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Abstract: This paper presents a systematic method of designing 
the calibration toolbox of automotive electronic control unit (ECU) 
based on real-time workshop (RTW). To break the strong coupling 
of each functional layer, the hierarchical architecture of the cali-
bration system is divided into the bottom driver layer, the interme-
diate interface layer and the top application layer. The driver func-
tions meeting the specification of the automotive open system are 
sent and received in the intermediate interface layer. To reduce the 
development costs, the portable user codes are generated by RTW 
which provides a development environment from system simula-
tion to hardware implementation. Specifically, the calibration 
codes yielded from the controller area network (CAN) calibration 
protocol (CCP) module are integrated into the control codes, 
called by a compiler in the daemons to build a corresponding pro-
ject, and then downloaded into the object board to provide the A2L 
file. The experiments illustrate that the different drive modules are 
only needed to be replaced for the implementation of the calibra-
tion system applied in different hardware platforms. 
Key words: calibration system; electronic control unit; hierar-
chical architecture; real-time workshop 
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0  Introduction 

The system calibration is one of the key technolo-
gies to effectively design automotive electronic products. 
The calibrated system with high efficiency and adapta-
bility can greatly improve the design of electronic con-
trol unit (ECU). Today, the model-based calibration me-
thods have progressed significantly in terms of theory 
and applications. There have been increased applications 
of model-based design and testing in the automotive in-
dustry to reduce design errors and perform rapid proto-
typing [1, 2]. Bifulco et al [3] presented a system in which 
an on-board ECU is required by the driver to calibrate its 
own parameters after a few minutes’ manual drive. The 
calibration system in Ref. [4] used the calibration board 
and the serial communication of battery management 
system (BMS) to perform the calibration of battery 
management system via the keyboard. And a multi-node 
calibration system based on controller area network 
(CAN) calibration protocol (CCP) is developed for a 
multi-ECU being used by vehicle [5]. In this system, the 
message buffers, message filter registers and bit timing 
of identifiers were reasonably configured. The calibra-
tion system proposed a method of calibrating multi 
ECUs simultaneously, which can also make the parame-
ters of different ECUs match better. 

The ASAP standards is a set of widely-agreed cali-
bration criterion in industry. As an important component 
of ASAP standards, the CCP is most commonly used to 
achieve the communication of host and ECU for the ca-
libration systems based on CAN bus technology. Many 
well-known companies including Vector and ETAS have 
their own ECU products supported by the calibration and 
testing tools adopting CCP. In the entire development 
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process of calibration system, it is prerequisite that the 
measurement calibration system (MCS) and applications 
programme of ECU should be supported by CCP. The 
implication of the CCP driver and the communication 
between the calibration tool and ECU are also needed to 
be further understood during the CCP driver is being 
incorporated into the ECU [6].  

In addition, most of the calibration softwares, such 
as the CANape developed by Vector Company and the 
Measurement & Calibration Toolkit developed by NI 
Company, have more complicated upfront configurations. 
For example, each ECU needing calibration is required 
to be configured in the CANape. Although the calibra-
tion software offers a tight junction of the CCP driver 
and the related hardware driver, the combination of the 
CCP driver and the bottom program is operated manually. 
In this sense, the workload increase for supplying extra 
program code of calibration interface and driver due to 
the strong coupling and poor flexibility of calibration 
program’s architecture [7, 8]. 

In this work, to solve the inefficient problem men-
tioned above and reduce the development time and cost 
of calibration system, we present a systematic method of 
designing automotive ECU calibration toolbox based on 
real-time workshop (RTW). The hierarchical architecture 
of bottom calibration system is constructed by the func-
tionalities of the individual submodules in the calibration 
program. An intermediate interface layer is designed to 
improve the versatility and reusability of the bottom cali-
bration program. The driver functions meeting the inter-
face specification of the automotive open system archi-

tecture (AutoSAR) are sent and received in this interme-
diate interface layer. The different drive modules are 
only needed to be replaced for the applications of the 
calibration system applied to different hardware plat-
forms. The personalized and portable user codes are gen-
erated by RTW which provides a development environment 
from system simulation to hardware implementation. 

1 Design of the Calibration  
Toolbox 

Graphic language is adopted for the design method 
instead of high-level abstract language for the develop-
ment of calibration toolbox. Specifically, in the visuali-
zation environment of MATLAB, each module of the 
bottom calibration system is encapsulated into separate 
module by the C-MEX S-functions in a manner of the 
customized signal flow graph. By means of calling the 
template target file, the control codes are automatically 
generated by the RTW tool, then downloaded to the 
hardware platform for achieving the design and debug-
ging of calibration program. 

