatial distribution of PM2.5 concentration will be simu-
lated. 

2  Results 

2.1  Long-Term Variation of PM2.5 Concentration 

1)  Seasonal variation 

For each site, daily averages are calculated from 
hourly monitoring results and then daily averages are 
used to obtain monthly averages. Seasonal averages of 
each site are calculated by averaging the aggregate of 
monthly averages. Ordinary season divisions in China 
are as follows: spring (March, April, May), summer 
(June, July, August), autumn (September, October, No-
vember) and winter (December, January, February). A 
year is divided according to ordinary season divisions 
when we analyze seasonal variation across China and in 
diverse regions. Distinguishing seasonal variation be-
tween northern China and southern China, a year is di-
vided into heating season and non-heating season in 
northern China while it is divided into dry, wet and tran-
sient periods in southern China. Division methods in de-
tail are described in Section 1.2. Table 2 shows the de-
scriptive statistics of seasonal average PM2.5 concentra-
tion of each site across China. 

Average PM2.5 concentration is 73.2 g/m3 aggre-
gated from all 496 monitoring sites for the whole year of 
2013, which exceeds twice of China’s National Ambient 
Air Quality Standards Level-2 (35 g/m3). Seasonal av-
erages of PM2.5 concentration vary greatly from 44.9 
g/m3 in summer to 113.7 g/m3 in winter and the later 
is 2.5 times of the former. Apparent seasonal differences 
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Table 2  Descriptive statistics of seasonal average PM2.5 
concentration                

                                             g  m-3 

Season Min Max Median Mean S.D. 

Spring 15.3 120.3 60.3 62.4 19.8 

Summer  8.3 119.3 40.0 44.9 21.7 

Autumn 16.3 174.3 65.3 68.8 26.1 

Winter 19.3 288.9 111.7 113.7 48.4 

Full year 16.4 164.9 72.4 73.2 26.1 

exist in PM2.5 concentration and PM2.5 pollution level in 
winter is much more severe than that in the other three 
seasons. Influenced by monsoon climate, large parts of 
China features have a warm, rainy summer and a cold, 
dry winter.  

The reasons that PM2.5 concentration in winter is 
much higher than in summer can be summarized as the 

following three points: ① Particulate matter deposits 
and diffuses more easily in summer due to abundant 
rainfall and strong air convection, while in winter, due to 
low temperature, the downdrafts dominate which leads to 
insufficient air diffusion; ② Boundary layer height is 
much higher in summer, particulate matters have much 
range of motion with the same mass leading lower mass 
concentration in the ground level in summer; ③ Coal 
combustion in winter generates more air pollutants, es-
pecially in the north of China[3]. And coal burning in 
heating season puts great pressure on air quality in 
northern China and brings big gap of air pollution be-
tween north and south. Seasonal characteristics of PM2.5 
concentration in northern China and southern China are 
shown as Table 3. 

Table 3  Seasonal characteristics (mean±S.D.) of PM2.5 concentration in northern China and southern China  
                                                                                                   g  m-3   

Northern China Southern China 
Site type 

Heating season Non-heating season Dry period Wet period Transient period

Urban-site 

Clean-site 

116.0±56.5 

 96.1±52.3 

66.7±30.2 

53.1±27.3 

91.1±40.4    

70.0±35.8    

37.5±15.6     

30.7±15.1     

59.1±23.1 

53.3±25.5 

All sites     114.5±56.4      65.8±30.2 89.5±40.4    37.0±15.7     58.7±23.3    
 
 

Table 3 shows that northern China has undergone 
severe PM2.5 pollution. Even in non-heating season, the 
average PM2.5 concentration of clean-site is 53.1 μg/m3, 
which is more than 50% higher than National Ambient 
Air Quality Standards Level-2 (35 μg/m3). Nevertheless, 
PM2.5 pollution is much more serious in heating season. 
In 2013, PM2.5 concentrations at urban-site and clean-site 
in heating season are 73.9% and 81.0% higher than that 
in non-heating season, respectively.  

In heating season, PM2.5 concentration of urban-site 
in northern China city is 19.9 μg/m3 (20.7%, relatively) 
higher than that of clean-site. Correspondingly, in non- 
heating season, PM2.5 concentration of urban-site in 
northern China city is 13.6 μg/m3 (25.6%, relatively) 
higher than that of clean-site.  

PM2.5 pollution in southern China also shows sig-
nificant seasonal differences. PM2.5 concentration of dry 
period of all monitoring sites in southern China is 2.4 
times higher than that of wet period, and it is also more 
than 50% higher than that of transition period.  

