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0 Introduction

Let K" denote the set of convex bodies (compact,
convex subsets with non-empty interiors) in Euclidean
space R". For the set of convex bodies whose centroid
lie at the origin in R", we write K.

Let S!,S!,S” denote the set of star bodies (about
the origin), the set of star bodies whose centroid lie at the
origin and the set of origin-symmetric star bodies in R”,
respectively. Let S”" denote the unit sphere in R”",
and V(K) denote the n-dimensional volume of body K.
For the standard unit ball B in R", we use @, =V (B)
to denote its volume.

If K is a compact star-shaped (about the origin) in
R", its radial function, p, = p(K,"):R"\{0} > [0,+e0)
is defined by[l]

p(K,x)=max{1=0:4Axe K}, xe R"\{0}.

The notion of intersection bodies was introduced by
Lutwak™: For K e S, the intersection body, /K, of K is
a star body whose radial function in the direction
ue S"" is equal to the (n—1)-dimensional volume of
the section of K by u™, the hyperplane orthogonal to u,
ie for all ueS"™", p(UK,u)=V,_ (KNu") , where
Vv

n—1

denotes (n —1) -dimensional volume .
In 2006, Haberl and Ludwig?® defined the
Lp-intersection body as follows: For KeS' ,

0<<p <1, the Lp-intersection body, /,K, of K is the

origin-symmetric star body whose radial function is de-
fined by

plc)= Ju-x| "dx
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n—p
forall ue S"".
Meanwhile, they! defined the following asymmet-
ric Lp-intersection bodies /,K . For KeS,, 0<p
<1, define

ple@y=[  Juaf " de #)

for all ue S""', where u-x denotes the standard inner

product of # and x, and u"={x:u-x=0,xe R"} .
They also defined that

I K=1I(-K) ?3)

From definitions (2) and (3), we can see that

pLe@=pl =] fuadr

KNu*

u-x| "dx 4)

- KN(-u)*

Recently, Wang and Li'*” gave the notion of gen-

eral Lp-intersection body with a parameter 7 as follows:

For KeS§!, 0<p<l1 and re[-11], the general
Lp-intersection body, /;Ke S;,of K is defined by

Prc W)= £(@pL W+ fL@Op, @) ()

forall ue S™", where

_ 1+7)”
ho= (1+7)" + (1p— )’ ©
finy= 4=

1+ +(1-7)"

From (6), we easily know that
HhED= L), L= /0
L@+ f(0)=1 (7

Obviously, if =0, by (1), (2), (4), (5) and (6), we
see )K=1K.

The general Lp-intersection bodies belong to a new
and rapidly evolving asymmetric Lp-Brunn-Minkowski
theory that has its own origin in the work of Ludwig,
Haberl and Schuster™®. For the further researches of
asymmetric Lp-Brunn-Minkowski
Refs.[9-22].

Associated with the Lp-dual mixed volume
I7p (M,N), Wang et al*! gave the notion of Lp-dual af-
follows: For KeS! , and
0< p<n, the Lp-dual affine surface area, Q ,(K), of
K is defined by

theory, also see

fine surface area as

n+p

P np ~ 4
n"Q (K) " =sup{nV (K,0)V(Q)":0e K/} (8)
Here Q* denotes the polar of Q which is de-
fined by Ref.[1]

O¥={x-y lye(}, xeR".

In 2014, Wang et al® improved definition (8) from
KeK! to Qe S!: For Ke S, and 0<<p<n, the
Lp-dual affine surface area, Qp (K), of K is defined
by

) - o - » )

n "Q (K)" =sup{nV (K,0W(Q)":Qe S;} (9)
Let Z] of all
Lp-intersection bodies, then Z7 < S!. If Qe Z] in (9),

denote the set of polar

Q) (K) is written by

P
n QY (K) " =supinV (K,Q%V(Q)" :Q0e Z'}  (10)
According to (9) and (10), Wang et al ¥ studied
the Lp-dual affine surface area forms of the Buse-
mann-Petty problems for the Lp-intersection bodies.
K,LeS', 0<p<l1, if
Q' (L), with the equality if

Theorem 1  For
I,KcI,L,then Q (K)
and only if IPK=IPL .