The block diagram of designing the calibration 
toolbox is shown in Fig. 1. From Fig. 1, it is clearly 
drawn that the designed work generally includes three 
aspects: the analysis of the hierarchical architecture in 
ECU calibration system, the model design based on 
S-function and the customization of module object 
file. 

 

Fig. 1  Block diagram of the proposed design method 
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1.1 Hierarchical Architecture of ECU  
Calibration System 

According to the functionalities of the individual 
submodules in ECU, the hierarchical architecture of bot-
tom calibration system, as shown in Fig. 2, is divided 
into three levels: the bottom driver layer, the intermedi-
ate interface layer and the top application layer. 

In the bottom driver layer, the bottom programs of a 
certain micro-controller, such as the module initialization 
program, the signal acquisition and output program, are 
written here in accordance with the corresponding situa-
tion of the interface and the relationship between input 
and output signal. The intermediate interface layer 
mainly plays a role of providing the interfaces for the 

CAN application. The CAN messages passed down from 
the upper calibration system are accepted and parsed out 
the CCP messages by the “CAN Receive Function”. The 
CCP messages are submitted to the “Command Proces-
sor”, then re-packaged as CCP packets being fed to the 
“CAN Transmit Function” for further encapsulation of 
CCP. At last, the encapsulated CCP is sent to the upper 
calibration system.  

The purpose of the top application layer is to 
achieve the calibration of the ECU control parameter and 
upload these monitoring parameters. The “CCP Driver”, 
as one of the “CAN Driver” users, is responsible for 
communication of the calibration software and PC using 
the CAN function [9]. 

 

Fig. 2  Hierarchy of the ECU calibration system 

1.2  Model Design Based on S-Function 
The S-function, an autonomous file interface in 

MATLAB, is always employed to build the simulink 
module with a special function calls. Both of M-files and 
MEX-files are the mainly implemented ways of the 
S-function. Particularly, the C-MEX S-functions have 
many advantages, such as a common language specifica-
tion, high execution speed, being called by any open 
source code. The common language specification (CLS), 
which is a set of basic language features needed by many 
applications, has been defined. The CLS rules define a 
subset of the common type system; that is, all the rules 
that are applied to the common type system which is ap-
plied to the CLS. These advantages make the C-MEX 
S-functions much more suitable for the hardware devel-
opment. 

The S-function, an autonomous file interface in 
MATLAB, is always employed to build the simulink 
module with a special function calls. Both of M-files and 
MEX-files are the mainly implemented ways of the 

S-function. Particularly, the C-MEX S-functions have 
many advantages, such as a common language specifica-
tion, high execution speed, being called by any open 
source code. The common language specification (CLS), 
which is a set of basic language features needed by many 
applications, has been defined. The CLS rules define a 
subset of the common type system; that is, all the rules 
that are applied to the common type system which is ap-
plied to the CLS. These advantages make the C-MEX 
S-functions much more suitable for the hardware devel-
opment. 

If the models in MATLAB do not meet user re-
quirements, the S-function can be programmed accord-
ing to the module parameters and the input or output 
ports. Then an encapsulation of S-function module is 
achieved by the configuration of the Mast Editor pa-
rameter dialog. Finally, a customized and personalized 
interface module is displayed in the simulink block li-
brary browser. Figure 3 gives the encapsulated process of 
the S-function modules. 
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Fig. 3  Encapsulated process of the S-function modules 

1.3  Customization of Module Object File 
After the encapsulated process of the S-function 

modules is completed, the customized module programs 
are embedded into the source codes being generated au-
tomatically. The module file, so called target language 
complier (TLC), is programmed to customize the code 
generation template of each sub-model in the model li-
brary. The TLC file contains four functions: “Block-
TypeSetup”, “Start”, “Outputs” and “Terminate”. 

