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Abstract: Learning Bayesian network structure is one of the most 
exciting challenges in machine learning. Discovering a correct 
skeleton of a directed acyclic graph(DAG) is the foundation for 
dependency analysis algorithms for this problem. Considering the 
unreliability of high order condition independence(CI) tests, and to 
improve the efficiency of a dependency analysis algorithm, the 
key steps are to use few numbers of CI tests and reduce the sizes 
of conditioning sets as much as possible. Based on these reasons 
and inspired by the algorithm PC, we present an algorithm, named 
fast and efficient PC (FEPC), for learning the adjacent 
neighbourhood of every variable. FEPC implements the CI tests 
by three kinds of orders, which reduces the high order CI tests 
significantly. Compared with current algorithm proposals, the 
experiment results show that FEPC has better accuracy with fewer 
numbers of condition independence tests and smaller size of 
conditioning sets. The highest reduction percentage of CI test is 
83.3% by EFPC compared with PC algorithm. 
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0  Introduction  

Bayesian networks (BNs) are graphical models that 
are frequently employed for modelling independencies, 
conditional independencies and casual relationships in a 
variety of domains[1]. Learning structures of BNs is sig-
nificantly important and popular in many domains such 
as medicine, artificial intelligence and bioinformatics. 
Particularly, one branch of learning BNs is Bayesian 
network classifiers[2] which have received more attention 
in machine learning and data mining in recent years due 
to the emergence of high dimensional datasets in 
real-world applications. 

Over the last several decades, significant progress 
has been made for learning BN structures. Nevertheless, 
the construction of BNs remains a time consuming and 
intractable task, especially, as the number of variables 
increase. Generally speaking, BNs structure learning can 
be broadly categorized into two classes: score+search- 
based approaches and constraint-based methods. On one 
hand, score-search approaches define a score function to 
evaluate the fitness of a network (directed acyclic graph) 
with respect to the given dataset, which can use the prior 
probabilities of the structure and parameters. However, 
score+search-based methods are global learning algo-
rithms which are efficient for learning the full BN struc-
ture but incapable of handling large network. On the other 
hand, constraint-based methods depend on exploring the 
marginal and conditional independent relationship among 
all nodes on dataset. We can induce the structure of 
Bayesian network in agreement with tests results. These 
tests are often performed by applying statistical or in-
formation theoretic measures. The ability to scale up to 
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hundreds of thousands of variables is a key advantage of 
constraint-based methods over score-search approaches. 

In considerations of convenience and wide scope of 
practical applications, we are interested in constraint- 
based methods. Recently, a lot of constraint-based methods 
have been developed for learning the neighbourhoods or 
the Markov blankets (MBs) of variables, such as SGS al-
gorithm[3], Inductive Causation[4], PC[3], Three Phase De-
pendence Analysis (TPDA)[5], KS[6], Grow-shrink (GS)[7], 
IAMB, interIAMB[8], Fast-IAMB[9], MMPC/MB[10], 
HITON-PC/MB[11], PCMB[12], IPC-MB[13] and RAI [14]. 
However, constraint-based methods are plagued by a 
severe problem: the number of false negatives (missing 
variables) increases swiftly as the size of the parents and 
children (PC) sets become large. In the worst case, the PC 
algorithm requires that the number of condition inde-
pendence (CI) tests increases exponentially with the 
number of variables. It is also worthwhile noting that 
large conditioning sets usually lead to errors for CI tests 
and result in a poorer estimation of dependent relation-
ships for a small sample size. Thus, we tend to use CI tests 
of lower orders. Only in this way can we obtain more 
reliable results of tests. Therefore, it is vital to explore 
some measures to avoid or alleviate the potential prob-
lems of combinatorial explosion for CI test. 