Theorem 2 For Ke S! and 0<<p<l1, if K
is not origin-symmetric, then there exists Le S’ , such
that 1,K cI,L,but Q) (K)>Q (L).

In this paper, associated with Lp-dual affine surface

area, we will investigate the Busemann-Petty problem

for the general Lp-intersection bodies.
For the convenience of our work, we improve defi-
nition (10) as follows : Let Z;" denote the set of polar

of all general Lp-intersection bodies, for Ke S, ,
0<p<1 and 7e[-1,1], the Lp-dual affine surface

area, Q; (K),of K isgivenby

n QN (K) =sup{nV, (K,QOV(Q)" :Qe 2"} (1)

When 7 =0, definition (11) is just definition (10).

Especially, when Qe S7in (9), we write Q' (K)
by

QY (K) =sup{nV, (K.Q)V(Q) :Qe Si} (12)

According to definition (11), we first give an af-
firmative form of the Busemann-Petty problem for gen-
eral Lp-intersection bodies, i.e., a general form of Theo-
rem 1 is obtained.

Theorem 3 ForK,LeS!, 7e[-L1] and 0<p



PEI Yanni et al: A Type of Busemann-Petty Problems for General

473

<1,if I;K c I;L , then
O(K) QL) (13)
with equality if and only if /;K=1]L.

Next, combining with definition (12), we get a
negative form of the Busemann-Petty problem for the
general Lp-intersection bodies.

Theorem 4 ForKeS!,7e(-11) and 0<p
<1, if K is not origin-symmetric, then there exists
Le S suchthat I'K cI7L,but Q(K)> Q(L).

Finally, corresponding to Theorem 2, we extend a
negative form of the Busemann-Petty problem for the

Lp-intersection bodies from Le S to Le S .
Theorem 5 For KeS), 0<p<l1, if K is
not origin-symmetric, then there exists L€ S, such that
1,KcI,L, but Q(K)>Q (L).
The proofs of Theorems 3-4 will be completed in
Section 2 of this paper.

1 Preliminaries

1.1 Lp-Dual Mixed Volume

[6,25]

The notion of Lp-dual mixed volume was in-

troduced as follows: For K,Le S, and real number
p >0, the Lp-dual mixed volume, 7, (K,L), of K of
L is defined by

. 1 o
V(K Ly==[ . pic)'™ p, ()’ du (14)
n
From (14), we easily know that
~ 1 i
V(K K)=V (K)=- L P, () du (15)

1.2 General Lp-Dual Blaschke Body
For K,Le S!, 0<p<n and A,u=0(not both
zero), the Lp-dual Blaschke combination, A® K +, u
®L,of K and L is defined by
PAB®KF, u®Ls)"
= i{?(K )"+ up(Le)"" (16)

Here, A® K=A"7K . Take ﬂz,uz%, L=-K in

A®K+, u®L , then the Lp-dual Blaschke body,
V,K ,of Kis defined by

?,,K:%@Kl%@(—]{) (17)

Obviously, the Lp-dual Blaschke body V,K is

origin-symmetric.

Associated with (6), Wang and Lit gave the notion
of general Lp-dual Blaschke body. For Ke S/, p>0
and 7e[-L1], the general Lp-dual Blaschke body,

V,KeS",of K isdefined by
PV K )" = fUD)p(K)"" + [(D)p(=K )" ie.,
V,K=f(1)®K¥, f, ®(-K) (18)
Here f,(r) and f,(r) satisfy (6). Obviously, if 7=0,
then V,K =V,K .

2 Proofs of Theorems

In this section, we will complete the proofs of
Theorems 3-5. In order to prove Theorem 3, we require a
lemma as follows:

Lemma 1 ¥ If K,Le S", 0<p<l, and 7€
[-1,1], then V (K,I'L)=V (L,IK).