This section takes “CCP Block” in calibration tool-
box as an example to illustrate the method of creating the 
TLC file. The primary purpose of “CCP Block” module 
is getting the channel number of CAN, the baud rate, the 
message ID of the command receive object (CRO) and 
the data transfer object (DTO). Such obtained knowledge 
is delivered to the CAN transmitting and receiving mod-
ules for initialization of the CCP driver in the main func-
tion. The “BlockType-Setup” function, before the start-
ing of the code generation, is executed only once in each 
module. The general operations of each module of a 
given type, such as the macro declaration, the function 
prototype declaration, the header file contains (# in-
clude), the data type alias (typedef), etc., are performed 
by this “BlockTypeSetup” function. The exact procedure 
about the “BlockType-Setup” function is shown as fol-
lows: 

 
Line 1:  %function BlockTypeSetup ( block,  

system ) void 
Line 2:  %%Used to determine how many CCP 

modules exist 
Line 3:  %assign::CCP BlockTotal = 0 

Line 4:  %assign hFile = LibGetModelDotHFile() 
Line 5:  %openfile tmpBuf 
Line 6:  #include “Platform Types.h” ⇒ Templates 

generation 
Line 7:  %closefile tmpBuf %LibSetSource 

FileSection (hFile, “Includes”, tmpBuf) 
Line 8:  %assign hFile = LibGetModelDotHFile () 
Line 9:  %openfile tmpBuf       
Line 10:  void ccpInit(uint8 id )    
Line 11:  %closefile tmpBuf 
Line 12:  %LibSetSourceFileSection(hFile,  

“Functions”, tmpBuf)⟩ 
Line 13:  %endfunction  

The “Line 2”，started with the specific character 
“%%” ，is the annotation of the “BlockType-Setup” 
function. The “Line 3”, in the aforementioned code seg-
ment, defines a variable named CCP BlockTotal being 
assigned to 0. The “Line 4” employs the function “Lib-
GetModelDotHFile ()” to create a header file with the 
same name of the model “.mdl”. The “Line 5” denotes 
creating a text buffer to temporarily store the code gen-
eration templates of a module designed by its functional-
ity. The text buffer is turned off in “Line 11”. The “Line 
12” denotes that the contents of the specified templates 
in the buffer are written into the “Function” section of 
the corresponding header file. For the section of the 
“Start” function, the programme is given as follows: 

 
Line 1:  %function Start ( block, system ) Output 
Line 2:  %assign:: CCP_BlockTotal  

= CCP_BlockTotal+1 
Line 3:  %if ( CCP_BlockTotal == 1 ) 
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Line 4:  %%Initialize the CCP module only once 
Line 5:  ccpInit ( %SFcnParamSettings.Can DAQ 
        ID ) ⇒Initialization function calls 
Line 6:  %endif 
Line 7:  %endfunction  

In the code segment mentioned above, the “Line 2” 
represents a value growing of the variable CCP Block-
Total. This value will be increased by 1 if each CCP 
module appears once in the model. The judge sentence in 
“Line 4” ensures that the CCP is initialized only once by 
the generated code. So far, the TLC files of the CCP ini-
tialization module have been created. The interface dia-
gram of the CCP module is plotted in Fig. 4. 

 

Fig. 4  Interface diagram of CCP module 

It is noteworthy that we dealt with only both of the 
“BlockTypeSetup” and “Start” functions in this example. 
According to the needs of the users, “Outputs” and 
“Terminate” functions are also used in the TLC module. 
The corresponding TLC files of the modules in calibra-
tion toolbox can be customized in the aforementioned 
manners. 

2  Experiments 

In this section, the Freescale MPC5634 board is se-
lected as our object board. The CCP module, in our cali-
bration toolbox, is combined with other modules to a 
simple calibrated model for verifying the effectiveness of 
the proposed calibration method. 

The system model built as “demone.mdl” has the 
following desired features. The conversion value of the 

21th channel in the ADC module is amplified by k1. This 
amplified conversion value, namely input1, is used to 
gain the frequency of the PWM waveform exporting 
from the 8th channel. The duty cycle of the PWM wave-
form is obtained by searching the values of input1 am-
plified via k2. Here, k1 and k2 are the calibrated vari-
ables in a presetting table. In addition, the frequency and 
the duty cycle of the PWM waveform exporting from the 
14th channel are determined by the conversion value of 
the 22th channel in the ADC module and the constant 
module in the Simulink block library, respectively. 

The hardware of the calibration system consists of 
the engine ECU (the object board), the USBCAN adapter 
and the PC host computer. In the process of generating 
the codes automatically, the calibration codes yielding 
from the CCP module are integrated into the control 
codes, called by the “Codewarrior” compiler in the dae-
mons to build the corresponding project, and then down-
loaded into the object board. Meanwhile, the A2L file 
meeting the specifications ASAP are generated auto-
matically by the RTW. The related parameters in the A2L 
file are given by Fig. 5. 

