

2016, Vol.21 No.2, 171-177

Article ID 1007-1202(2016)02-0171-07

DOI 10.1007/s11859-016-1155-8

A Model-Based Calibration Method of
Automotive Electronic Control Unit

□ CHENG Anyu, LI Haining, XIONG Liangbo

Automotive Electronics Engineering Research Center,
College of Automation, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China

© Wuhan University and Springer-Verlag Berlin Heidelberg 2016

Abstract: This paper presents a systematic method of designing
the calibration toolbox of automotive electronic control unit (ECU)
based on real-time workshop (RTW). To break the strong coupling
of each functional layer, the hierarchical architecture of the cali-
bration system is divided into the bottom driver layer, the interme-
diate interface layer and the top application layer. The driver func-
tions meeting the specification of the automotive open system are
sent and received in the intermediate interface layer. To reduce the
development costs, the portable user codes are generated by RTW
which provides a development environment from system simula-
tion to hardware implementation. Specifically, the calibration
codes yielded from the controller area network (CAN) calibration
protocol (CCP) module are integrated into the control codes,
called by a compiler in the daemons to build a corresponding pro-
ject, and then downloaded into the object board to provide the A2L
file. The experiments illustrate that the different drive modules are
only needed to be replaced for the implementation of the calibra-
tion system applied in different hardware platforms.
Key words: calibration system; electronic control unit; hierar-
chical architecture; real-time workshop
CLC number: TP 217

Received date: 2015-09-30
Foundation item: Supported by the Youth Science and Technology Innova-
tion Talents Project of Chongqing Science & Technology Commission(cstc2013
kjrc-qnrc40005), and the Research Project of Chongqing Education Committee
(KJ120511)
Biography: CHENG Anyu, male, Associate professor, research direction:
vehicular network and information system. E-mail: chengay@cqupt.edu.cn

0 Introduction

The system calibration is one of the key technolo-
gies to effectively design automotive electronic products.
The calibrated system with high efficiency and adapta-
bility can greatly improve the design of electronic con-
trol unit (ECU). Today, the model-based calibration me-
thods have progressed significantly in terms of theory
and applications. There have been increased applications
of model-based design and testing in the automotive in-
dustry to reduce design errors and perform rapid proto-
typing [1, 2]. Bifulco et al [3] presented a system in which
an on-board ECU is required by the driver to calibrate its
own parameters after a few minutes’ manual drive. The
calibration system in Ref. [4] used the calibration board
and the serial communication of battery management
system (BMS) to perform the calibration of battery
management system via the keyboard. And a multi-node
calibration system based on controller area network
(CAN) calibration protocol (CCP) is developed for a
multi-ECU being used by vehicle [5]. In this system, the
message buffers, message filter registers and bit timing
of identifiers were reasonably configured. The calibra-
tion system proposed a method of calibrating multi
ECUs simultaneously, which can also make the parame-
ters of different ECUs match better.

The ASAP standards is a set of widely-agreed cali-
bration criterion in industry. As an important component
of ASAP standards, the CCP is most commonly used to
achieve the communication of host and ECU for the ca-
libration systems based on CAN bus technology. Many
well-known companies including Vector and ETAS have
their own ECU products supported by the calibration and
testing tools adopting CCP. In the entire development

Wuhan University Journal of Natural Sciences 2016, Vol.21 No.2 172

process of calibration system, it is prerequisite that the
measurement calibration system (MCS) and applications
programme of ECU should be supported by CCP. The
implication of the CCP driver and the communication
between the calibration tool and ECU are also needed to
be further understood during the CCP driver is being
incorporated into the ECU [6].

In addition, most of the calibration softwares, such
as the CANape developed by Vector Company and the
Measurement & Calibration Toolkit developed by NI
Company, have more complicated upfront configurations.
For example, each ECU needing calibration is required
to be configured in the CANape. Although the calibra-
tion software offers a tight junction of the CCP driver
and the related hardware driver, the combination of the
CCP driver and the bottom program is operated manually.
In this sense, the workload increase for supplying extra
program code of calibration interface and driver due to
the strong coupling and poor flexibility of calibration
program’s architecture [7, 8].

