

Wuhan University Journal of Natural Sciences

Article ID 1007-1202(2015)06-0471-05 DOI 10.1007/s11859-015-1121-x

A Type of Busemann-Petty Problems for General *Lp*-Intersection Bodies

PEI Yanni, WANG Weidong[†]

Department of Mathematics, China Three Gorges University, Yichang 443002, Hubei, China

© Wuhan University and Springer-Verlag Berlin Heidelberg 2015

Abstract: Recently, the notion of general (containing symmetric and asymmetric) *Lp*-intersection bodies was given. In this article, by the *Lp*-dual mixed volumes and the general *Lp*-dual Blaschke bodies, we study the *Lp*-dual affine surface area forms of the Busemann-Petty problems for general *Lp*-intersection bodies. Our works belong to a new and rapidly evolving asymmetric *Lp*-Brunn-Minkowski theory.

Key words: Busemann-Petty problem; *Lp*-dual affine surface area; general *Lp*-intersection body

CLC number: O 178; O 18

Received date: 2015-05-28

Biography: PEI Yanni, female, Master candidate, research direction: convex geometric analysis. E-mail: peiyanni work@163.com

† To whom correspondence should be addressed. E-mail: wdwxh722@ 163.com

0 Introduction

Let K^n denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean space \mathbf{R}^n . For the set of convex bodies whose centroid lie at the origin in \mathbf{R}^n , we write K_c^n .

Let S_o^n , S_c^n , S_{os}^n denote the set of star bodies (about the origin), the set of star bodies whose centroid lie at the origin and the set of origin-symmetric star bodies in \mathbf{R}^n , respectively. Let S^{n-1} denote the unit sphere in \mathbf{R}^n , and V(K) denote the *n*-dimensional volume of body *K*. For the standard unit ball *B* in \mathbf{R}^n , we use $\omega_n = V(B)$ to denote its volume.

If *K* is a compact star-shaped (about the origin) in \mathbf{R}^n , its radial function, $\rho_K = \rho(K, \cdot) : \mathbf{R}^n \setminus \{0\} \rightarrow [0, +\infty)$ is defined by^[1]

 $\rho(K, x) = \max\{\lambda \ge 0 : \lambda x \in K\}, x \in \mathbb{R}^n \setminus \{0\}.$

The notion of intersection bodies was introduced by Lutwak^[2]: For $K \in S_o^n$, the intersection body, *IK*, of *K* is a star body whose radial function in the direction $u \in S^{n-1}$ is equal to the (n-1)-dimensional volume of the section of *K* by u^{\perp} , the hyperplane orthogonal to *u*, i.e. for all $u \in S^{n-1}$, $\rho(IK, u) = V_{n-1}(K \cap u^{\perp})$, where V_{n-1} denotes (n-1)-dimensional volume.

In 2006, Haberl and Ludwig^[3] defined the *Lp*-intersection body as follows: For $K \in S_o^n$, 0 , the*Lp* $-intersection body, <math>I_pK$, of K is the origin-symmetric star body whose radial function is defined by

$$\rho_{I_{pK}}^{p}(u) = \int_{K} \left| u \cdot x \right|^{-p} \mathrm{d}x$$

Foundation item: Supported by the National Natural Science Foundation of China (11371224)

$$=\frac{1}{n-p}\int_{S^{n-1}} |u \cdot v|^{-p} \rho_K^{n-p}(v) \mathrm{d}S(v)$$
(1)

for all $u \in S^{n-1}$.