In view of above discussions, we propose an accurate 
and fast local learning algorithm, called FEPC, to learn 
the PC set of each target node X and then obtain the 
structure of Bayesian network. Unlike the previous algo-
rithms, the CI test of FEPC is based on the strength of the 
correlation of variables. For a target variable X , we first 
test variables with weak correlation with X  and take 
those variables which have strong correlation with X  as 
the conditioning sets. We can use partial correlation 
analysis, covariance analysis and mutual information and 
so on to evaluate the strength of correlation between 
variables. In this paper we use mutual information to sort 
the variables belonging to candidate PC(X) of the target 
variable X , and then, based on the sort, use CI tests to 
remove the (conditional) independent nodes with order. 
Here we alter the pattern of selecting conditioning sets for 
each CI test by the sort. Besides, at every iteration of order 
of CI tests, we alter the sequence of target variables in 
ascending order according to the number of current 
neighbours of them. These orderly operations efficiently 
alleviate the problems discussed above. Simulations il-
lustrated that the proposed algorithms outperform their 
competitors with better accuracy but fewer numbers of  

condition independence tests and smaller size of condi-
tioning sets. The reduction percentage can be up to 83.3% 
in CI tests obtained by the FEPC algorithm compared 
with the PC algorithm. 

The structure of this paper is as follows. Relevant 
definitions and theorems are given in Section 1. Section 
2 introduces the details of our improvement on the PC 
algorithm for learning the skeleton of DAGs. Section 3 
presents some simulation results and compares the im-
proved methods with the closest competitors in details. 
Final section provides the conclusion. 

1  The Basic Concepts and Terms 

Some definitions and principles closely related to 
this paper are introduced in this section. Some 
well-known definitions and conclusions can refer to pa-
pers and books on Bayesian network, e.g. Refs. [1, 3, 4, 9]. 
We symbolize discrete random variables or nodes in a 
graph by capital letters. Let upper-case bold-face X mean 
a set of variables or nodes.  

A directed acyclic graph (DAG) ( , )G V E=  con-
sists of a set of nodes 1 2{ , , , }nV X X X=   and a set of 
directed edges E V V⊆ × . A Bayesian network (G, P) 
consists of a DAG and a joint probability distribution P on 
V. The graphical structure-DAG shows the conditional 
independent relations in a BN qualitatively. The prob-
ability distribution P induces the corresponding condi-
tional independent relations quantitatively. X is 
d-separated from Y given the nodes set Z is denoted by 
DSEP( ; |X Y Z). Under the distribution, the conditional 
independence of the variables X  and Y  given Z is 
recorded as Ind ( ; |p X Y Z). A directed edge 

i jX X→ means that ( , )i jX X E∈  and ( , )j iX X E∈/ , 
and iX  is a parent of jX  and jX  is a child of iX . We 
indicate a undirected edge with i jX X−  if both 
( , )i jX X E∈  and ( , )j iX X E∈ . As a BN satisfies 
Markov condition, the joint probability distribution on V 
can be recovered by the following equation: 

1 2( , , , ) ( | Pa( ))n i iX X X X X= ∏P P  

where Pa( )iX  denotes any combination of the values of 
the parents of variable iX . This property gives rise to 
important savings in storage requirements and also fa-
cilitates performances of probability inference. A node 
X  is called a collider if there exist two edges such that 
Y X W→ ← . Furthermore, if there is no edge between Y 
and W, then Y, X and W is called a v-structure in a DAG. 
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    The skeleton of a DAG is the undirected graph which 
comes from a DAG deleted the direction of edges. 

Definition 1  (blocked path) A path between 
nodes X andY is blocked by a set of vertices Z, if there 
exists a node W  on the path for which one of the fol-
lowing conditions holds: 

(i)  W  is not a collider and W ∈Z, or 
(ii) W  is a collider and neither W  nor its descen-

dants are in Z. 
In a DAG, if every path from X  to Y  is blocked 

by Z, then we said that X  and Y  are d-separated by set 
Z, and vice versa. We denote it as Dsep ( ; | )G X Y Z . A 
path between node X and Y is active or open if such W can 
not be found.  