In this work, to solve the inefficient problem men-
tioned above and reduce the development time and cost
of calibration system, we present a systematic method of
designing automotive ECU calibration toolbox based on
real-time workshop (RTW). The hierarchical architecture
of bottom calibration system is constructed by the func-
tionalities of the individual submodules in the calibration
program. An intermediate interface layer is designed to
improve the versatility and reusability of the bottom cali-
bration program. The driver functions meeting the inter-
face specification of the automotive open system archi-

tecture (AutoSAR) are sent and received in this interme-
diate interface layer. The different drive modules are
only needed to be replaced for the applications of the
calibration system applied to different hardware plat-
forms. The personalized and portable user codes are gen-
erated by RTW which provides a development environment
from system simulation to hardware implementation.

1 Design of the Calibration
Toolbox

Graphic language is adopted for the design method
instead of high-level abstract language for the develop-
ment of calibration toolbox. Specifically, in the visuali-
zation environment of MATLAB, each module of the
bottom calibration system is encapsulated into separate
module by the C-MEX S-functions in a manner of the
customized signal flow graph. By means of calling the
template target file, the control codes are automatically
generated by the RTW tool, then downloaded to the
hardware platform for achieving the design and debug-
ging of calibration program.

The block diagram of designing the calibration
toolbox is shown in Fig. 1. From Fig. 1, it is clearly
drawn that the designed work generally includes three
aspects: the analysis of the hierarchical architecture in
ECU calibration system, the model design based on
S-function and the customization of module object
file.

Fig. 1 Block diagram of the proposed design method

CHENG Anyu et al : A Model-Based Calibration Method of …

173

1.1 Hierarchical Architecture of ECU
Calibration System

According to the functionalities of the individual
submodules in ECU, the hierarchical architecture of bot-
tom calibration system, as shown in Fig. 2, is divided
into three levels: the bottom driver layer, the intermedi-
ate interface layer and the top application layer.

In the bottom driver layer, the bottom programs of a
certain micro-controller, such as the module initialization
program, the signal acquisition and output program, are
written here in accordance with the corresponding situa-
tion of the interface and the relationship between input
and output signal. The intermediate interface layer
mainly plays a role of providing the interfaces for the

CAN application. The CAN messages passed down from
the upper calibration system are accepted and parsed out
the CCP messages by the “CAN Receive Function”. The
CCP messages are submitted to the “Command Proces-
sor”, then re-packaged as CCP packets being fed to the
“CAN Transmit Function” for further encapsulation of
CCP. At last, the encapsulated CCP is sent to the upper
calibration system.

The purpose of the top application layer is to
achieve the calibration of the ECU control parameter and
upload these monitoring parameters. The “CCP Driver”,
as one of the “CAN Driver” users, is responsible for
communication of the calibration software and PC using
the CAN function [9].

Fig. 2 Hierarchy of the ECU calibration system

1.2 Model Design Based on S-Function
The S-function, an autonomous file interface in

MATLAB, is always employed to build the simulink
module with a special function calls. Both of M-files and
MEX-files are the mainly implemented ways of the
S-function. Particularly, the C-MEX S-functions have
many advantages, such as a common language specifica-
tion, high execution speed, being called by any open
source code. The common language specification (CLS),
which is a set of basic language features needed by many
applications, has been defined. The CLS rules define a
subset of the common type system; that is, all the rules
that are applied to the common type system which is ap-
plied to the CLS. These advantages make the C-MEX
S-functions much more suitable for the hardware devel-
opment.

The S-function, an autonomous file interface in
MATLAB, is always employed to build the simulink
module with a special function calls. Both of M-files and
MEX-files are the mainly implemented ways of the

S-function. Particularly, the C-MEX S-functions have
many advantages, such as a common language specifica-
tion, high execution speed, being called by any open
source code. The common language specification (CLS),
which is a set of basic language features needed by many
applications, has been defined. The CLS rules define a
subset of the common type system; that is, all the rules
that are applied to the common type system which is ap-
plied to the CLS. These advantages make the C-MEX
S-functions much more suitable for the hardware devel-
opment.

