

 887Wuhan University Journal of Natural Sciences Vol.12 No.5 2007

Vol.12 No.5 2007 887-892

Article ID: 1007-1202(2007)05-0887-06

DOI 10.1007/s11859-007-0006-z

Resource Search in Unstructured
Peer-to-Peer System Based on
Multiple-Tree Overlay Structure

□ YU Jianqiao, LIAO Jianwei

College of Computer and Information Science, Southwest
University, Chongqing 400715, China

Abstract: We propose a multiple-tree overlay structure for re-
source discovery in unstructured P2P systems. Peers that have
similar interests or hold similar type of resources will be grouped
into a tree-like cluster. We exploit the heterogeneity of peers in
each cluster by connecting peers with more capacities closer to the
root of the tree. The capacity of a peer can be defined in different
ways (e.g. higher network bandwidth, larger disk space, more data
items of a certain type etc.) according to different needs of users or
applications.
Key words: unstructured P2P system; tree-like cluster; similar
interest
CLC number: TP 393.4

Received date: 2007-01-10
Foundation item: Supported by the National High Technology Research and
Development Program of China (2006AA10Z1E6)
Biography: YU Jianqiao(1957-), male, Professor, research direction: database,
information retrieval, artificial intelligence. E-mail:yujq@swu.edu.cn

0 Introduction

Unstructured P2P systems don’t maintain a logical
interconnection structure among the peers. Lacking a
logical structure, the most sensible way to search for data
items in the system is to flood the requests to the peer
nodes. There are two strategies to improve the search
efficiency of an unstructured P2P system. The first strat-
egy focuses on how queries are delivered in the P2P
network[1]. The 2nd strategy is to connect the nodes in a
certain way so that the desired resources may be found
quickly, such as Gnutella[2].

This paper proposes a multiple-tree overlay struc-
ture for resource discovery in unstructured P2P systems.
Peers that have similar interests or hold similar type of
resources will be grouped into a tree-like cluster[3,4]. We
exploit the heterogeneity of peers in each cluster by
connecting peers with more capacities closer to the root
of the tree. The capacity of a peer can be defined in dif-
ferent ways (e.g. higher network bandwidth, larger disk
space, more data items of a certain type etc.) according
to different needs of users or applications.

There are several research works on reducing the
traffic overhead and improving search efficiency in
Gnutella-like P2P networks[5-7]. We especially emphasize
on constructing an efficient overlay as the underlying
network for flooding.

1) Trail-based technique
FloodTrail[1] defines Trail of a flooding as a collec-

tion of P2P links, along which a query reaches a peer for
the first time during a flooding. Links that are used to

 888 YU Jianqiao et al : Resource Search in Unstructured Peer-to-Peer …

transmit redundant messages of that query are excluded
from Trail.

However, in a more dynamic environment, peers
constantly join in or depart from the P2P network. The
Trail may not reflect current network topology. To keep
the freshness of the Trail, a lease mechanism is used. A
trail is invalid after the lease expires, thereafter the query
will be flooded again to construct a new trail.

2) Tree-like sub-overlay structure
The design of LightFlood[8] is motivated by the ob-

servation those in pure flooding most redundant mes-
sages are generated when messages are flooded further
away from the requester, while the coverage improves
the most in the first few hops.

Therefore, LightFlood floods the request at low
hops. During high hops, LightFlood will select a set of
links to form a tree-like sub-overlay called FloodNet that
organizes peers into a small number of low diameter
clusters and lets messages be flooded in the sub-overlay.

3) Policy-based link structure
GUESS[9] investigates a new type of search archi-

tecture, in which messages are not forwarded, and peers
have complete control over who receives its queries and
when under the GUESS protocol, peers directly probe
each other with their own query messages, rather than
relying on other peers to forward the message.

In GUESS, there is a tradeoff between the query
response time and the traffic overhead. Users must care-
fully set the policy of maintaining the link and query
caches and choosing the time interval of selecting a new
neighbor to send out the query.