As for disparity of pollution level between ur-
ban-site and clean-site, in dry period, PM2.5 concentra-
tion of urban-site is 21.1 μg/m3 higher than that of 
clean-site, while in wet and transient period, PM2.5 con-
centrations of urban-site are 6.8 g/m3 and 5.8 g/m3 

higher than that of clean-site, respectively. In dry, wet 
and transient period, PM2.5 concentrations of urban-site 
are 30.1%, 22.1%, 10.9% relatively higher than that of 
clean-site. 

Seasonal characteristics of PM2.5 concentration in 
those 9 regions (Table 1) are summarized in Table 4, 
which combines all urban-sites and clean-sites. As for 
average PM2.5 concentration, only Tibet meets the guide-
lines of National Ambient Air Quality Standards Level-2 
(35 g/m3). It shows obvious air pollution disparity 
among different regions.  

Air pollution is the most serious in North China 
with mean 90.3 g/m3 and is relatively mild in South 
China and Southwest China. As for seasonal variation, 
air quality is the cleanest in summer while it is polluted 
most in winter. PM2.5 concentration in autumn is higher 
than in spring in 7 regions excluding Northwest China 
and Tibet.  

2)  Monthly variation 
Monthly variations of PM2.5 concentration at ur-

ban-sites and clean-sites of all sites being monitored are 
shown in Fig. 1. The error bars are the standard deviation 
of PM2.5 concentration of urban-sites. 

It is obvious that PM2.5 concentration in clean-sites 
is lower than that in urban-sites and the trend of monthly 
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Table 4  Seasonal characteristics (mean±S.D.) of PM2.5 concentration in 9 different regions 

PM2.5 concentration / g  m-3 
Region Cities Sites

Spring Summer Autumn Winter Average 

North China 17 114 78.4±69.2 72.8±62.1 87.2±80.1  133.2±126.4 90.3±87.9 

East China 26 139 61.8±43.9 42.9±38.3 62.3±46.7 111.3±85.5 66.8±59.4 

South China 12 71 41.0±28.8 21.7±17.1 49.4±29.0  62.0±44.9 42.7±34.1 

Southwest China 3 25 48.3±29.5 25.7±17.0 52.8±33.6  66.2±46.0 47.1±35.3 

Central China 7 76 76.6±50.4 46.0±33.3 83.0±59.5  138.6±100.4 83.8±71.6 

Northwest China 3 15 62.3±71.9 38.9±49.4 54.2±63.5  75.8±56.3 56.5±62.3 

Northeast China 4 43 52.0±46.2 37.4±36.1 67.9±90.2  110.6±98.9 65.1±76.8 

Xinjiang 1 7 60.6±49.3 48.4±45.6 85.8±75.2  156.5±106.9 87.8±84.0 

Tibet 1 6 26.1±19.8 19.7±19.5 21.5±18.7  28.9±35.5 23.8±23.9 

All regions 74 496 62.4 44.9 68.8 113.7 73.2 

 
Fig. 1  Monthly variations of PM2.5 concentration of  

urban-sites and clean-sites 

variations of both types are consistent. However, as for 
monthly averages, the gap between two kinds of sites 
varies from 6.8 g/m3 in October, the smallest, to 29.2 
g/m3 in January, the largest. The proportion of PM2.5 
concentration of clean-sites to urban-sites varies from 
77.1% to 91.5% in each month. Another interesting point 
showed by Fig. 1 is that PM2.5 concentration increases 
dramatically from September to October and then de-
creases from October to November. Gehrig and 
Buchmann [6] pointed out that it is meteorological effects 
that affect the monthly variation. In the future, more sci-
entific analysis can be conducted to illustrate the inter-
esting phenomenon. 

Owing to the geographical differences and large re-
gional disparity of PM2.5 pollution in China, temporal 
variability of PM2.5 concentration differs greatly. 
Monthly variations of PM2.5 concentration averaged from 
all sites cannot reflect the differences among diverse re-
gions. Therefore, monthly average PM2.5 concentrations 
of 9 regions (Table 1) are calculated respectively. In or-
der to compare the monthly variations of different re-
gions, PM2.5 concentration is 0-1 standardized for each  

region and the result is presented in Fig. 2. Types of 
monitoring sites are not distinguished, because we 
emphsize regional differences this time. 