Meanwhile, they^[3] defined the following asymmetric *Lp*-intersection bodies I_p^+K . For $K \in S_o^n$, 0 < p<1, define

$$\rho_{I_{p}^{+}K}^{p}(u) = \int_{K \cap u^{+}} |u \cdot x|^{-p} \,\mathrm{d}x \tag{2}$$

for all $u \in S^{n-1}$, where $u \cdot x$ denotes the standard inner product of u and x, and $u^+ = \{x : u \cdot x \ge 0, x \in \mathbb{R}^n\}$. They also defined that

$$I_{p}^{-}K = I_{p}^{+}(-K)$$
(3)

From definitions (2) and (3), we can see that

$$\rho_{I_{p}^{-}K}^{p}(u) = \rho_{I_{p}^{+}(-K)}^{p}(u) = \int_{-K \cap u^{+}} |u \cdot x|^{-p} dx$$
$$= \int_{K \cap (-u)^{+}} |u \cdot x|^{-p} dx$$
(4)

Recently, Wang and Li^[4,5] gave the notion of general *Lp*-intersection body with a parameter τ as follows: For $K \in S_o^n$, $0 and <math>\tau \in [-1,1]$, the general *Lp*-intersection body, $I_p^{\tau}K \in S_o^n$, of K is defined by

$$\rho_{I_{pK}^{p}}^{p}(u) = f_{1}(\tau)\rho_{I_{pK}^{p}}^{p}(u) + f_{2}(\tau)\rho_{I_{pK}^{p}}^{p}(u)$$
(5)

for all $u \in S^{n-1}$, where

$$\begin{cases} f_1(\tau) = \frac{(1+\tau)^p}{(1+\tau)^p + (1-\tau)^p} \\ f_2(\tau) = \frac{(1-\tau)^p}{(1+\tau)^p + (1-\tau)^p} \end{cases}$$
(6)

From (6), we easily know that

$$f_{1}(-\tau) = f_{2}(\tau) , \quad f_{2}(-\tau) = f_{1}(\tau) ;$$

$$f_{1}(\tau) + f_{2}(\tau) = 1$$
(7)

Obviously, if $\tau = 0$, by (1), (2), (4), (5) and (6), we see $I_p^0 K = I_p K$.

The general *Lp*-intersection bodies belong to a new and rapidly evolving asymmetric *Lp*-Brunn-Minkowski theory that has its own origin in the work of Ludwig, Haberl and Schuster^[3-8]. For the further researches of asymmetric *Lp*-Brunn-Minkowski theory, also see Refs.[9-22].

Associated with the *Lp*-dual mixed volume $\tilde{V}_p(M, N)$, Wang *et al*^[23] gave the notion of *Lp*-dual affine surface area as follows: For $K \in S_o^n$, and 0 , the*Lp* $-dual affine surface area, <math>\tilde{\Omega}_p(K)$, of K is defined by

 $n^{-\frac{p}{n}}\tilde{\Omega}_{p}(K)^{\frac{n+p}{n}} = \sup\{n\tilde{V}_{p}(K,Q^{*})V(Q)^{\frac{p}{n}}: Q \in K_{c}^{n}\}$ (8)

Here Q^* denotes the polar of Q which is defined by Ref.[1]

 $Q^* = \{x \cdot y \quad 1, y \in Q\}, \qquad x \in \mathbf{R}^n.$

In 2014, Wang *et al*^[24] improved definition (8) from $K \in K_c^n$ to $Q \in S_c^n$: For $K \in S_o^n$, and 0 , the*Lp* $-dual affine surface area, <math>\tilde{\Omega}_p(K)$, of K is defined by

$$n^{-\frac{p}{n}}\tilde{\Omega}_{p}(K)^{\frac{n+p}{n}} = \sup\{n\tilde{V}_{p}(K,Q^{*})V(Q)^{\frac{p}{n}} : Q \in S_{c}^{n}\}$$
(9)

Let Z_p^n denote the set of polar of all *Lp*-intersection bodies, then $Z_p^n \subseteq S_c^n$. If $Q \in Z_p^n$ in (9), $\tilde{\Omega}_p^{\circ}(K)$ is written by

$$n^{-\frac{p}{n}}\tilde{\Omega}_{p}^{\circ}(K)^{\frac{n+p}{n}} = \sup\{n\tilde{V}_{p}(K,Q^{*})V(Q)^{\frac{p}{n}}: Q \in \mathbb{Z}_{p}^{n}\}$$
(10)

According to (9) and (10), Wang *et al* $[^{24]}$ studied the *Lp*-dual affine surface area forms of the Busemann-Petty problems for the *Lp*-intersection bodies.

