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0  Introduction  

Multilevel programming (MP) was first proposed 
by Candler and Norton [1] in 1977. It is identified as 
mathematical programming which has a special hierar-
chical structure. There are multiple decision makers 
(DMs) in this structure and every DM has his/her objec-
tive function, decision variables and constraints, respec-
tively. MP is very practical in the field of economic sys-
tems, engineering, transportation and so on. A lot of 
scholars have taken on this research since 1970s which 
leads to a rapid development in the theories, algorithms 
and applications of MP (Refs.[2-5]). 

When taking into account some cooperation among 
the DMs, it is not appropriate to develop an algorithm for 
obtaining a Stackelberg solution to a multilevel pro-
gramming problem. Then the interactive fuzzy methods 
have been developed in consideration of fuzziness of 
human judgment [6-12]. Sakawa et al [8] presented interac-
tive fuzzy goal programming for multilevel linear pro-
gramming problems. Wan et al [10] introduced an interac-
tive fuzzy decision making method for bilevel program-
ming with a common decision variable. Other fuzzy 
methods for solving multilevel programming problems 
can refer to Refs.[13-16]. 

The concept of intuitionistic fuzzy sets (IFS) de-
veloped by Atanassov [17,18] is a generalization of the 
fuzzy set theory. There have been some algorithms for 
the intuitionistic fuzzy optimization (IFO). Angelov [19] 
introduced a frame to solve optimization problems in 
intuitionistic fuzzy environment; Li [20] investigated mul-
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tiattribute decision making using IFS theory; Liu and 
Wang [21] proposed an approach to multi-criteria decision 
making based on IFS; Mahapatra [22] used the IFO tech-
nique to solve multi-objective nonlinear programming 
problems. 

There is no means to incorporate the lack of infor-
mation with the membership degree in fuzzy sets, but 
IFS can be viewed as an approach to overcome the 
shortcoming of fuzzy set theory. In addition, IFO can 
reduce DMs’ subjective consciousness as much as possi-
ble thus the practical problems can be reflected objec-
tively. In this paper, we present an interactive method for 
multilevel linear programming based on IFS theory un-
der the assumption of cooperative relationship among the 
DMs. Here, we consider the following multilevel linear 
programming: 
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where, kx  and ( )kz x  are DMi’s decision variable and 

objective function, respectively. DMi denotes the DM at 
ith level. { } { }1 21,2, , , , ,k k nk t x x x= =  x , kA  is 

km n×  coefficient matrix, b is m-dimensional column 

vector, 1,2, ,k t=   and 1 2 tn n n n+ + + = . 

The rest of this paper is organized as follows. Sec-
tion 1 briefly introduces the basic concepts of IFS. The 
interactive intuitionistic fuzzy method for problem (1) is 
established afterwards. Furthermore, numerical examples 
are given in Section 2 to illustrate the feasibility of this 
method. The last section gives a short conclusion for this 
paper. 

1  Algorithm Formulation 

1.1  Definitions and Properties of IFS 
Definition 1[17, 23]  Let X be a nonempty set of the 

universe. An intuitionistic fuzzy set (IFS) A in X is an 

object having the form : ( ) ( ){ }= , ,A AA Xμ ν ∈x x x x , 

where ( ) [ ]: 0,1A Xμ →x  and ( ) [ ]: 0,1A Xν →x  define 
the degree of membership and non-membership, respec-
tively, and for every X∈x , ( ) ( )0 1A Aμ ν+≤ ≤x x .  

Definition 2 [17]  ( ) ( ) ( )1A A Aπ μ ν= − −x x x  is 
called the degree of non-determinacy (or hesitancy) of 
the element X∈x to the IFS A. Obviously, for every 

X∈x , ( )0 1Aπ≤ ≤x . 
Definition 3 [18, 24]  The intuitionistic fuzzy number 

(IFN) is defined as ( ), ,α α αα μ ν π= , where [ ]0,1αμ ∈ , 

[ ]0,1αν ∈ , ( ) ( )0 1α αμ ν+≤ ≤x x . Moreover, the 
function ( ) ( ) ( )s α αα μ ν= −x x  is also defined to 
evaluate the degree of suitability that an alternative satis-
fies the DM’s requirement. 

