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Abstract: Advances in quantum computation threaten to break 
public key cryptosystems that are based on the difficulty of fac-
torization or the difficulty of discrete logariths, although , no 
quantum algorithms have been found to be able to solve certain 
mathematical problems on non-commutative algebraic structures 
up to now. The proposed new quasi-inverse based cryptography 
scheme is vulnerable to a linear algebra attack based on the prob-
able occurrence of weak keys in the generation process. In this 
paper, we illustrate that two of the quasi-inverse based cryptogra-
phy are vulnerable to a structural attack and that it only requires 
polynomial time to obtain the equivalent keys for some given pub-
lic keys. In addition, we conduct a detailed analysis on attack 
methods and provide some improved suggestions on these two 
schemes. 
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0  Introduction 

 

Most public key cryptosystems used today rely on 
the assumed difficulty of either factorization or discrete 
logarithms. However, the trustworthiness of these as-
sumptions has been eroded by infactorization algorithms 
and by quantum algorithms that solve both problems. 
These are among the reasons that have motivated research 
into the development of a new family of cryptosystems that 
can resist quantum computer attacks with higher efficiency 
in computation. In recent years, cryptographers have been 
making efforts in the area of post-quantum computa-
tional cryptography[1-6]. They have also begun to con-
struct alternative post-quantum (i.e., quantum-resistant) 
public key cryptosystems from other mathematically 
intractable problems[7-13]. 

Before describing details, we would like to mention 
that nonabelian algebraic structures have already been 
used in the cryptographic context. For a general intro-
duction to non-commutative cryptography, we refer to 
Refs.[5, 6]. In this paper, we study cryptanalysis of two 
new quasi-inverse based cryptography proposed in 
Refs.[14, 15]. These two schemes are vulnerable to a 
linear algebra attack based on the probable occurrence of 
weak keys in the generation process. We illustrate that 
the scheme is insecure against a linear algebra attack. 
Using the linear algebra attack, we attempt to analyze the 
scheme so that we can obtain the equivalent keys from 
an associated public key with significant probability in a 
reasonable time. We then analyze the basic rationale for 
the linear algebra attack. We also propose an improved 
scheme that remedies the weakness of their schemes.  

The rest of this paper is organized as follows. Sec-
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tion 1 reviews the necessary background materials. Sec-
tion 2 gives an overview of the key exchange protocol 
based on the quasi-inverse matrix proposed in Refs.[14, 
15]. Section 3 proposes an attack method, and describes 
the corresponding algorithmic description and efficiency 
analysis. Finally, Section 4 provides some concluding 
remarks and discusses possible lines of future work.  

1  Preliminaries 

In this paper, we use the following notation. 
Let q be a power of a prime and Fq be a finite field. 

For an integer 1k＞ , GL ( )k qF is the set of kk  invert-
ible matrices with entries in qF , )( qk FM is a set of 

kk  matrices with entries in qF , GL ( )k k qFI is the 
identity matrix and kO is the kk   matrix with all-zero 
elements. 

We introduce the concept of pseudo-inverse matrix 
and its properties without proofs. 

Definition 1  For every matrix (square or rectan-
gular) A of real or complex elements, there is a unique 
matrix A , called pseudo-inverse of A , satisfying all of 
the four equations: 

;AAAA   
;  AAAA  

T( ) ; AA AA  
T( ) . A A A A  

Proposition 1  Given a matrix GL ( )m n qFA , 
if m n＞ and TA A is non-singular, then 

T 1 T( ) A A A A  
if m n＜  and TAA is non-singular, then 

T T 1( ) A A A  

Proposition 2  Let GL ( )m n qFA
 
having rank ( ) A  

k and the full rank factorization A=BC, where 

GL ( )m k qFB
 
is the matrix of basic columns from A and 

GL ( )r n qFC is the matrix of non-zero rows from 

AE ( AE is the unique reduced echelon form derived from 

A  by means of row operations). The pseudo-inverse 

of A  is defined by 
T T T 1 T( ) A A A AC A  

2  Description of Cryptography 
Based on Pseudo-Inverse Matrix 

In this section, we briefly review the key exchange 
protocol based on pseudo-inverse matrix as follows. 

2.1  The Key Exchange Protocol 1 
The key exchange protocol 1 given in Ref. [14] can 

be summarized as follows: 
Public Key: nmq ,,  
1) Alice generates a secret pseudo-invertible matrix 
GL ( )m n qFF and its pseudo-inverse GL ( )n m qF

F . 
She computes  FFX and sends X  to Bob. 

2) Bob generates a secret pseudo-invertible matrix 
GL ( )n m qFG and its pseudo-inverse GL ( )m n qF

G . 
He computes GGY   and a middle key Bob K GX , 
then sends Y  and BobK  to Alice. 