1 System Design and Implementation

1.1 Overview
Our system is built as an infrastructure for message

passing in an unstructured P2P network (e.g. Gnutella).
Gnutella is a “search” protocol rather than a scheme for
managing or maintaining the interconnection among
peers in a P2P network. In our system, we regulate a set
of rules for building connections over the peers. We de-
fine how a new peer joins the system, which peer this
new peer should take as its neighbor, how the system is
kept stable in face of highly dynamic failure in the P2P
network.

The basic idea is that we sort each peer by the type
of its resource and group the same type of peers to form
a tree. Note that a peer can join different trees due to its

different types of resources. When a peer issues a query,
it will send the message to the root of the specific tree
which maintains the requested type of resources. The
root will deliver the query to all its children in a
top-down fashion until TTL = 0 or the leaves of the tree
are reached. Peers will respond a QUERYHIT to their
parent if there are matched data items. Apparently, the
root in each tree acts as an entry point of queries and
bears most workload. Therefore, we move stronger peers
to closer to the root. Compared with previous research to
improve Gnutella, our system has several features listed
below[10].

1) Traffic reduction: Based on our tree-like structure,
queries are sent from the root of the tree and then passed
to its children, which in turn forward queries to their
children until TTL = 0. There is no redundant message
delivered in the tree structure.

2) Exploiting the heterogeneity of peers: Our sys-
tem will move nodes with higher capability closer to the
root of the tree. Therefore, we can make use of more
powerful peers to handle more works by locating them
closer to the root.

3) Practical and trust: In pure flooding, a query is
passed within a scope based on its TTL value. In our
system, queries will be forwarded only to these peers
holding the requested type of resources.

4) Fully-distributed and self-healing: we distribute
the jobs to all peers participating in the system. Each
peer only needs to spend some disk storage and network
bandwidth for maintaining its connection with its parent
and children.
1.2 Assumptions and Data Structure

The P2P system model comprises of a large number
of peers. Every peer shares some resources it holds and
contributes parts of its resources for playing a part in the
P2P overlay network. We assume that each peer knows
an entry point when it first joins the system.

After getting the information of active peers, new
peers can establish their own routing tables according to
those in the active peers. However, in our system,
host_cache is used to maintain the current root of each
tree as an entry point for new peers to join the tree.

Furthermore, we assume each peer x will calculate a
value (i.e. c(x)) to express its capacity when it joins the
system. We will define the capacity in this thesis as the
computing power and network bandwidth of peers. The
c(x) of each peer will be used in the join process to de-
cide how many peers it can accept as children initially.
We define mi(x) for a peer as the number of overlay links

 889Wuhan University Journal of Natural Sciences Vol.12 No.5 2007

used in the ith tree. Therefore, if there are k overlay trees
in the system, we can obtain that the sum of mi(x) is less
than c(x). We use di(x) to express the overlay links in use
in the ith tree of a peer. For the succinctness, we abbre-
viate them to m(x) and d(x) when we just discuss for one
overlay tree. Figure 1 (a) shows overlay links maintained
by a peer.

In addition, each peer keeps a routing table of
neighbors (i.e. parent and children) and some backup
links. Figure 1 (b) shows the format of the routing table
in each peer. In general, tree is a structure with good
scalability but difficult to be maintained because of its
weak connectivity. We increase the reliability of our sys-
tem by using the backup_link_table to maintain the
overlay tree structures from partition.

Fig.1 The logical structure of overlay links held by a peer (a)

and the routing table of a peer (b)

1.3 Basic Algorithms
1.3.1 Way peer join in

When a new peer ρ intends to join the system, it
will ask the host_cache for the information of the current
root of the overlay tree that peer ρ would like to join. It
then uses the information to communicate with the root γ.
Algorithm 1 depicts a new peer joining.