If the models in MATLAB do not meet user re-
quirements, the S-function can be programmed accord-
ing to the module parameters and the input or output
ports. Then an encapsulation of S-function module is
achieved by the configuration of the Mast Editor pa-
rameter dialog. Finally, a customized and personalized
interface module is displayed in the simulink block li-
brary browser. Figure 3 gives the encapsulated process of
the S-function modules.

Wuhan University Journal of Natural Sciences 2016, Vol.21 No.2 174

Fig. 3 Encapsulated process of the S-function modules

1.3 Customization of Module Object File
After the encapsulated process of the S-function

modules is completed, the customized module programs
are embedded into the source codes being generated au-
tomatically. The module file, so called target language
complier (TLC), is programmed to customize the code
generation template of each sub-model in the model li-
brary. The TLC file contains four functions: “Block-
TypeSetup”, “Start”, “Outputs” and “Terminate”.

This section takes “CCP Block” in calibration tool-
box as an example to illustrate the method of creating the
TLC file. The primary purpose of “CCP Block” module
is getting the channel number of CAN, the baud rate, the
message ID of the command receive object (CRO) and
the data transfer object (DTO). Such obtained knowledge
is delivered to the CAN transmitting and receiving mod-
ules for initialization of the CCP driver in the main func-
tion. The “BlockType-Setup” function, before the start-
ing of the code generation, is executed only once in each
module. The general operations of each module of a
given type, such as the macro declaration, the function
prototype declaration, the header file contains (# in-
clude), the data type alias (typedef), etc., are performed
by this “BlockTypeSetup” function. The exact procedure
about the “BlockType-Setup” function is shown as fol-
lows:

Line 1: %function BlockTypeSetup (block,

system) void
Line 2: %%Used to determine how many CCP

modules exist
Line 3: %assign::CCP BlockTotal = 0

Line 4: %assign hFile = LibGetModelDotHFile()
Line 5: %openfile tmpBuf
Line 6: #include “Platform Types.h” ⇒ Templates

generation
Line 7: %closefile tmpBuf %LibSetSource

FileSection (hFile, “Includes”, tmpBuf)
Line 8: %assign hFile = LibGetModelDotHFile ()
Line 9: %openfile tmpBuf
Line 10: void ccpInit(uint8 id)
Line 11: %closefile tmpBuf
Line 12: %LibSetSourceFileSection(hFile,

“Functions”, tmpBuf)⟩
Line 13: %endfunction

The “Line 2”，started with the specific character
“%%” ，is the annotation of the “BlockType-Setup”
function. The “Line 3”, in the aforementioned code seg-
ment, defines a variable named CCP BlockTotal being
assigned to 0. The “Line 4” employs the function “Lib-
GetModelDotHFile ()” to create a header file with the
same name of the model “.mdl”. The “Line 5” denotes
creating a text buffer to temporarily store the code gen-
eration templates of a module designed by its functional-
ity. The text buffer is turned off in “Line 11”. The “Line
12” denotes that the contents of the specified templates
in the buffer are written into the “Function” section of
the corresponding header file. For the section of the
“Start” function, the programme is given as follows:

Line 1: %function Start (block, system) Output
Line 2: %assign:: CCP_BlockTotal

= CCP_BlockTotal+1
Line 3: %if (CCP_BlockTotal == 1)

CHENG Anyu et al : A Model-Based Calibration Method of …

175

Line 4: %%Initialize the CCP module only once
Line 5: ccpInit (%SFcnParamSettings.Can DAQ
 ID) ⇒Initialization function calls
Line 6: %endif
Line 7: %endfunction

In the code segment mentioned above, the “Line 2”
represents a value growing of the variable CCP Block-
Total. This value will be increased by 1 if each CCP
module appears once in the model. The judge sentence in
“Line 4” ensures that the CCP is initialized only once by
the generated code. So far, the TLC files of the CCP ini-
tialization module have been created. The interface dia-
gram of the CCP module is plotted in Fig. 4.