Theorem 1 For $K, L \in S_o^n$, $0 , if <math>I_p K \subseteq I_p L$, then $\tilde{\Omega}_p^{\circ}(K) = \tilde{\Omega}_p^{\circ}(L)$, with the equality if and only if $I_p K = I_p L$.

Theorem 2 For $K \in S_o^n$ and 0 , if <math>K is not origin-symmetric, then there exists $L \in S_{os}^n$, such that $I_p K \subset I_p L$, but $\tilde{\Omega}_p^{\circ}(K) > \tilde{\Omega}_p^{\circ}(L)$.

In this paper, associated with *Lp*-dual affine surface area, we will investigate the Busemann-Petty problem for the general *Lp*-intersection bodies.

For the convenience of our work, we improve definition (10) as follows : Let $Z_p^{\tau,n}$ denote the set of polar of all general *Lp*-intersection bodies, for $K \in S_o^n$, $0 and <math>\tau \in [-1,1]$, the *Lp*-dual affine surface area, $\tilde{\Omega}_p^{\bullet}(K)$, of K is given by

$$n^{-\frac{p}{n}}\tilde{\Omega}_{p}^{\bullet}(K)^{\frac{n+p}{n}} = \sup\{n\tilde{V}_{p}(K,Q^{*})V(Q)^{\frac{p}{n}} : Q \in Z_{c}^{\tau,n}\}$$
(11)

When $\tau = 0$, definition (11) is just definition (10).

Especially, when $Q \in S_{os}^n$ in (9), we write $\tilde{\Omega}_p^*(K)$ by

$$n^{-\frac{\nu}{n}}\tilde{\Omega}_{p}^{*}(K)^{\frac{n+\nu}{n}} = \sup\{n\tilde{V}_{p}(K,Q^{*})V(Q)^{\frac{\nu}{n}} : Q \in S_{os}^{n}\}$$
(12)

According to definition (11), we first give an affirmative form of the Busemann-Petty problem for general *Lp*-intersection bodies, i.e., a general form of Theorem 1 is obtained.

Theorem 3 For $K, L \in S_{0}^{n}, \tau \in [-1,1]$ and 0 < p

<1, if
$$I_p^{\tau}K \subseteq I_p^{\tau}L$$
, then
 $\tilde{\Omega}_p^{\bullet}(K) = \tilde{\Omega}_p^{\bullet}(L)$ (13)

with equality if and only if $I_p^{\tau}K = I_p^{\tau}L$.

Next, combining with definition (12), we get a negative form of the Busemann-Petty problem for the general *Lp*-intersection bodies.

Theorem 4 For $K \in S_o^n$, $\tau \in (-1,1)$ and 0 < p<1, if K is not origin-symmetric, then there exists $L \in S_o^n$, such that $I_p^{\tau} K \subset I_p^{\tau} L$, but $\tilde{\Omega}_p^*(K) > \tilde{\Omega}_p^*(L)$.

Finally, corresponding to Theorem 2, we extend a negative form of the Busemann-Petty problem for the *Lp*-intersection bodies from $L \in S_{os}^{n}$ to $L \in S_{o}^{n}$.

Theorem 5 For $K \in S_o^n$, 0 , if <math>K is not origin-symmetric, then there exists $L \in S_o^n$, such that $I_p K \subset I_p L$, but $\tilde{\Omega}_p^*(K) > \tilde{\Omega}_p^*(L)$.

The proofs of Theorems 3-4 will be completed in Section 2 of this paper.