Algorithm 1
Join (tree Τ) {
// peer ρ connects to host_cache and gets the infor-

mation of the root of tree Τ
γ = host_cache(Τ)

if d(γ) ＜ m(γ)
then Graft (ρ, γ)
else

ϕ = Sub_tree_root(γ)
Graft (ρ,ϕ) }

Graft (peer μ, peer ν) {
μ.parent =ν
find an ε such that n.child[ε] is NULL
ν.child[ε] =μ
Height_check(μ, ν); }

Sub_tree_root (peer ω) {
for i ← 1 to d(ω)

do find ω.child[i] has a maximum value, f=m (ω.
child[i])－d(ω.child[i])

if f > 0 then return ω.child[i]
else choose a random number δ between 1 and d(ω)
return ω.child[δ] }
Height_check (peer α, peer β) {
if height(β) ≤ height(α)

then height(β) = height(α) + 1
α=β and β=β.parent
while β ≠ NULL

Height_check(α, β) }
1.3.2 Tree maintenance

In our system, there are multiple tree-like structures
in the overlay network. As we know, if a link of the tree
structure is failed or broken, the tree will be partitioned
into multiple sections. This causes a big problem for our
system, because we need to gather all peers with similar
interests and resources to a single overlay tree. Therefore,
it is necessary to keep the routing table of all peers accu-
rate in our system. We solve it by sending periodical
messages (i.e. PING) to parent and children to check the
states of them.

Each peer keeps a backup_link_table to hold some
ancestors as the reserved parent. If a peer detects that its
parent is off-line or has no response, it will choose one
backup peer in this table and try to connect to it as a
child. Choosing the new parent is given in Algorithm 2.
There are many ways to decide how many and which
peers to be put into the backup_link_table. In our system,
the size of the backup_link_table is setup by the system
in advance. Peers that are contacted by peer ρ in its join
process will be put into its backup_link_table.

Algorithm 2
Recover (peer ρ) {
if there is an active peer ω in the backup_link_table
and height(ω) is the

closest to height(ρ)
if d(ω)＜m(ω)

then Graft(ρ, ω) // Algorithm 1
else κ = sub_tree_root(ω)
Graft(ρ, κ)

else Join(Τ) }
1.3.3 Exploiting the heterogeneity of peers

The join process of a peer and the delivery of a
query are all first handled by the root of the correspond-
ing overlay tree. Queries are passed in a top-down fash-
ion from the root to the leaves according to their TTL

 890 YU Jianqiao et al : Resource Search in Unstructured Peer-to-Peer …

value. The Algorithm 3 shows how to moving powerful
peers closer to the root.

After finding a candidate parent γ in the join process,
a peer ρ will compare its capacity (i.e. c (ρ)) with c (γ) of
the candidate parent. If the capacity of peer ρ is higher than
γ, it will exchange its position with γ in the overlay tree.

Algorithm 3
Replace (peer ρ, peer γ) { //γ is ρ.parent

if γ ≠ NULL and c(ρ)≤ c(γ)
then break
ele lock the data structure of peer ρ and γ

for i ← 1 to d(γ)
do γ.child[i].parent = ρ

ρ.parent = γ.parent
height(ρ) = height(γ)
γ.parent = ρ
Height_check(γ, ρ)
Replace (ρ, ρ.parent) }

1.3.4 Query delivery process
The Algorithm 4 shows the method of forwarding

queries to a large amount of peers in an overlay tree for
resource discovery.

Wherever a query is issued, it will be first for-
warded to the root peer and passed down to the leaves.
Note that the termination of a query depends on its TTL
which is given by the query issuer. The TTL value will
be decreased by one when the query travels across one
hop in the overlay.

Algorithm 4
Route (query φ) { // for peer ρ
if TTL of φ ∨ 0

then decrease TTL of φ by 1
for i ← 1 to d(ρ)

//ρ will pass query φ to all its children
do deliver φ to ρ.child[i]

else break }
1.4 Dynamic Exchange Methodology

Consider the example in which there is an overlay
tree for searching and downloading document files. Fig-
ure 2 (a) is the ideal topology. After passing a large num-
ber of queries and matched files for a while, the load
status of the peers may be much different. Figure 2 (b)
shows the load change of the peers after a period of time.