 

Fig. 2  Monthly variations of PM2.5 concentration in 9    

different regions of China 

As it can be seen, monthly averages vary greatly 
among different regions differentiating from variations 
shown in Fig. 1. Two important differences should be 
noticed. First, PM2.5 increased apparently after the de-
crease in late winter in some areas. For example, there is 
a remarkable increase in spring in South China, South-
west China and Northwest China, and there is also a re-
markable increase in early summer in North China and 
Tibet. Second, Fig. 1 shows that there is an obvious de-
crease in November after a significant increase in Octo-
ber for sites across the country. Those areas, North China, 
South China, Central China, Northeast China and 
Southwest China regions, share the same variation pat-
tern and the pattern is delayed for a month in Xinjiang. 
However, in other areas including East China, Northwest 
China and Tibet, the pollutants have been increasing 
from summer to winter without any decrease. As previ-
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ously demonstrated, meteorological data should be taken 
into consideration when explanations for those diverse 
variation patterns in future research are given. 
2.2  Short-Term Variation of PM2.5 Concentration 

Hourly averages of PM2.5 concentration are summa-
rized every hour. A comparison of daily variations of 
PM2.5 concentration between urban-site and clean-site is 
presented in Fig. 3. The error bars are one standard de-
viation of PM2.5 concentration of urban-sites. 

 
Fig. 3  Daily variations of PM2.5 concentration of  

urban-sites and clean-sites 

The same as monthly variation, variation tendency 
of daily variation of urban-site and clean-site is also 
highly consistent. Additionally, the gap between two 
kinds of site is apparent and PM2.5 concentration of ur-
ban-site is 26.1 g/m3 higher than clean-site in average. 
However, the proportion of PM2.5 concentration of 
clean-sites in urban-sites is pretty stable as it varies from 
67.5% to 72.3% each hour. There is a distinct bimodal 
(double-peak) pattern of daily variation in both ur-
ban-site and clean-site, which has been found out in 
other studies as well [7, 17]. The morning maximum and 
the night maximum appear around 10:00 am and 22:00 
pm, respectively. Correspondingly, the afternoon mini-
mum and the early morning minimum occur at around 
16:00 pm and 6:00 am. Daily variation of PM2.5 concen-
tration can be explained by traffic intensity and dynamics 
of atmosphere [9]. As for the morning maximum, several 
explanations are put forward by different studies includ-
ing ① large amount of vehicle emissions; ② low mix-
ing heights; ③ bursts of photochemical activity associ-
ated with sunrise; ④ increased secondary particle pro-
duction [7, 9]. PM2.5 concentration daily variation in heat-
ing and non-heating seasons in northern China and daily 
variation of dry, wet and transient periods in southern 
China are summarized from hourly monitoring data at 
the corresponding time (month) and place (north and 
south). The results are presented in Fig. 4 and Fig. 5. 

 
Fig. 4  Daily variation of PM2.5 concentration of heating  

and non-heating seasons in northern China 

Figure 4 shows that bimodal pattern also exists in 
PM2.5 concentration daily variation in northern China. 
Overall, PM2.5 concentration in heating season varies 
more greatly than that in non-heating season, while 
PM2.5 concentration daily variation of urban-site fluctu-
ates more greatly than that of clean-site. Bimodal pat-
terns of urban-site and clean-site in heating season are 
apparent and so is daily variation of urban-site in 
non-heating season. By contrast, daily variation of 
clean-site in non-heating season is quite gentle. The for-
mer three that shows the most obvious daily variation 
reaches at peak at 9:00 am or 10:00 am, and falls to 
trough at 16:00 pm or 17:00 pm in the afternoon. 

 
Fig. 5  Daily variation of PM2.5 concentration of dry, wet  

and transient periods in southern China 

In southern China, PM2.5 concentration daily varia-
tion fluctuates in diverse degree among different periods 
and different monitoring site types. As a whole, PM2.5 
concentration daily variation in dry period fluctuates 
more greatly than that in wet period, while that in tran-
sient period varies between the two. As for different 
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monitoring site types, daily variation of urban-site varies 
more greatly than that at of clean-site, the same as in 
northern China. Consisting with Table 3, in dry period, 
the gap between urban-site and clean-site reaches the 
largest and the lowest in transient period. Moreover, 
PM2.5 concentrations at urban-site and clean-site are 
similar at 18:00 pm in transition period. Daily variations 
of PM2.5 concentration in 9 different regions are pre-
sented in Fig. 6. 