1 Preliminaries

1.1 Lp-Dual Mixed Volume

The notion^[6,25] of *Lp*-dual mixed volume was introduced as follows: For $K, L \in S_o^n$ and real number p > 0, the *Lp*-dual mixed volume, $\tilde{V_p}(K, L)$, of K of L is defined by

$$\tilde{V}_{p}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho_{K}(u)^{n-p} \rho_{L}(u)^{p} du \qquad (14)$$

From (14), we easily know that

$$\tilde{V}_{p}(K,K) = V(K) = \frac{1}{n} \int_{S^{n-1}} \rho_{K}(u)^{n} du$$
 (15)

1.2 General Lp-Dual Blaschke Body

For $K, L \in S_o^n$, $0 and <math>\lambda, \mu \ge 0$ (not both zero), the *Lp*-dual Blaschke combination, $\lambda \otimes K \neq_p \mu$ $\otimes L$, of K and L is defined by

$$\rho(\lambda \otimes K \stackrel{\scriptstyle{\leftarrow}}{=}_{p} \mu \otimes L, \bullet)^{n-p}$$
$$= \lambda \rho(K, \bullet)^{n-p} + \mu \rho(L, \bullet)^{n-p}$$
(16)

Here, $\lambda \otimes K = \lambda^{\frac{1}{n-p}} K$. Take $\lambda = \mu = \frac{1}{2}$, L = -K in $\lambda \otimes K \neq_p \mu \otimes L$, then the *Lp*-dual Blaschke body,

 $\overline{\nabla}_p K$, of K is defined by

$$\overline{\nabla}_{p}K = \frac{1}{2} \otimes K + \frac{1}{2} \otimes (-K)$$
(17)

Obviously, the *Lp*-dual Blaschke body $\overline{\nabla}_{p}K$ is origin-symmetric.

Associated with (6), Wang and Li^[4] gave the notion of general *Lp*-dual Blaschke body. For $K \in S_o^n$, p > 0and $\tau \in [-1,1]$, the general *Lp*-dual Blaschke body, $\overline{\nabla}_p^{\tau} K \in S_o^n$, of K is defined by

$$\rho(\overline{\nabla}_{p}^{r}K, \bullet)^{n-p} = f_{1}(\tau)\rho(K, \bullet)^{n-p} + f_{2}(\tau)\rho(-K, \bullet)^{n-p} \quad \text{i.e.,}$$
$$\overline{\nabla}_{p}^{r}K = f_{1}(\tau)\otimes K + f_{p}f_{2}\otimes(-K)$$
(18)

Here $f_1(\tau)$ and $f_2(\tau)$ satisfy (6). Obviously, if $\tau = 0$, then $\overline{\nabla}_p^{\tau} K = \overline{\nabla}_p K$.

2 Proofs of Theorems

In this section, we will complete the proofs of Theorems 3-5. In order to prove Theorem 3, we require a lemma as follows:

Lemma 1 ^[4] If $K, L \in S_o^n$, $0 \le p \le 1$, and $\tau \in [-1,1]$, then $\tilde{V}_p(K, I_p^{\tau}L) = \tilde{V}_p(L, I_p^{\tau}K)$.

Proof of Theorem 3 From (14), since $I_p^r K \subseteq I_p^r L$, thus for any $Q \in S_o^n$,

$$\tilde{V}_p(Q, I_p^{\tau}K) \quad \tilde{V}_p(Q, I_p^{\tau}L)$$
(19)

with equality if and only if $I_p^{\tau}K = I_p^{\tau}L$.

Therefore, from Lemma 1, we have

$$\tilde{V}_p(K, I_p^{\tau}Q) \quad \tilde{V}_p(L, I_p^{\tau}Q) \tag{20}$$

Let $M^* = I_p^{\tau}Q$, then $M \in Z_p^{\tau,n}$. From (11) and (20), we get

$$n^{-\frac{p}{n}} \tilde{\Omega}_{p}^{\bullet}(K)^{\frac{n+p}{n}}$$

$$= \sup \{ n \tilde{V}_{p}(K, M^{*}) V(M)^{\frac{p}{n}}, M \in Z_{p}^{\tau, n} \}$$

$$\sup \{ n \tilde{V}_{p}(L, M^{*}) V(M)^{\frac{p}{n}}, M \in Z_{p}^{\tau, n} \}$$

$$= n^{-\frac{p}{n}} \tilde{\Omega}_{p}^{\bullet}(L)^{\frac{n+p}{n}}$$

i.e., (13) is obtained.

According to the equality of (19), we know that the equality holds in (13) if and only if $I_{p}^{r}K = I_{p}^{r}L$.