3) Alice computes a middle key Alice K YF , then 
sends AliceK  to Bob. 

4) Alice and Bob now share a secret key BobK K  

AliceF GK . 

2.2  The Key Exchange Protocol 2 

In this section, we briefly review the key exchange 
protocol based on pseudo-inverse matrix proposed in 
Ref.[15]. 

Public key: K  
Private key: LKK ,, 21  
1) Alice chooses a uniformly random matrix 

1 GL ( )m k qFK , GL ( )k k qFQ and finds 2 K
  

GL ( )k n qF ( )k n m＜ ＜ such that KKK 21 . She computes 

Alice 1
K KK K Q and 2

1KQL  . Then she sends AliceK  

to Bob. 
2) Bob chooses a matrix GL ( )h m qFM , compues 

Bob AliceK MK . Then he sends BobK  to Alice. 
3) Thus, Alice and Bob end up with the same shared 

secret key Bob K K L MK .  

3  The Key Recovery Attack 

This section attempts to attack the two-key ex-
change protocols based on pseudo-inverse matrix men-
tioned above. The attack makes use of the elementary 
tools to show the structural vulnerabilities of the two-key 
exchange protocols. 
3.1  Attack on the Key Exchange Protocol 1 

We know that an attacker is observing the key ex-
change protocol 1 and he is able to get the informa-
tion: Alice Bob( , , , )X Y K K . He searches for a matrix 

GL ( )m n qFF
 

such that 

Alice


 

XF F
K YF

                 (1) 

and rank( ) nF . Then the proposed scheme 1 always 
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has weakness. It remains to analyze the key agreement 
protocol 1,which can be done as follows. 

Proposition 3  If an adversary can find a matrix F~  
satisfying equations (1) and rank( ) nF , then the key 
exchange protocol 1 based on the pseudo-inverse matrix 
can be broken. 

Proof  If an adversary can find matrices F~  sat-
isfying equations (1), then the key exchange protocol 1 
based on pseudo-inverse matrix can be summarized as 
follows. 

From Bob K GX and Alice  K YF , we have 

Alice

    

    

    

    

    


















  





K GK

GYF
GYFF F
GYXF
GG GXF
GXF                          （2）

 

The attacker thereby obtains the same shared secret 
key K . This completes the proof. 

Formally, the key recovery attack can be described 
by Algorithm 1. It takes as inputting the public key 

Alice Bob( , , , )X Y K K and outputting the same shared secret 
key K . 

 

Algorithm 1  Solve the shared key K  

1. Input Alice Bob( , , , )X Y K K  

2. Solve the homogeneous linear equations in mn2  

  equations with mn  unknowns of F : 

Alice, XF F K YF . 

3. Pick a random solution matrix F~  until rank ( ) .nF
4. Compute Bob K K F . 

5. Output K . 

According to the above discussions, let us make a 
performance evaluation on Algorithm 1. The classical 
techniques for matrix multiplication/inversion in qF take 
about ))(log( 2qnO  bit operations, since the best known 
algorithm for the product of two nn  matrices requires 

)3755.2)(( nO qF  operations and each qF  opera-
tion needs )(log2 qO  bit operations[15-17]. The complex-
ity for Algorithm 1 can be mainly concluded as follows. 

Step 2 is to solve mn2  linear equations in mn  
variables and then its complexity is about (2O mn  

1( ) )mn  . Now, if we neglect small constant factors, the 
key recovery attack against the key agreement protocol 1 
based on the pseudo-inverse matrix can be completed 
with a complexity of )log)(( 2 qmnO  . 

A Toy Example 
In order to illustrate the steps in our cryptanalysis 

over 2 2GL ( )qF , we give the following toy example. 
Let 7q  and consider the field qF . 

Since the following information is known: 

Alice Bob

6 5 6 2 5 6

5 3 5 , 5 2 1

6 5 6 6 1 4

4

3 , (1 2 1)

5

   
       
   
   

 
   
 
 

X Y

K K

 

The private key 

 
































 

2

4

3

),243(,656,

1

2

1

GGFF  

We now illustrate the structural attack processes. 
Due to 

Alice, XF F K YF , 

we have a solution 


















1

2

1

F  

that means the shared secret key Bob 6 K K F . 