Notice that maximization of the score function 
( )s α  can decrease the DMs’ hesitancy and their subjec-

tive consciousness can be reduced. Sakawa et al [8] pro-
posed that taking fuzzy goals of the objective function 
and the decision variables may generate inconsistency 
between them, so we only consider that DMs have fuzzy 
goals for their objectives. If ( )iz x  is less than or equal 
to a value, the result is satisfied for DMi; On the contrary, 
if ( )iz x  is greater than or equal to a value, DMi can’t 
accept the result completely. Due to Ref.[22], we can 
elicit the membership function and non-membership 
function for every fuzzy objective by the following steps: 

Step 1: For all 1, 2, ,i t=  , DMi solves the fol-
lowing problem (2),  
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Suppose that *
ix  is the optimal solution of problem 

(2), we call *
ix  the ideal solution of ( )iz x . 

Step 2: DMs calculate the value of every objective 
function at the ideal point *

ix , , 1,2, ,i j t=  , denote 
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1,2, ,
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Moreover, we can assume that r
iL  and r

iU  are 

lower bound and upper bound of the non-membership 

function, respectively: 

r a
i i iL L ε= + , r a

i iU U=            (4) 

where ( )a a
i i i it U Lε = − , 0 1it∧ ∧ , and iε  is deter-

mined by DMi, 1,2, ,i t=  . 

Step 3: We use the following linear membership 

function ( )( )i izμ x  and non-membership function 

( )( )i izν x  to describe the fuzzy goals of the DMs,  

respectively: 
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Rough sketch of the membership function and 
non-membership function for minimization type objec-
tive function are shown in Fig. 1. We can denote the 
score functions of DMs after eliciting membership and 
non-membership function according to the definition. 

 

Fig. 1  Membership and non-membership functions of   
objective function 

1.2  Interactive Intuitionistic Fuzzy Method 
After eliciting the membership and non-member- 

ship function, DMi specifies a minimal satisfactory level 
[ ]0,1iδ ∈ for the score function ( )( )i is z x . DMt maxi-

mizes ( )( )t ts z x  under the existing constraints after 
getting the requirement of t−1 DMs at upper level, that is, 
DMt solves the following problem: 
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If an optimal solution to problem (7) exists, it shows 
that DMs at upper level can obtain a satisfactory solution 
which has a satisfactory degree larger than or equal to 
the minimal satisfactory level specified by DMs. How-
ever, the larger the minimal satisfactory level of the up-
per level is, the smaller the satisfactory degree of DMs at 
lower level becomes. This may cause that the DM’s sat-

isfaction at each level is of great difference. Considering 
the overall satisfactory balance and the stability of deci-
sion, the DMs at upper level compromise with the lower 
DMs. So we define 

( ) ( )( ) ( )( ) ( )( )( )1 1 2 2= min , , , t ts z s z s zλ λ= x x x x   
then problem (7) convert to the problem (8): 
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The auxiliary problem of (8) is: 
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Sakawa et al [8] defined 
( )( )

( )( )
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measure the overall interests, here we define the     
ratio of neighboring levels’ score function value 

( )( )
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1 1i i

i

i i

s z

s z
σ + +=

x
x

. For DMi and DMi+1, ( )( )i is z x ∨  

( )( )1 1i is z+ + x , [ ]0,1iσ ∈ .  

DMi sets the acceptable interval L U,i iσ σ    for iσ , 

if L
i iσ σ∧ , it means that the lower level’s satisfactory 

degree is low because the upper level’s demand is too 
high. Then, DMi reduces his/her minimal satisfactory 
level iδ ; If U

iσ σ∨ , DMi increases iδ . 

The algorithm terminates if the solution *x of prob-
lem (9) meets the following conditions: 

① ( )( )*
i i is z δ≥x , for all 1,2, , 1i t= − . 

② L U,σ σ σ ∈  i i i , for all 1,2, , 1i t= − . 
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If *x  can not satisfy both of the above conditions 
for some DMi, then DMi needs to update the minimal 
satisfactory level of relevant objective function in accor-
dance with the following criteria: 

1) If condition ① is not satisfied, DMi decreases 
the minimal satisfactory level iδ ; 

2) If U
i iσ σ∨ , DMi increases iδ ; If 

L
i iσ σ∧ , 

DMi decreases iδ . 
Note: If some DMs can not meet the termination 

conditions, update the DM’s minimal satisfactory degree 
who located at the lowest level. So, the DMs at upper 
level can update their strategy according to the lower 
level’s reaction such that a satisfactory solution can be 
obtained. 