 

Fig. 6  Daily variations of PM2.5 concentration in 9 

different regions of China 

Compared with monthly variation of PM2.5 concen-
tration, daily variations share great resemblance with 
bimodal pattern in different regions though extent of 
change varies greatly. Generally, change extent in day-
time is greater than that at night except that in Tibet. For 
Northeast and Northwest China, there is also distinct 
valley at night resulting in a more obvious bimodal pat-
tern. Moreover, PM2.5 concentration is higher at night 
than that in daytime, but it is opposite in the northwest 
region of China and in Tibet. The peak in the morning 
appears at 9:00 am or 10:00 am and the trough in the 
afternoon appears from 15:00 pm to 17:00 pm. As for the 
appearance time of peak and trough, Xinjiang (Urumqi) 
differs from other regions and variation curve of North-
west China also translates 2-3 hours backward compared 
with other regions, since the monitoring time is Beijing 
time instead of local time and Xinjiang local time is 2 
hours later than Beijing time. 
2.3  Spatial Autocorrelation Analysis 

As expected, PM2.5 concentration is highly auto- 
correlated. Global Moran’s I and local Moran’s I are both 
employed to identify spatial autocorrelation of PM2.5 
concentration in three typical regions, the BTH region, 

the YRD region and the PRD region. Moran’s I scatter 
plots of PM2.5 concentrations in three typical regions 
using GeoDA are shown in Fig. 7.  

Those 4 different quadrants of plots represent 
different types of spatial clusters. The first quadrant 
means High-High (H-H) cluster, that’s to say, monitoring 

 
        (a) The BTH region 

 

         (b) The YRD region 

 
         (c) The PRD region 

Fig. 7  Moran’s I scatter plots of PM2.5 concentration 

x-coordinate of plot is standardized PM2.5 concentration; 
y-coordinate is spatial lagged PM2.5 concentration 
determined by spatial weight matrix based on Euclidean 
distance between monitoring sites 
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sites with high PM2.5 concentrations are also surrounded 
by sites with high values.  

The second quadrant means Low-High (L-H) cluster, 
namely PM2.5 concentration at one site is low but its 
surrounding concentration is higher. Similarly, the third 
and fourth quadrant means Low-Low (L-L) cluster and 
High-Low (H-L) cluster. H-H cluster and L-L cluster 
reflect the homogeneity of PM2.5 pollution, which 
indicates positive spatial autocorrelation of PM2.5 
concentration among those sites. By contrast, L-H cluster 
and H-L cluster reflect the heterogeneity of PM2.5 
pollution, which indicates negative spatial autocor- 
relation. 

Most monitoring sites in three typical regions are 
characterized as H-H cluster or L-L cluster, which 
illustrates strong spatial autocorrelation, which exists in 
all three regions with high Moran’s I: 0.906 in the BTH 
region, 0.693 in the YRD region and 0.746 in the PRD 
region. At the same time, a few sites with strong spatial 
heterogeneity are shown as L-H cluster or H-L cluster. 
Scatter plot of BTH is the most linear centralized and 
most sites are characterized as H-H cluster or L-L cluster. 
YRD has the lowest Moron’s I because most of the 
points are distributed around (0, 0), which indicates that 
spatial clusters of those sites may be non-significant. 

Clusters of PM2.5 pollution can be spatialized using 
local spatial autocorrelation analysis in GeoDA. Spatial 
pattern, as well as hotspots and cold spots of PM2.5 pollu-
tion, can be identified in local spatial cluster map shown 
as Fig. 8. Across the BTH region, there is no obvious spa-
tial cluster for sites in Beijing and Tianjin. Monitoring 
sites in South Hebei Province (Xingtai, Handan and Shiji-
azhuang) and Tangshan city are H-H clusters. Those cities 
are also the most polluted areas. On the other hand, sites in 
the other cities are L-L clusters.  

As for the YRD region, two obvious differences exist 
in the local spatial cluster. One is the difference between 
south and north. The sites in the north of the region (most 
of the Jiangsu Province) are more likely to be hotspots 
while the sites in the south of the region (most of Zhejiang 
Province) are more likely to be cold spots. The other is 
with land-sea discrepancy that sites in coastal cities are 
tending to be cold spots and sites in inland cities are tend-
ing to be hotspots. 

Compared with the other two regions, the distribu-
tion density of monitoring sites in the PRD region is the 
most reasonable. Land-sea contrast in this area is very 
obvious as sites near the sea are more likely to be cold 
spots while inland sites are more likely to be hotspots. 

 
Fig. 8  Local spatial cluster map for PM2.5 concentration 

2.4  Spatial Distribution of PM2.5 Concentration 

Continuous spatial distribution of PM2.5 concentra-
tion is very important for health impact assessment of 
PM2.5 exposure and other purposes. However, sparse 
ground monitoring sites cannot meet the requirement. 
Many methods are adopted to simulate surface of PM2.5 
concentration. In this study, we present simple spatial 
pattern of PM2.5 concentration in China and a Kriging 
interpolation is an easy way for our purpose. Therefore, 
spatial distribution of average PM2.5 concentration in 
2013 is simulated using Ordinary Kriging. Cross-validation 
(CV) is used to examine the performance of Ordinary 
Kriging. 