Definition 2  (Faithfulness ) A directed acyclic graph 
G  is faithful to a joint probability distribution P  over 
variable set V  if and only if every independence present in 
P  is entailed by G  and the Markov condition. A distri-
bution P  is faithful if and only if there exists a directed 
acyclic graph G  such that G  is faithful to P  [13] . 

Theorem 1  Two DAGs are Markov equivalent if 
and only if they have the same skeleton and the same 
v-structures. 

It is well known that we cannot distinguish among 
the difference of DAGs of a Markov equivalence class. 
Therefore, in fact, we usually only find a representative of 
a Markov equivalence class in the structure learning 
problem.  

Theorem 2  A Bayesian network (BN) satisfies the 
faithfulness condition, then 

Dsep ( ; | ) Ind ( ; | )G PX Y X Y⇔Z Z  

By this theorem the terms d-separation and prob-
abilistic conditional independence are used inter-
changeably. 

2  Fast and Effective Algorithms: 
FEPC 

A naive strategy for discovering the skeleton would 
be to check the conditional independence relationships 
among all nodes given datasets. Thus, we immediately 
take the well-known PC algorithm into consideration. In 
the light of complexity and performance of PC, it is fit to 
exploit sparseness of the graph. In this context, we   
improve the PC algorithm by adding the additional steps 
and techniques and thus its speed, efficiency and accuracy 
are further upgraded. The pseudo codes are listed as fol-
lows (Algorithm 1). 

Algorithm 1 is to learn the parents and children set of 
every variable though two phases. The first phase (line 
1-5), a sort process, computes the mutual information 
values between the interesting node X and the nodes in its 
adjacency set ADJX (initial state is all nodes except X ), 
and then rank these neighborhoods in ascending order 
according to the mutual information values and remove 
W  from the current candidate PC set (ADJ )X  if 

( , )I W X ε≤ , the array is stored in ADJ_X ′ . At the 
same time, a array in inverse sort is stored in 
Test_conditioning_set X . The sort is vitally important for 
the next phase. It is well known that larger value of mutual 
information between X  and Y  implies that Y  is 
more likely to be the directed neighborhood of X  for 
graphical models. In contrast, smaller mutual information 
between X  and Y  means that X  is weakly related to 
Y  or Y  is marginal or conditional independent of X . 
Thus the variables in front of ADJ_X ′  are more likely 
marginal (conditional) independent of X  and the vari-
ables in front of Test_conditioning_set X  are more likely 
to be d-separate non-adjacent nodes from X . 

The second phase, line 8-21, deletes the non-adjacent 
nodes of each variable by CI tests. At each order of CI 
tests iteration, we first update the ordering of target 
variables by step 8 which aims to sort the variables by the 
sizes of adjacent nodes sets from small to large. It is  
obvious that the non-adjacent nodes of variable with 
smaller ADJ_X ′  can be deleted easily and quickly as 
the conditioning sets won’t be too large. Moreover, the 
Algorithm 1 reduces the non-adjacent nodes of X  and 
Y  simultaneously in line 14 and 15. Thus the sizes of 
ADJ_X ′  of nodes with large adjacent sets will be   
reduced in advance. Next, we check the independence 
relationship between target node X  and its adjacent 
variables Y  with smaller mutual information values in 
ADJ_ 'X . In this process, we used variable(s) with larger 
mutual  information value(s) with target X  from 
Test_conditioning_set X  as the conditioning sets for CI 
tests. In other words, we firstly select these nodes sorted at 
he end of the sequence ADJ_ 'X  as the conditioning sets, 
which is different from the general methods that randomly 
select node or sets from the candidate PC set. The ordered 
selection of X , the ordered selection of Y  and the or-
dered selection of the conditioning sets can remove some 
false positive nodes as early as possible with few number 
of CI tests. More important, we can reduce the number of 
high order CI tests and increase the reliability of tests. As 
we will see the performance of proposed methods in the 
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following section, the superiority of above steps is shown 
obviously in experimental section. 