We utilize the PING and PONG messages to check
if the neighbors are active or not. We attach the status
information of the peers to their PING packets that will
be periodically passed to their parent. The Algorithm 5
presents a way of dynamically adjusting the positions of

Fig.2 Effects of dynamic state changes

(a) The ideal tree in our system; (b) The load changes of peers after a while

two peers. After gathering all PING messages from the
children, a peer ρ will compare the information with its
own. If peer ρ detects that some peers are better than it, ρ
will exchange its position with the best child.

Algorithm 5
Monitor (peer ρ) {
for i ← 1 to d(ρ) // Φ is the metric

do receive PING packets from ρ.child[i], extract
the specific item Φi

from the packet
if Φi >Φρ

then put Φi into exchange_table
while exchange_table is not empty

do find the maximum Φi and return i
Replace (i, ρ) }

2 Experiments and Simulation

2.1 Evaluation with Real System
We implemented our system using Java JDK v1.4.2.

For building a real test environment, we ran our system in
the PC cluster of our lib. There are 64 machines intercon-
nected with 100 Mb/s Ethernet. Each of them has a 2 GHz
AMD ThunderBird MP2000 CPU and two 512 MB DDR
RAM. The operating system is Linux with kernel
v2.4.19.We selected 20 active machines as new peers to
join in our overlay system (see Table 1). Each of them
held a neighbor table with a size different from 1 to 8 and
a backup_link_table with 5 entries. In addition, a peer is-
sued a PING message to its parent node every 10 seconds.

Table 1 Settings of simulation

Rank Rate/% Capacity Failure rate/% Size of backup
link table

R1 20 2 81 1
R2 45 4 27 3
R3 30 8 9 5
R4 4 6 3 7
R5 1 32 1 9

We used two different join models of peers to get
the different cost of the join process. The joining model
of 20 peers was in a sequential way. We measured the

 891Wuhan University Journal of Natural Sciences Vol.12 No.5 2007

total time of each peer from the time the program is
started until an active parent node is obtained.

The first model is that peers join the system from
the strongest to the weakest ones. Figure 3(a) shows the
elapse time in milliseconds against the number of nodes
joining the system. We note that when the 10th peer
joined the system, it must start a sub_tree_root process to
get a peer in Level-1 (the Level of the root is 0) as the
parent because the root had reached its limit of overlay
connections.

The second model of peer joining is from the weakest
to the strongest ones. Figure 3(b) shows the results. In
Fig.3 we can see the real statistics obtained by experi-
ments are almost the same with the estimated values.

Fig.3 Elapse time of peer joining

2.2 Simulations
We developed a simulator to simulate a large num-

ber of peers (up to 50 000) typical of a real worldwide
P2P environment[11-14]. We will show that our system can
adapt to different needs of high level applications and
adjust the structure to best meet them. We summarize the
settings of the peers in Fig.3. We classified system nodes
into five ranks that are expressed as R1, R2, R3, R4 and R5.
The failure rate of each peer represents the probability of
a node failing per simulated day. In each simulated day,
there will be 20% of peers leaving the system and then
immediately rejoining the system to maintain the system

size and heterogeneous percentage.
We can see from the Fig.4 that the average loading

of peers at each level drops down by using the dynamic
replacement. From the other simulations with different
network sizes (such as system size = 30 000 and 50 000),
we can obtain the similar result, the dynamic exchanging
scheme can achieve better load balance for our system.