In order to prove the negative form for the Busemann-Petty type problem, we need the following two lemmas.

Lemma 2 If $K, L \in S_o^n$, $0 \le p \le 1$ and $\tau \in (-1,1)$, then

$$\tilde{\Omega}_{p}^{*}(f_{1}(\tau)\otimes K \neq_{p} f_{2}(\tau)\otimes L)^{\frac{n+p}{n}}$$

$$f_{1}(\tau)\tilde{\Omega}_{p}^{*}(K)^{\frac{n+p}{n}} + f_{2}(\tau)\tilde{\Omega}_{p}^{*}(L)^{\frac{n+p}{n}} \qquad (21)$$

with equality if and only if K and L are dilates.

Proof From (12), (14) and (16), we have $n^{-\frac{p}{n}}\tilde{\Omega}_{n}^{*}(f_{1}(\tau)\otimes K\neq_{n}f_{2}(\tau)\otimes L)^{\frac{n+p}{n}}$ $= \sup \{ n \tilde{V}_p(f_1(\tau) \otimes K \neq_p f_2(\tau) \otimes L, M) V(M^*)^{\frac{p}{n}}, M \in S_{os}^n \}$ $= \sup \{ nf_1(\tau) \tilde{V}_p(K,M) V(M^*)^{\frac{p}{n}}$ $+ nf_2(\tau)\tilde{V}_n(L,M)V(M^*)^{\frac{p}{n}}: M \in S_{\infty}^n$ $\sup \{nf_1(\tau)\tilde{V}_n(K,M)V(M^*)^{\frac{p}{n}}: M \in S_{\infty}^n\}$ $+\sup\{nf_2(\tau)\tilde{V}_n(L,M)V(M^*)^{\frac{p}{n}}:M\in S_{os}^n\}$ $= f_1(\tau) n^{-\frac{p}{n}} \tilde{\Omega}_n^*(K)^{\frac{n+p}{n}} + f_2(\tau) n^{-\frac{p}{n}} \tilde{\Omega}_n^*(L)^{\frac{n+p}{n}}$ Thus

$$\begin{split} \tilde{\Omega}_{p}^{*}(f_{1}(\tau)\otimes K \breve{+}_{p} f_{2}(\tau)\otimes L)^{\frac{n+p}{n}} \\ f_{1}(\tau)\tilde{\Omega}_{p}^{*}(K)^{\frac{n+p}{n}} + f_{2}(\tau)\otimes\tilde{\Omega}_{p}^{*}(L)^{\frac{n+p}{n}} \end{split}$$

The equality holds if and only if $f_1(\tau) \otimes$ $K \neq_n f_2(\tau) \otimes L$ are dilates with K and L, respectively. This means that equality holds in (21) if and only if K and L are dilates.

Corollary 1 If $K \in S_0^n$, $0 and <math>\tau \in$ (-1,1), then

$$\tilde{\Omega}_{p}^{*}(\overline{\nabla}_{p}^{\tau}K) \quad \tilde{\Omega}_{p}^{*}(K)$$
(22)

with equality if and only if K is origin-symmetric.

Proof Taking L = -K in (21), by (18) we get

$$\tilde{\Omega}_{p}^{*}(\overline{\nabla}_{p}^{\tau}K)^{\frac{n+p}{n}} \qquad f_{1}(\tau)\tilde{\Omega}_{p}^{*}(K)^{\frac{n+p}{n}} + f_{2}(\tau)\tilde{\Omega}_{p}^{*}(-K)^{\frac{n+p}{n}}$$
(23)

According to the equality condition of (21), we see that equality holds in (23) if and only if K and -Kare dilates, i.e., K is origin-symmetric.