 

Algorithm 1  Fast and efficient PC (FEPC) 

Input: complete undirected graph G' ; threshold ε ; 
data D 
Output: Skeleton 
1. ADJ \X U X=  for each variable X in variable set U
2. for each X U∈  
3. Initialize ADJ ADJ { | ( , ) ,X X W I W X ε= − ≤  W ∈
ADJX  
4. Sort the variable ADJXY ∈  in ascending order 
according to the value of mutual information to obtain 
set ADJ_X ′  and rank ADJXY ∈  in descending or-
der to obtain set Test_conditioning_set X  
5. end for 
6. 0i =  
7. while exist some X  s.t. ADJ |_| X i′ ∨  
8. Rank those nodes X U∈ ( if ADJ |_| X i′ ∨ ) in 

ascending order according to the size of ADJ_X ′  
to get set V  

9. for every X V∈  
10.  for every J_ADY X ′∈  
11.   Test whether 

Test_conditioning_set XS∃ ⊆  with | |S i=  
12.     if Ind ( | )P X Y S⊥  holds 
13.      ADJ ADJ }_ _ {X X Y′ ′=   and  

ADJ _ ADJ  \ }_ {Y Y X′ ′=  
(keep the sort of the rest variables in and ADJ_Y ′ ) 
14.     Test_conditioning_set X   

Test_conditioning_set { }\X Y=  

And      
Test_conditioning_set

Test_conditioning_set { }
Y

Y X= 
 

15.        XY XYS S S=   
16.     break 
17.   end if 
18.  end for 
19. end for 
20. 1i i= +  
21. end while 
22.return Skelton 
 

 
While finding the skeleton as in Algorithm 1, we 

employ Algorithm 2 to extend the skeleton to a CPDAG, 
namely, the equivalence class of the underlying DAG. 
Algorithm 2 outputs a CPDAG, which was proved by 
Meek in 1995[15]. 

 

Algorithm 2  Extending the skeleton to a CPDAG 

Input: Skeleton Gskel skelG ; separation set S  
Output: CPDAG G  
1. for all pairs of nonadjacent variables ,i j  with 
common neighbour k  do 
2. if k ∈/  S( i , j ) then 
3. Replace i k j− −  in skelG  by i k j→ ←  
4. end if 
5. end for 
6. In the resulting PDAG, try to orient as many undi-
rected edges as possible by repeated application of the 
following three rules. 
7. Orient j k−  into j k→  whenever there is an 
arrow i j→  such that i  and k  are nonadjacent. 
(R1) 
8. Orient i j−  into i j→  whenever there exists a 
chain i k j→ →  (R2) 
9. Orient i j−  into i j→  whenever there exist two 
chains i k j− →  and i l j− →  such that k  and l  
are nonadjacent. (R3) 

 
In order to illustrate the working mechanism of these 

three ordered selections of FEPC, we introduce a concrete 
example. Suppose we have a dataset sampled from an 
underlying Bayesian network as Fig. 1. And the CI tests 
are reliable. Algorithm 1 firstly ranks target variables, 
without loss of generality, takes A and F for example, and 
supposes that { , , }H D A  and { , , , , }B C E D F  are the 
neighbor sets of F and A after the i-th loop, respectively. 
Because the neighbor size of F  is smaller than that of 
A , we first check F according to line 8, then we employ 

two times CI tests of order 1 at most to discover the con-
ditional independent relationship between A  and F . 
On the contrary, for A , we may get the same result by 
operating four tests. Next, we explain the working 
mechanism of line 9-19. Let the current target variable be 
A , our task is to find out the set of the parents and chil-

dren of A . Suppose that 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) 0