Fig. 4 Interface diagram of CCP module

It is noteworthy that we dealt with only both of the
“BlockTypeSetup” and “Start” functions in this example.
According to the needs of the users, “Outputs” and
“Terminate” functions are also used in the TLC module.
The corresponding TLC files of the modules in calibra-
tion toolbox can be customized in the aforementioned
manners.

2 Experiments

In this section, the Freescale MPC5634 board is se-
lected as our object board. The CCP module, in our cali-
bration toolbox, is combined with other modules to a
simple calibrated model for verifying the effectiveness of
the proposed calibration method.

The system model built as “demone.mdl” has the
following desired features. The conversion value of the

21th channel in the ADC module is amplified by k1. This
amplified conversion value, namely input1, is used to
gain the frequency of the PWM waveform exporting
from the 8th channel. The duty cycle of the PWM wave-
form is obtained by searching the values of input1 am-
plified via k2. Here, k1 and k2 are the calibrated vari-
ables in a presetting table. In addition, the frequency and
the duty cycle of the PWM waveform exporting from the
14th channel are determined by the conversion value of
the 22th channel in the ADC module and the constant
module in the Simulink block library, respectively.

The hardware of the calibration system consists of
the engine ECU (the object board), the USBCAN adapter
and the PC host computer. In the process of generating
the codes automatically, the calibration codes yielding
from the CCP module are integrated into the control
codes, called by the “Codewarrior” compiler in the dae-
mons to build the corresponding project, and then down-
loaded into the object board. Meanwhile, the A2L file
meeting the specifications ASAP are generated auto-
matically by the RTW. The related parameters in the A2L
file are given by Fig. 5.

By imputing the A2L file into the calibration sys-
tem, the calibration and monitoring parameters can be
observed in the client interface of the host computer. The
client interface of the ECU calibration system is shown
in Fig. 6. The aforementioned client interface takes the
calibration of the pulse width of fuel injection as an ex-
ample. Because the pulse width of fuel injection, as the
most important part of the engine ECU calibrated pa-
rameters, affects the air-fuel ratio directly, injection
quantity in different conditions can be determined [10].
According to the engine performance parameters pro-
vided by the manufacturer, the testing range of the rota-
tional speed are selected between 1 600 r/min and 4 600
r/min. The related testing interval is selected as 200
r/min. For each rotational speed, the absolute pressures
of the intake manifold are increased from 30 kPa to 100
kPa. The corresponding additional interval is 7 kPa.
Therefore, the engine operating conditions are divided
into 176 kinds of situations.

As shown in Fig. 6, the mapping graph of the pulse
width for fuel injection is magnified to illustrate the
comprehensive details. In the magnified mapping graph,
the blue-axis and the red-axis denote the engine rota-
tional speed and the intake manifold pressure, respec-
tively. The detailed values of the pulse width in at dif-
ferent rotational speeds and absolute pressures P are
given in Table 1.

Wuhan University Journal of Natural Sciences 2016, Vol.21 No.2 176

(a) Characteristics of gEnSpdMi (b) Measurement of gWaterTemp

Fig. 5 Related parameters in A2L file

Fig. 6 Hierarchy of the ECU calibration system

Table 1 Detailed values of the pulse width for fuel injection
ms

Rotational speed / 103 r·min–1
P/kPa

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

30 5.6 5.5 5.4 5.3 5.2 5.0 5.4 5.0 5.5 5.9 6.1 6.1 6.1 6.2 6.2 6.2

37 8.9 8.4 7.9 7.4 7.6 7.1 7.7 7.1 8.0 9.0 8.8 8.8 8.8 8.7 8.7 8.7

44 10.3 12.1 11.6 11.4 11.2 10.4 10.8 10.5 11.1 12.0 11.7 11.7 11.8 11.9 11.9 11.9

51 11.8 15.0 14.3 13.8 13.2 12.0 13.3 12.1 13.2 14.8 14.4 14.4 14.4 14.5 14.6 14.6