Fig.4 Loading status against the level of overlay

tree with system size=10 000

3 Conclusion

We presented a multiple-tree-like overlay system
for resource discovery in unstructured P2P networks.
Forwarding of queries in our system is along the tree,
which can eliminate redundant messages. Unlike previ-
ous works, peers in our system do not need to pass que-
ries to unrelated peers. Moreover, we exploit the capacity
of peers and utilize more powerful peers to handle more
jobs. By dynamically adapting the tree structure, our
system can serve as an application-specific overlay net-
work to meet different needs of applications. And the
simulations show that our system can adapt to meet dif-
ferent needs of applications with small costs.

Further studies we will design a more efficient and
reliable system, and trust management should be consid-
ered in system.

[1] Jiang Song, Zhang Xiaodong. FloodTrail: An Efficient File
Search Technique in Unstructured Peer-to-Peer Systems[C]//
Proceedings of 2003 IEEE Globecom Conference. California:
IEEE Press, 2003: 2891-2895.

[2] Gnutella[EB/OL].[2005-12-10]. http://rfc-gnutella.sourceforge.
net.

[3] Ratnasamy S, Francis P, Handley M, et al. A Scalable
Content-Addressable Network[C]// Proceedings of ACM
SIGCOMM 2001. New York: ACM Press, 2001:161–172.

References

 892 YU Jianqiao et al : Resource Search in Unstructured Peer-to-Peer …

[4] Hsiao H C,King C T. Tornado: A Capability-Aware Peer-to-
Peer Storage Overlay [J]. Journal of Parallel and Distributed
Computing, 2004, 64(6): 747-758.

[5] Clarke I, Sandberg O, Wiley B, et al. A Distributed Anonymous
Information Storage and Retrieval System [C] //Proceedings
of International Workshop on Design Issues in Anonymity and
Unobservability. LNCS, 2001, 2009: 46-66.

[6] Anirban M, Yi L, Masaru K. On Improving the Performance
Dependability of Unstructured P2P Systems via Replication
[EB/OL].[2005-11-20]. http://www.tkl.iis.u-tokyo.ac.jp/ Kilab
/Research/Paper/2004/Anirban-DEXA-200409.pdf.

[7] Stoica I, Morris R, Karger D, et al. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications[C]//
Proceedings of ACM SIGCOMM 2001. New York: ACM
Press, 2001:149-160.

[8] Jiang Song, Guo Lei, Zhang Xiaodong. LightFlood: An
Efficient Flooding Scheme for File Search in Unstructured
Peer-to-Peer Systems[C]//Proceedings of the ICPP’03.
California: IEEE Press, 2003: 627-635.

[9] Yang Beverly, Patrick V, Hector C M. Evaluating GUESS
and Non-Forwarding Peer-to-Peer Search [EB/OL]. [2005-

12-20].http://www-db.stanford.edu/~byang/pubs/guess.pdf.
[10] Jagadish H V, Beng Chin Ooi. BATON: A Balanced Tree

Structure for Peer-to-Peer Networks[C]//Proceedings of the
31st VLDB Conference. Norway: ACM Press, 2005:661-672.

[11] Acosta W, Chandra S. Unstructured Peer-to- Peer
Networks-Next Generation of Performance and Reliability
[EB/OL].[2005-11-10]. http://dawn.cs.umbc.edu /INFOCOM
2005 /acosta-abs.pdf .

[12] Anirban Mondal, Yi Lifu, Masaru Kitsuregawa. On Improving
the Performance Dependability of Unstructured P2P Systems
via Replication[EB/OL].[2005-11-20]. http://www.tkl.iis.u-
tokyo.ac.jp/Kilab/Research/Paper/2004 /Anirban-DEXA-200409.
pdf .

[13] Berfield A, Qu Huiming. Node Mobility in Unstructured P2P
Networks[EB/OL].[2005-11-20]. http:// www.cs.pitt.edu/~
andreea/publications/mobility-p2p.pdf .

[14] Castro M, Druschel P, Kermarrec A-M et al. Splitstream:
High-Bandwidth Multicast in Cooperative Environments[C]//
Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles. New York: ACM Press, 2003:298-313.

□

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