By imputing the A2L file into the calibration sys-
tem, the calibration and monitoring parameters can be 
observed in the client interface of the host computer. The 
client interface of the ECU calibration system is shown 
in Fig. 6. The aforementioned client interface takes the 
calibration of the pulse width of fuel injection as an ex-
ample. Because the pulse width of fuel injection, as the 
most important part of the engine ECU calibrated pa-
rameters, affects the air-fuel ratio directly, injection 
quantity in different conditions can be determined [10]. 
According to the engine performance parameters pro-
vided by the manufacturer, the testing range of the rota-
tional speed are selected between 1 600 r/min and 4 600 
r/min. The related testing interval is selected as 200 
r/min. For each rotational speed, the absolute pressures 
of the intake manifold are increased from 30 kPa to 100 
kPa. The corresponding additional interval is 7 kPa. 
Therefore, the engine operating conditions are divided 
into 176 kinds of situations.  

As shown in Fig. 6, the mapping graph of the pulse 
width for fuel injection is magnified to illustrate the 
comprehensive details. In the magnified mapping graph, 
the blue-axis and the red-axis denote the engine rota-
tional speed and the intake manifold pressure, respec-
tively. The detailed values of the pulse width in at dif-
ferent rotational speeds and absolute pressures P are 
given in Table 1. 



Wuhan University Journal of Natural Sciences 2016, Vol.21 No.2 176 

 

(a) Characteristics of gEnSpdMi                               (b) Measurement of gWaterTemp 

Fig. 5  Related parameters in A2L file 

 

Fig. 6  Hierarchy of the ECU calibration system 

Table 1  Detailed values of the pulse width for fuel injection                   
ms  

Rotational speed / 103 r·min–1 
P/kPa 

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

30 5.6 5.5 5.4 5.3 5.2 5.0 5.4 5.0 5.5 5.9 6.1 6.1 6.1 6.2 6.2 6.2

37 8.9 8.4 7.9 7.4 7.6 7.1 7.7 7.1 8.0 9.0 8.8 8.8 8.8 8.7 8.7 8.7

44 10.3 12.1 11.6 11.4 11.2 10.4 10.8 10.5 11.1 12.0 11.7 11.7 11.8 11.9 11.9 11.9

51 11.8 15.0 14.3 13.8 13.2 12.0 13.3 12.1 13.2 14.8 14.4 14.4 14.4 14.5 14.6 14.6

58 13.9 16.0 16.2 16.2 16.2 16.2 15.9 15.8 16.4 17.1 16.8 16.8 16.8 16.9 17.0 17.0

65 14.2 16.3 16.5 16.0 16.8 16.0 16.2 16.5 17.0 17.5 18.0 18.2 18.5 18.6 18.7 18.7

72 14.4 17.0 17.4 17.3 17.5 17.9 17.5 18.5 19.0 19.5 19.0 19.0 19.0 19.0 19.1 19.1

79 14.6 16.8 17.2 17.1 17.3 17.0 17.5 19.1 20.1 20.4 20.0 20.0 20.0 20.1 20.1 20.2

86 14.3 16.7 17.3 17.4 17.1 17.0 17.9 19.3 20.0 21.0 20.5 20.3 20.1 20.5 20.3 20.4

93 14.4 16.8 17.3 17.3 17.2 17.3 18.0 19.4 20.0 20.4 21.0 21.0 20.2 20.1 20.5 20.5

100 14.4 16.7 17.3 17.3 17.2 17.2 18.0 19.5 20.0 20.5 20.5 20.3 20.2 20.3 20.6 21.2

3  Conclusion 

This paper has focused on the scenario to build a 
calibration toolbox systematically for the automotive 
ECU. The idea behind the proposed calibration method is 

the modular designing and RTW-based programming.  
This new developed method, compared with the 

traditional calibration methods, can improve the reus-
ability and portability of the bottom calibration program, 
and reduce the coupling nature and the developed cycle 
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of the calibrated software. In addition, the designed cali-
bration toolbox is also applicable for the ECUs with dif-
ferent hardware interfaces. Especially when the bottom 
hardware changes, the corresponding driver modules are 
only required to be replaced for the calibration. In this 
sense, the efficiency and the adaptability of the calibra-
tion system are enhanced significantly. 
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