58 13.9 16.0 16.2 16.2 16.2 16.2 15.9 15.8 16.4 17.1 16.8 16.8 16.8 16.9 17.0 17.0

65 14.2 16.3 16.5 16.0 16.8 16.0 16.2 16.5 17.0 17.5 18.0 18.2 18.5 18.6 18.7 18.7

72 14.4 17.0 17.4 17.3 17.5 17.9 17.5 18.5 19.0 19.5 19.0 19.0 19.0 19.0 19.1 19.1

79 14.6 16.8 17.2 17.1 17.3 17.0 17.5 19.1 20.1 20.4 20.0 20.0 20.0 20.1 20.1 20.2

86 14.3 16.7 17.3 17.4 17.1 17.0 17.9 19.3 20.0 21.0 20.5 20.3 20.1 20.5 20.3 20.4

93 14.4 16.8 17.3 17.3 17.2 17.3 18.0 19.4 20.0 20.4 21.0 21.0 20.2 20.1 20.5 20.5

100 14.4 16.7 17.3 17.3 17.2 17.2 18.0 19.5 20.0 20.5 20.5 20.3 20.2 20.3 20.6 21.2

3 Conclusion

This paper has focused on the scenario to build a
calibration toolbox systematically for the automotive
ECU. The idea behind the proposed calibration method is

the modular designing and RTW-based programming.
This new developed method, compared with the

traditional calibration methods, can improve the reus-
ability and portability of the bottom calibration program,
and reduce the coupling nature and the developed cycle

CHENG Anyu et al : A Model-Based Calibration Method of …

177

of the calibrated software. In addition, the designed cali-
bration toolbox is also applicable for the ECUs with dif-
ferent hardware interfaces. Especially when the bottom
hardware changes, the corresponding driver modules are
only required to be replaced for the calibration. In this
sense, the efficiency and the adaptability of the calibra-
tion system are enhanced significantly.

[1] Luo J, Krishna R P, Liu Q, et al. An integrated diagnostic

development process for automotive engine control systems

[J]. IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, 2007, 37(6): 1163-1173.

[2] Klaus D M, Gerd F, Eric S, et al. Multiparadigm modeling in

embedded systems design [J]. IEEE Transactions on Control

Systems Technology, 2004, 12(2): 279-292.

[3] Bifulco G N, Pariota L, Simonelli F, et al. Development and

testing of a fully adaptive cruise control system [J]. Trans-

portation Research Part C: Emerging Technologies, 2013,

29(4): 156-170.

[4] Chatzakis J, Kalaitzakis K, Voulgaris N C, et al. Designing a

new generalized battery management system [J]. IEEE

Transactions on Industrial Electronics, 2003, 50(5): 990-

999.

[5] Yang S, Yang L, Zhuo B. Developing a multi-node calibra-

tion system for can bus based vehicle [C] // Proc of IEEE In-

ternational Conference on Vehicular Electronics and Safety,

Piscataway N J: IEEE Press, 2006: 199-203.

[6] Cen M, Yan Y, Dai H. General calibration system architec-

ture of automotive electronic control unit [J]. Journal of

Computers, 2010, 5(12): 1894-1898.

[7] Wong P K, Tam L M, Ke L. Automotive engine power per-

formance tuning under numerical and nominal data [J]. Con-

trol Engineering Practice, 2012, 20(3): 300-314.

[8] Beham M, Etzel M, Yu D L. Development of a new auto-

matic calibration method for control of variable valve timing

[J]. Proceedings of the Institution of Mechanical Engineers,

Part D: Journal of Automobile Engineering, 2004, 218(7):

707-718.

[9] Wang X, Waschl H, Alberer D, et al. A design framework

for predictive engine control [J]. Oil & Gas Science and

Technology-Revue d’IFP Energies Nouvelles, 2011, 66(4):

599-612.

[10] Deng J, Winward E, Stobart R, et al. Modeling techniques to

support fuel path control in medium duty diesel engines [J].

SAE Technical Paper, 2010, (1): 332-336.

□

References