Since $M \in S_{os}^n$, thus M is origin-symmetric,

i.e., $\rho_M(u) = \rho_{-M}(u) = \rho_M(-u)$ for all $u \in S^{n-1}$. From this, by (14) we get

$$\tilde{V}_{p}(-K,M) = \frac{1}{n} \int_{S^{n-1}} \rho_{-K}(u)^{n-p} \rho_{M}(u)^{p} du$$
$$= \frac{1}{n} \int_{S^{n-1}} \rho_{K}(-u)^{n-p} \rho_{M}(-u)^{p} du$$
$$= \tilde{V}_{p}(K,M)$$
(24)

Thus, associated with (12) and (24), we have

$$\tilde{\Omega}_{p}^{*}(-K) = \tilde{\Omega}_{p}^{*}(K)$$
(25)

Therefore, from (23) and (25), we know

$$\tilde{\Omega}_p^*(\overline{\nabla}_p^\tau K) = \tilde{\Omega}_p^*(K)$$

According to the equality condition of (23), we easily see that equality holds in (22) if and only if K is an origin-symmetric star body.

Lemma 3 ^[4] If $K \in S_o^n$, $0 \le p \le 1$ and $\tau \in$

[-1,1], then

$$I_p^+(\overline{\nabla}_p^{\tau}K) = I_p^{\tau}K \tag{26}$$

and

$$I_p^{-}(\overline{\nabla}_p^{\tau}K) = I_p^{-\tau}K$$
(27)

Proof of Theorem 4 Since K is not origin-symmetric, so from Corollary 1, we know that for $\tau \in (-1,1), \quad \tilde{\Omega}_{p}^{*}(\overline{\nabla}_{p}^{\tau}K) \leq \tilde{\Omega}_{p}^{*}(K).$

Choose $\varepsilon \ge 0$, such that $\tilde{\Omega}_p^*((1+\varepsilon)\overline{\nabla}_p^{\tau}K)$ $< \tilde{\Omega}_{p}^{*}(K)$. Therefore, let $L = (1 + \varepsilon) \overline{\nabla}_{p}^{\tau} K \in S_{0}^{n}$, then $\tilde{\Omega}_{n}^{*}(L) \leq \tilde{\Omega}_{n}^{*}(K)$.

But by (26) and notice n > p (0), then $\rho(I_p^+L,\bullet) = \rho(I_p^+(1+\varepsilon)\overline{\nabla}_p^\tau K,\bullet)$

$$= \rho((1+\varepsilon)^{\frac{n-p}{n}}I_{p}^{*}\overline{\nabla}_{p}^{\tau}K, \bullet)$$
$$= \rho((1+\varepsilon)^{\frac{n-p}{n}}I_{p}^{\tau}K, \bullet) > \rho(I_{p}^{\tau}K, \bullet) \qquad (28)$$

Similarly, from (27), we obtain

$$\rho(I_p^-L, \bullet) > \rho(I_p^{-\tau}K, \bullet) \tag{29}$$

Notice that $\tau \in (-1,1)$ is equivalent to $-\tau \in (-1,1)$, then by (29) we can get

$$\rho(I_p^{-}L, \bullet) > \rho(I_p^{\tau}K, \bullet) \tag{30}$$

From (28) and (30), and combined with (5), we have that for $\tau \in (-1,1)$,

$$\rho(I_p^{\tau}K,\bullet)^p < \rho(I_p^{\tau}L,\bullet)^p,$$

i.e.,

$$I_p^{\tau}K \subset I_p^{\tau}L .$$

The proof of Theorem 5 requires the following a lemma.

Lemma 4 If $K \in S_{\alpha}^{n}$, $0 \le p \le 1$ and $\tau \in [-1,1]$, then

$$I_p \overline{\nabla}_p^\tau K = I_p K \tag{31}$$

Proof From (1), (18) and (7), and notice $I_n(-K) = I_n K$, we have that for all $u \in S^{n-1}$,

$$\rho_{I_p \nabla_p^r K}^p(u) = \frac{1}{n-p} \int_{S^{n-1}} |u \cdot v|^{-p} \rho_{\nabla_p^r K}^{n-p}(v) dS(v)$$

= $f_1(\tau) \rho_{I_p K}^p(u) + f_2(\tau) \rho_{I_p(-K)}^p(u) = \rho_{I_p K}^p(u)$

This yields (31).