3.2  Attack on the Key Exchange Protocol 2 

The attack makes use of the elementary tools men-

tioned above and this is intended to show the structural 

vulnerabilities of the system. For  the key exchange 

protocol 2 based on pseudo-inverse matrix, we know that 

an attacker can get the information Alice Bob( , )K K , where 

Bob AliceK MK . Then we have 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

m n

r r k r r n k

m m n r r n r k r n r n k n n

m n r m n k r m n n k

r r k r
r

k r r k r k r
k r r

m k r m k k r



   

         

       

 

    
 

    

 
   
 
 

 
     
  

 

K

I O O
P O  O  O Q

O O O

I O
I O O

P O  O Q
I O O

O  O

 

where P  and Q are ,m m n n  permutation matrices, 
respectively. Let 
thus we can get a matrix decomposition such that 

21KKK  . 
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( )

1 ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

( ) ( ) ( ) ( ) ( )

,
r r k r

m m k r r k r k r

m k r m k k r

r r k r r n k
n n

k r r k r k r k r n k

 

     

    

   


       

 
   
 
 

 
  
 

I O
K P O O

O O

I O O
K Q

I O O

 

Remark 1  It is easy to see that 1K  and 2K  are 
not unique. For example, 

( )

1 ( ) ( ) ( )

( ) ( ) ( )

r r k r

m m k r r k r k r

m k r m k k r

 

     

    

 
   
 
 

I O
K P O O

O O
, 

( ) ( )

2

( ) ( ) ( ) ( ) ( )

r r k r r n k
n n

k r r k r k r k r n k

   


       

 
  
 

I O O
K Q

O O O
 

It remains to analyze the key agreement protocol 2 
based on pseudo-inverse matrix, which can be done as 
follows. 

Proposition 4  If an adversary can find a pair of 
matrix ),( 21 KK  satisfying the following equations (3) 
and GL ( )k qFQ , then the key exchange protocol 2 
based on pseudo-inverse matrix can be broken. 

Proof  By Proposition 2, we can get K . If an 
adversary can find matrices 21

~
,

~ KK  and Q~ GL ( )k qF  
satisfying 

1 2

Alice 1



 

K K K
K KK K Q

              (3) 

then the key exchange protocol 2 based on pseudo-inverse 
matrix can be attacked as follows. 

From 1 2 Alice 1,     K K K K KK K Q  and 2
1 ~~~ KQL  , 

then 
1

Alice 1 2

1
1 2 Alice           

 

 

 

    
K L KK K QQ K K

KK K QQ K K L
 

Thus the same shared secret key 

Alice

1

Alice

    

    

    













K MK L

MKK K QL
MK L
MK

 

The attacker thereby obtains the same shared secret key 
K . This completes the proof. 

Formally, the key recovery attack can be described 
by Algorithm 2. It takes as inputting the informa-
tion Alice Bob( , , )K K K  and outputting the same shared se-
cret key K . 

 
Algorithm 2 Solve the shared key K  

1. Input Alice Bob( , , )K K K  

2. Compute K  

3. Solve a matrix decomposition 21

~~ KKK   

4. Solve the linear equations in mk equations with 2k  

unknowns of Q~ : Alice 1
 K KK K Q . 

5. Pick randomly a matrix Q~ , if Q~ is invertible, then 

compute 2
1 ~~~ KQL  , if not, go to step 4. 

6. Compute Alice K K L . 

7. Output K . 
 
Remark 2  The probability of an invertible matrix 

over finite field qF  is about q/11 . When q is big, 
we can obtain the equivalent keys from an associated 
public key with significant probability. 
   In the following we estimate the complexity of Algo-
rithm 2 in terms of qF  operations. 
    In Step 2, K  is computed by Proposition 2. Then 
the complexity is about ))(( mnO . Step 3 is to compute 
a matrix decomposition 21

~~ KKK  . It is roughly esti-
mated by ))(( mnO . Step 3 is to solve mk  linear 
equations in 2k  variables and then its complexity is 
about 2 2( )O mkk ≤ . Thus, we conclude that the total 
complexity of Algorithm 2 is about 2 1(max{ ,O mk 

 
( ) })mn  . 

4  Conclusion 

We present two cryptanalysis of two key agreement 
protocols based on pseudo-inverse matrix by showing 
that these two schemes are vulnerable to a linear algebra 
attack, respectively. We illustrate that the two-key agree-
ment protocols based on pseudo-inverse matrix are inse-
cure in the sense that an attacker who is able to solve the 
linear equations with high efficiency can break the two 
schemes. We propose an improved scheme and discuss 
the enhanced security features that provide good protec-
tion against the aforementioned attack. The question 
whether there exist groups in which a key agreement 
protocol based on pseudo-inverse matrix is secure re-
mains open. When designing a key agreement protocols 
based on pseudo-inverse matrix on other groups, the 
considerations of this paper must be taken into account. 
Another open question concerns whether it is possible to 
use several nonabelian algebraic structures to construct a 
public key cryptosystem with the potential to resist at-
tacks from known quantum algorithms. 
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