Suppose DMq is located at the lowest level among 
the DMs who don not satisfy the termination conditions, 

DMq adjusts the minimal satisfactory degree to 
qδ ′ , then 

we solve (10) with the updated qδ ′ : 
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Next, we test whether the solution to (10) satisfies 
the termination conditions or not. If not, the relevant 
DMs update the minimal satisfactory level until satisfac-
tory solution is obtained. The above-mentioned algo-
rithm is summarized as follows: 

Step 1: For all 1,2, ,i t=  , DMi elicits the mem-
bership function and non-membership function of the 
fuzzy goal of DMi in turn. 

Step 2: DMi specifies the minimal satisfactory level 

iδ , the lower and the upper bounds of iσ , 
1,2, , 1i t= − . 

Step 3: DMt solves the problem (9), that is, it ob-
tains the optimal solution *x  by maximizing the score 
functions of all the DMs. Then DMs calculate the value 

of ( )( )*
i is z x  and ( )( )*

i izσ x , 1,2, , 1i t= − . 

Step 4: If the solution *x  satisfies the termination con-
ditions, the algorithm terminates; Otherwise, go to Step 5. 

Step 5: If DMq is located at the lowest level among 

the DMs who don’t satisfy the termination conditions, 
updates qδ  according to the procedure of updating 
minimal satisfactory level and then solves problem (10). 

Step 6: If the solution to (10) satisfies the termina-
tion conditions, the algorithm terminates; Otherwise, 
return to Step 5. 

2  Numerical Examples 

Example 1[10]: 

1

2

1 1 2 3 4 5 6

2 1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

min 18 10 11 11 23 40

min 35 9 20 44 10 7

s.t. 47 14 4 49 1.5
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where ( )1 1 2 3, ,x x x ′=x , ( )2 4 5 6, ,x x x ′=x . 

In our algorithm, we choose 1 2 13, 4, 0.5ε ε δ= = = ,  

[ ]L U
1 1, 0.75,0.9σ σ =  . The solution of problem (9) is =x  

( )0.881520,1.122 045,0,0.066176,1.040 567,0.520 981 ,′

0.252 975λ = , 1 39.397 442z = − , 2 29.810 803z =  , 

1 1σ = , ( )1 1 0.252 975s z = , ( )2 2 0.252 975s z = .  

While ( )1 1 0.252 975 0.5s z = ∧  doesn’t satisfy the 
termination condition (1), DM1 changes 1 0.5δ =  to 

1 0.27δ ′ = . Then a problem corresponding to (10) is 
formulated as problem (12). 

The solution of problem (12) is: 
(0.890 311, 1.125 337, 0, 0.071 434, 1.044 841,=x

0.528 990) ,′ 0.228 208λ = , 1 39.632 923z = − , 2z =  
30.280 680 , ( )1 1 10.27s z δ ′= = , ( )2 2 0.228 208s z = , 

1 0.845 215σ = . 
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The above solution satisfies all the termination con-
ditions, so DMs obtain the satisfactory solution and the 
algorithm terminates. 

(0.890 311, 1.125 337, 0, 0.071 434, 1.044 841,=x
0.528 990) ,′ 0.228 208λ = , 1 39.632 923z = − , 2z =  
30.280 680 , ( )1 1 10.27s z δ ′= = , ( )2 2 0.228 208s z = , 

1 0.845 215σ = . 
The above solution satisfies all the termination con-

ditions, so DMs obtain the satisfactory solution and the 
algorithm terminates. 
    To demonstrate the feasibility of our method, we 
compare the results in Table 1. Our method is denoted by 
Method 1, the method of Wan et al [10] is Method 2, and 

the method of Zheng et al [11] is Method 3.  
According to the Table 1, all the DMs’ score func-

tion values obtained by Method 3 are better than that of  

Method 2; Though DM1’s score function value obtained 

by Method 3 is better than that of Method 1, DM2’s score 

function value is not ideal as that of Method 1. Further-

more, 0.722 429σ =  is not in [0.75, 0.9] of Method 3, 

it means that there is a big difference between two DMs’ 

satisfactory degree. By contrast, the parameter σ  in 

Method 1 is much closer to 0.9. This guarantees not only 

the upper DM’s advantage but also the satisfaction of 

both DMs. Consequently, our method is feasible.