Proof of Theorem 3 From (14), since ];K c
1L, thus forany Qe S/,

V(O.I;K) V,(O,IL) (19)

with equality if and only if /'K =1L.
Therefore, from Lemma 1, we have
V,(K,1,0) V,(L,1,0) (20)
Let M~ =1,0,then M e Z". From (11) and (20), we
get
nre (K"
=sup{n¥, (KM W (M) .M e Z;"}

sup{nV, (L,M W (M) ,M e Z:"}
=n (L)

i.e., (13) is obtained.

According to the equality of (19), we know that the
equality holds in (13) if and only if IK =1 L.

In order to prove the negative form for the Buse-

mann-Petty type problem, we need the following two
lemmas.

Lemma 2
(-1,1), then

If K,LeS!, 0<p<l and rte

Q(f(D®KT, L(D)®L)™

ntp
n

L@OQE) + LOD L) Q2D

with equality if and only if K and L are dilates.
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Proof From (12), (14) and (16), we have
Y (f(D®KT, f(D®L) "
=sup{nV, (f,(®K ¥, (1)@ LMV (M')",Me .}
= sup {nf; (2)V, (K, M)V (M")"
+nfy (T (L,M)V (M) :M e SL.}
sup {nf; ()V, (K, M)V (M")" : M € S}
+sup {nf, (2)V, (L, M)V (M) :M e S’}
= K@ QK)om0
Thus
O (f(D)®KT, f,(n)®L)"
L@OQK) ™ + LD ©Q (L) .
The equality holds if and only if f(7)®

K+, f,(1)®L are dilates with K and L, respec-

tively. This means that equality holds in (21) if and
only if Kand L are dilates.

Corollary 1 If KeS),
(-11), then

0<p<l1 and 7€

QV,K)  Q(K) (22)
with equality if and only if K is origin-symmetric.
Proof Taking L=-K in(21), by (18) we get
[@OQE) " + LOQEK) T (23)

According to the equality condition of (21), we see
that equality holds in (23) if and only if K and —-K
are dilates, i.e., K is origin-symmetric.

Q(V,K) "

Since Me S , thus M is origin-symmetric,
ie, p,w)=p_, W)=p, (—u) for all ueS"" . From
this, by (14) we get

~ 1 e
V(K M=~ p )™ py () du
n
1 .
=~ [ e py ()" du
n
=V,(K,M) (24)
Thus, associated with (12) and (24), we have
Q,(=K)=Q,(K) (25)

Therefore, from (23) and (25), we know
QV,K) Q(K)
According to the equality condition of (23), we eas-
ily see that equality holds in (22) if and only if K is an

origin-symmetric star body.
Lemma 3 ¥ If KeS", 0<p<1 and 7€

[-1,1], then

I'(VIK)=I'K (26)
and

I (VIK)=1K 27)

Proof of Theorem 4 Since K is not ori-
gin-symmetric, so from Corollary 1, we know that for
te(-11), Q)(V,K) <X (K).

Choose €>0 , such that CQ ((1+ £V, K)
<f2; (K) . Therefore, let L=(1 +€)§;K es!,
Q (L) <Q,(K).

But by (26) and notice n> p (0<< p <1), then

P, L) = p(I,(1+€)VK )

then

=p(1+8)" [VIK 2)

=p((1+€) " I'K,») >p(I'K,») (28)

Similarly, from (27), we obtain

PU,L#)> p(I, K.e) (29)

Notice that 7€ (—1,1) is equivalent to —7€ (-1,1),
then by (29) we can get

pULLe)> pUK 2) (30)

From (28) and (30), and combined with (5), we
have that for 7€ (-1,1),

PUIK ) < p(ITLe)
ie.,
IKcIL.
The proof of Theorem 5 requires the following a
lemma.

Lemma4 If KeS’, 0<p<l1 and 7e[-11],
then

IVIK=1K 31

Proof From (1), (18) and (7), and notice

I,(-K)=1,K , we have that for all ue S"",
1 P _n—
Py gy ()= . [ ol pgr )ds )

=/ (T)p;:K (w)+ 1, (T)pllj,(—K) (u)= p]iK ()
This yields (31).
Proof of Theorem 5 Similar to proof of Theorem
4, by (31) and compare (28), we easily complete the
proof of Theorem 5.
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