I A D I A B I A C I A E

I A G I A F I A H =

∨ ∨ ∨

∨ ∨ ∨

 

then we remove H  from ADJ A  after line 4 of Algo-
rithm 1, and we have 

ADJ { , , , , ,_ }X F G E C B D′ =  
Test_conditioning_set { , , , , , }A D B C E G F=  

separately. Consecutively, we determine conditional in-
dependent relation between target variable A  and vari-
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ables belonging to ADJ_X ′  in sequence. For example, 
we operate one order CI test for A and F , then 
{ },{ },{ },{ },{ }D B C E G  will be used as conditioning set 
one after another instead of randomly selecting from 
Test_conditioning_set A F . As Dsep ( ; | )G A F D  and 
reliability of CI tests, the current loop will be broken 
immediately. That is what other tests can be effectively 
avoided. Similarly, other nodes individually repeat this 
procedure until | Test_conditioning_set | sepsetsize∧  or 
i . However, if by other general algorithms and in worse 
case, we just first test variable D  with the maximum 
association with A , in this context, we may have to trav-
erse ergodic all nodes belonging to Cand_PC( )A F  or 
their combinations sometimes and operate unnecessary CI 
tests and then high order tests maybe occur in this process. 
Moreover, these high order tests may low the learning 
accuracy. 

 

Fig. 1  An example of Bayesian network 

3  Experiments and Analysis 

In this section, we compare the FEPC algorithm with 
other state-of-the-art and prototypical algorithms which 
deal with the same problems respectively. The experi-
ments are run on a Pentium3.19 GHz with 1.96 GB RAM 
using Windows XP system and Matlab inversion R2009a. 

We compare our extend method with the typical 
algorithms PC, SC, TPDA, MMHC and RAI. We test all 
algorithms on two well-known networks. The first is 
Alarm network[16] which is a widely accepted benchmark 
for evaluating the performance of many algorithms. The 
second is Insurance network[17] which is for estimating the 
expected claim costs for a car insurance policyholder, 
consists of 27 vertices. To guarantee the reliability of the 
experimental results and fairness for comparison, we use 
10000 samples which are randomly generated by the true 
networks, respectively. Meanwhile, the number of data 
sets with the same network are 10. Notice that, the sig-
nificance level α  for the conditional independence test 
is set to 0.05 and threshold 0.001ε =  for all algorithms 

used in this paper. Besides, our implementation is based 
on the Bayesian network toolbox written by Murphy[18].  

The accuracy of a learned structure can be measured 
using several scores and criterions. However, some of the 
scores suggested in the literatures are not always accurate 
or related to the true structure. Thus we must select proper 
metrics. Following Spirtes et al[3] and Tsamardinos et 
al[17], we use five types of structural errors to evaluate the 
accuracy of our algorithm. An extra edge (EE) error is an 
edge learned by the employed algorithm, nevertheless, the 
learned edge is not covered in the true network. A missing 
edge (ME) error is due to an edge missed by the algorithm 
although it is contained in the true graph. An extra direction 
(ED) error is the direction of an edge, which appears in the 
learned network but not in the true graph, conversely, a 
missing direction (MD) error implies that there is an edge 
direction in the true graph rather than in the learned graph. 
Last but not least, a reversed direction (RD) error refers to 
an edge direction in the learned network that is opposite to 
the edge direction in the true graph. 

Table 1 lists the average results of the five structural 
errors for each algorithm in 10 independent runs for 
Alarm network. The table also depicts the total directional 
error DE, which is the sum of ED, MD and RD. In a 
similar way, SHD sums all five structural errors. More-
over, Table 1 illustrates that the lowest DE and EE errors 
are obtained by FEPC and the lowest ME error is achieved 
by MMHC. The last column describes the overwhelming 
advantage of FEPC over all other algorithms by the SHD 
errors. 