Proof of Theorem 5 Similar to proof of Theorem 4, by (31) and compare (28), we easily complete the proof of Theorem 5.

References

[1] Gardner R J. Geometric Tomography[M]. 2nd Ed. Cam-

bridge: Cambridge Univ Press, 2006.

- [2] Lutwak E. Intersection bodies and dual mixed volumes[J]. Adv Math, 1998, 71: 232-261.
- [3] Haberl C, Ludwig M. A characterization of *Lp* intersection bodies [J]. *Int Math Res Not*, 2006, 17: 1-29.
- [4] Ludwig M. Minkowski valuations [J]. Trans Amer Math Soc, 2005, 357: 4191-4213.
- [5] Ludwig M. Intersection bodies and valuations [J]. Amer J Math, 2006, 128: 1409-1428.
- [6] Haberl C. Lp-intersection bodies [J]. Adv Math, 2008, 217
 (6): 2599-2624.
- [7] Haberl C, Schuster F E. General *Lp* affine isoperimetric inequalities [J]. *J Differential Geom*, 2009, 83 : 1-26.
- [8] Haberl C, Schuster F E. Asymmetric affine *Lp* Sobolev inequalities [J]. *J Funct Anal*, 2009, 257: 641-658.
- [9] Wang W D, Li Y N. Busemann-Petty problems for general Lp-intersection bodies [J]. Acta Math Sin (English Series), 2015, 31 (5): 777-786.
- [10] Wang W D, Li Y N. General *Lp*-intersection bodies [J]. *Taiwan J Math*, 2015,**19** (4): 1247-1259.
- [11] Feng Y B, Wang W D. General Lp-harmonic Blaschke bodies [J]. P Indian A S Math Sci, 2014, 124 (1): 109-119.
- [12] Haberl C, Schuster F E, Xiao J. An asymmetric affine P'olya-Szegö principle [J]. *Math Ann*, 2012, **352**: 517-542.
- [13] Parapatits L. SL(n)-covariant Lp-Minkowski valuations [J]. J Lond Math Soc, 2014, 89: 397-414.
- [14] Parapatits L. SL(n)-contravariant Lp-Minkowski valuations
 [J]. Trans Amer Math Soc, 2014, 366: 1195-1211.

- [15] Schuster F E, Wannerer T. GL(*n*) contravariant Minkowski valuations [J]. *Trans Amer Math Soc*, 2012, **364** : 815-826.
- [16] Schuster F E, Weberndorfer M. Volume inequalities for asymmetric Wulff shapes [J]. J Differential Geom, 2012, 92 : 263-283.
- [17] Wang W D, Feng Y B. A general *Lp*-version of Petty's affine projection inequality [J]. *Taiwan J Math*, 2013, **17**(2): 517-528.
- [18] Wang W D, Ma T Y. Asymmetric Lp-difference bodies [J]. Proc Amer Math Soc, 2014, 142 (7): 2517-2527.
- [19] Wang W D, Wan X Y. Shephard type problems for general *Lp*-projection bodies [J]. *Taiwan J Math*, 2012, 16(5): 1749-1762.
- [20] Wannerer T. GL(n) equivariant Minkowski valuations [J]. Indiana Univ Math J, 2011, 60: 1655-1672.
- [21] Weberndorfer M. Shadow systems of asymmetric *Lp* zonotopes [J]. *Adv Math*, 2013, 240: 613-635.
- [22] Pei Y N, Wang W D. Shepharcl type problems for general Lp-centroid bodies [J]. J Inequal Appl, 2015, 287: 1-13.
- [23] Wang W, Yuan J, He B W. Large inequalities for *Lp*-dual affine surface area [J]. *Math Inequal Appl*, 2008, 7: 34-45.
- [24] Wang J Y, Wang W D. Lp-dual affine surface area forms of Busemann-Petty type problem [J]. P Indian A S Math Sci, 2015, 125 (1): 71-77.
- [25] Grinberg E, Zhang G Y. Convolutions transforms and convex bodies [J]. Pron London Math Soc, 1999, 78 (3): 77-115.