Table 1  Comparisons of the results of Example 1 

Method (z1, z2) (s1(z1), s2(z2)) σ 
1 (−39.632 923, 30.280 680) (0.270 000, 0.228 208) 0.845 215 

2 (−39.613 400, 30.620 500) (0.268 589, 0.210 059) 0.782 084 

3 (−39.788 800, 30.591 800) (0.293 190, 0.211 809) 0.722 429 
 

Example 2[8]:  

1 2 3

2 3
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where ( )1 1 5, ,x x ′= x , ( )2 6 10, ,x x ′= x , ( )3 11 15, , .x x ′= x  
In addition, 1 9, ,c c , A1, A2, A3, b are showed in Table 5 
of Ref.[8]. 

We choose 1 10ε = , 2 6ε = , 3 2ε = , 1 0.95δ = , 

2 0.85δ = , 
L U
1 1,σ σ  =  [ ]L U

2 2, 0.75,0.9σ σ  =  . The solu-

tion of problem (9) is  
(2.580 710, 0, 0.967 857, 2.285 659, 2.146 568,x =

1.675 894, 3.217 242, 0, 0, 1.019 755, 1.667 012, 0, 0,

1.273 604, 0.095182)′ , 10.581 152, 516.220 154,λ = =−z

( )2 1 13451.706 332, 371.453 935 0.803 765,z s zz= − == −
( ) ( )1 2 2 2 3 30.95, 0.595 763 0.85,s z s zδ δ= = = =∧ ∨

 

10.581152, 0.741 215σ = , 2 0.975 475σ = .  

DM1 and DM2 are both not satisfied with the above 
solution, DM2 changes 2 0.85δ =  to 2 0.65δ ′ = . Then a 
problem corresponding to (10) is formulated as: 
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∈
=

=
i i

i i i i

s z

s z

z i

z z i

≥

≥

≥

≥
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

 

( )( ) ( )( ) 1, 1,2, ,15x xμ ν+ =i i i iz z i≤    (14) 
The solution of problem (14) is =x  

(2.595 286,0,0.964 740, 2.266 238, 2.173129,1.664 712,
3.272 815, 0, 0, 1.010 653, 1.694 636, 0, 0, 1.265 663,

0.059115) , 0.558 775λ = , 1 519.092 639z = − , 2z =  
453.212 020− , 3 371.350 523= −z , ( )1 1 0.865 072=s z  

1 0.95δ =∧ , ( )2 2z 0.65s = , ( )3 3 0.558 775s z = , 1σ =  
0.751382 , 2 0.859 653σ = . 

The value of ( )1 1s z  does not satisfy the termina-
tion condition (1), DM1 changes 1 0.95δ =  to 

1δ ′ =  
0.91 and solve the problem (15): 
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( )( )
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(15)
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The solution of problem (15) is =x  
(2.608 886, 0,0.961929, 2.248116, 2.197 912,1.654 278,  

3.324 670, 0, 0, 1.002161, 1.720 411, 0, 0, 1.258 253,

0.025 461) , 0.537 895λ = , 1 521.772 923z −= , 2z =
454.616 942− , 3 371.254 030z = − , ( )1 1 0.91s z = ,

( )2 2 0.700 608s z = , ( )3 3 0.537 894s z = , 1 0.778 453σ = ,

2 0.767 755σ = .  

By now, ( )1 1 10.91=s z δ ′= , ( )2 2 0.700 608s z = ∨  

20.65 δ ′= , moreover 1 0.778 453σ = , 2 0.767 755σ =  

are all in the interval [ ]0.75,0.9 . That is to say, all the 

termination conditions of the proposed algorithm are 
satisfied, the DMs obtain the satisfactory solution. 

3  Conclusion 

This paper proposes an interactive intuitionistic 
fuzzy method for solving multilevel linear programming 
problems under the assumption of DMs’ cooperative 
relationship. Considering the overall satisfactory bal-
ance, the DMs at upper level update the minimal satis-
factory level continuously until a satisfactory solution is 
obtained. The numerical examples illustrate that not only 
the bilevel but also the multilevel linear programming 
problems can be solved by our proposed method. 
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