Table 1  Structural errors of algorithms as averaged on  
10 independent runs for Alarm network 

Algorithm ED MD RD DE EE ME SHD

SC 2.7 1.3 12.3 16.3 7.0 3.3 26.6 

MMHC 4.0 0.0 10.3 14.3 2.3 0.3 17.0 

PC 1.0 4.0 0.0 5.0 0.0 9.0 14.0 

TPDA 1.0 4.2 0.0 5.2 2.0 3.6 10.8 

RAI 3.3 1.0 0.0 4.3 2.6 2.3 9.2 

FEPC 1.3 1.0 0.0 2.3 0.0 5.0 7.3 

Table 2 summarizes the simulation results of the five 
structural errors for each algorithm in 10 independent 
runs for Insurance network. The values of the DE and 
SHD errors in Table 2 illustrate that FEPC is significantly  
superior to all other algorithms. 

The complexity of FEPC was evaluated in com-
parison to that of the PC algorithm by the number of CI  
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Table 2  Structural errors of algorithms as averaged on 10 
independent runs for Insurance network 

Algorithm ED MD RD DE EE ME SHD

SC 10.8 4.1 15.4 30.3 1.8 9.7 43.6

MMHC 4.0 0.0 14.6 18.6 1.2 9.4 29.2

PC 6.3 3.3 1.7 11.3 0.3 9.0 20.6

TPDA 8.3 2.0 13.1 23.1 2.4 12.0 37.5

RAI 0.4 0.0 13.4 13.8 1.2 6.7 21.7

FEPC 6.3 3.3 1.3 10.9 0.2 9.0 20.2

tests required to learn these two networks. We assume 
that CI tests are reliable and compare the number of CI 
tests. The average number of CI tests required by each 
algorithm is shown in Fig. 2(a) and Fig. 3(a) for increas-
ing the size of conditioning set for CI tests on Alarm 
network and Insurance network, respectively. Fig.2(b) and 
Fig.3(b) demonstrate the percentage of the number of CI 
tests saved by FEPC compared with PC for increasing 
orders on Alarm network and Insurance network sepa  

 
Fig. 2  Experimental results on Alarm network 

 (a) The average number of CI tests required by FEPC and PC for learning 

Alarm network, respectively; (b) Reduction percentage in CI tests obtained by 

the FEPC algorithm compared with the PC algorithm 

 

Fig. 3  Experimental results on Insurance network 

 (a) The average number of CI tests required by FEPC and PC for learning 

Insurance network, respectively; (b) Reduction percentage in CI tests obtained by 

the FEPC algorithm compared with the PC algorithm 

rately. The highest reduction percentages of CI test are 
83.3% on Insurance network and 74% on Alarm network 
by FEPC compared with PC algorithm, respectively.  
Obviously, the FEPC algorithm reduce the number of CI 
tests of each order, moreover, preponderance of FEPC 
over the PC algorithm is more outstanding for high orders. 

4 Conclusion 

In this paper, we proposed algorithm FEPC which 
successfully avoids CI tests with large conditioning sets 
and uses as fewer CI tests as possible. Here using mutual 
information to sort the nodes in the candidate PC set of 
target variables X  is the key step for FEPC. By the sort, 
we can not only select the possible non-adjacent nodes Y  
in a specific sort, but also select the conditioning sets for 
Y  and X  in a fixed sort. These non-random selection 
can efficiently reduce the orders CI tests and the number 
of high order of CI tests and remove false positive nodes 
as early as possible. 

In addition, we compared the proposed algorithm 
with other state-of-the-art algorithms on some standard 
networks. Simulations results demonstrate that the pro-
posed method outperforms its competitive algorithms 
with respect to accuracy and complexity. 

We plan to extend our simulation experiment on 
large network and study the ability of handling large 
networks of FEPC. Furthermore, although we assume in 
this paper that the data are completely observed, how-
ever in practice, missing data or data with latent vari-
ables may arise[19,20], so we try to generalize the pro-
posed algorithms to missing data or data with latent 
variables in the next research. 
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