Monitoring sites are divided into validation set 
(20%) and experimental set (80%) randomly. In order to 
acquire predicted PM2.5 values for validation set sites, 
spatial distribution of PM2.5 is simulated using Ordinary 
Kriging based on monitoring sites of experimental set. 
Predicted PM2.5 values for locations of validation set 
sites will be compared with those measured PM2.5 con-
centrations. Pearson correlation coefficient is used to 
examine the relationship between measured and pre- 
dicted concentration of each site. Root Mean Squared 
Prediction Error (RMSPE) is also used to estimate pre-
diction precision of Ordinary Kriging. The result of cross 
validation is shown in Fig. 9. The result of cross valida-
tion shows that Ordinary Kriging performs quite well as 
R2 is 0.892 and RMSPE is 8.1 g/m3, which indicates 
that Ordinary Kriging can explain 89% spatial variability 
of PM2.5 average concentration. However, the sites with 
lower concentration are likely to be overestimated while 
the sites with higher concentration are likely to be un-
derestimated, since the slope of plot is less than 1. 

There are numerous researches on spatial distribu-
tion of air pollutant, recently. Some studies using differ- 
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ent methods have been successfully applied for spatial 
distribution simulation of NO2, PM10 and PM2.5 

[30, 31] in 
China. Ma et al [31] estimated ground-level PM2.5 in China 
using satellite remote sensing as cross-validation R2 is 
0.64. Although model used here has relative high accu-
racy (R2=0.89), PM2.5 concentration is likely to be over 

 
Fig. 9  Scatter plot between measured and predicted PM2.5 

concentration of validation set sites 

estimated, especially for rural areas, because most of the 
monitoring sites are located in urban areas, by contrast, 
only 38 sites are situated in suburban or rural areas. 

Due to the limited monitoring sites, especially in 
West China, all 496 monitoring sites are used to simulate 
the spatial distribution of PM2.5 concentration. The result 
of Ordinary Kriging is shown only in areas covered by 
monitoring sites and experiencing severe PM2.5 pollution 
in Fig. 10. 

It is obvious that the situation of PM2.5 pollution is 
much severe in most part of China. The contour line of 
75 g/m3 is drawn and then areas of concentration 

 

Fig. 10  Spatial distribution of average PM2.5  
concentration (2013) 

 

exceeding 75 g/m3 are calculated in ArcGIS. There are 
at least three highly polluted areas which are circled by 
contour of 75 g/m3. The most conspicuous is North 
China, Central China and Southwest China concentrated 
pollution area with 1.22 million km2 in total. Health im-
pacts and economic loss of so serious PM2.5 pollution are 
unimaginable since this region is one of the most densely 
populated areas in China. We also calculated areas in 
China where PM2.5 concentration surpasses 35 g/m3 
resulting in 7.94 million km2, in other words, 83% of 
China fails in meeting the requirement of National Am-
bient Air Quality Standards Level-2 (35 g/m3). 

3  Conclusion 

1)  In general, annual average PM2.5 concentration in 
2013 across China is 73.2 g/m3. 83% areas of China fail 
to meet the guidelines recommended by national Ambient 
Air Quality Standards (35 g/m3). 

2)  PM2.5 concentration changes significantly in 
both long-term and short-term scales. PM2.5 pollution 
level varies greatly in different seasons, especially be-
tween heating season and non-heating season in northern 
China. Monthly variation varies in different regions. 
However, daily variation shares the same bimodal pattern 
regardless of seasonal change and regional disparity. 
Throughout the day, PM2.5 concentration is the highest 
around 10:00 am and lowest around 16:00 pm. 

3)  A strong spatial autocorrelation exists in three 
typical regions, the BTH, YRD and PRD regions, with 
high Moran’s I∶0.906, 0.693 and 0.746, respectively. 
Local spatial clusters for PM2.5 concentration show that 
land-sea contrast has an obvious effect on PM2.5 pollution. 
The spatial distribution by Ordinary Kriging displays 
that most parts of China suffer from severe PM2.5 pollu-
tion, especially North and Central China, and there are at 
least three highly polluted areas. Result of cross-validation 
indicates that Ordinary Kriging can explain 89% spatial 
variability of PM2.5 concentration. 
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