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One of the aspects addressed by this research concerned 
the role of proof as an explanatory process. Traditionally, 
the question whether a mathematical proof is explanatory 
belonged to philosophy and history of mathematics, but 
pedagogical aspects of this question have been addressed by 
mathematics educators as well (e.g., Hanna & Jahnke, 1996; 
Balacheff, 2010; Nunokawa, 2006; Sytlianides et al. 2016; 
Inglis and Mejia-Ramos, 2019; Harel, 2013). In essence, the 
philosophical debate on mathematical explanation revolves 
around the question, what distinguishes explanatory proofs 
from non-explanatory proofs? I will argue later in this paper 
that in the eyes of the theoretical framework underlying this 
study, this question, as stated, is misdirected. Nevertheless, 
at the heart of this question is another question: What is 
explanation? Frans’ (2021) position that understanding is 
a condition for explanation suitably relates to our concern. 
But what is understanding? More relevantly, what is mathe-
matical understanding? Frans focuses on unificatory under-
standing, “the type of understanding that involves seeing 
how phenomena are the result of a general pattern and not 
as a collection of isolated events,… [a] type of understand-
ing [that is] valuable in mathematics.” (p. 1106). While 
unificatory understanding is undoubtedly a genuine type 
of understanding—especially in advanced subjects such as 
linear algebra, which is the referent subject of this paper—
it is only one type of mathematical understanding. Other 

We are not very pleased when we are forced to accept 
a mathematical truth by virtue of a complicated chain 
of formal conclusions and computations, which we 
traverse blindly, link by link, feeling our way by 
thought. We want first an overview of the aim and the 
road; we want to understand the idea of the proof, the 
deeper context. Hermann Weyl (Weyl 1932).

1  Introduction

In the last three to four decades the learning and teaching 
of proof has been a central focus of research in mathemat-
ics education throughout the world. This was due to the 
recognition of the critical role proof plays in mathematics 
as a discipline and the role it plays in advancing students’ 
conceptualization of and beliefs about mathematics. Against 
this recognition stood the overwhelming findings about 
the difficulties students experience in understanding, pro-
ducing, and appreciating proofs (Stylianides et al., 2016). 
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types exist, including understanding resulting from appli-
cations of mathematics in natural science and engineering, 
the discovery and accountability for the laws of the physi-
cal world, visualization, abduction, analogies, and empirical 
observations.

The goal of this paper is to offer a conceptual framework, 
illustrated by learning-teaching events, for constituent ele-
ments of one form of mathematical understanding, called 
epistemological justification (Harel, 2013). Epistemological 
justification manifests itself with an individual or a com-
munity through perturbation-resolution cycles revolving 
around the questions, why and how was a piece of math-
ematical knowledge conceived? As such, epistemological 
justification goes beyond mere comprehension and validity 
of concepts and claims into the reasons—conceptualized 
as such by an individual or a community—for the origins 
of mathematical knowledge.1 Epistemological justifica-
tion, thus, is not limited to proof but pertains to any piece 
of mathematical knowledge. The goal of this paper is to 
address cognitive and instructional aspects of epistemologi-
cal justification.

The paper is comprised of five sections aside from this 
first introductory section: Sect.  2 situates epistemological 
justification into the philosophical debate on mathematical 
explanation by pointing to their shared concerns on the one 
hand and fundamental differences on the other hand. Sec-
tion 3 provides a theoretical framework for epistemologi-
cal justification through discussions of three questions: (a) 
What exactly is epistemological justification? (b) What is 
its underlying theoretical basis? (c) What are the criteria 
for its occurrence? Section 4 outlines the experimental data 
sources for the learning-teaching events used to illustrate 
epistemological justification. Section 5 discusses the ques-
tion: (d) What examples of instances of students’ mathemati-
cal behaviors that manifest epistemological justifications? 
Section  6 concludes with implications for instruction and 
research by addressing the question: (e) What instruc-
tional approaches might facilitate the development of ways 
of thinking that can enable students to seek not only cer-
tainty but also enlightenment in the form of epistemological 
justification?

2  Relation of epistemological justification 
to mathematical explanation

This paper concerns cognitive and instructional aspects of 
epistemological justification, not its philosophical under-
pinning. It is natural, however, to wonder about its relation 
to mathematical explanation. The goal of this section is to 

1  “Origins of mathematical knowledge” does not refer to historical 
origins.

point out some shared concerns and differences between the 
two notions.

Steiner (1978), in a landmark publication, debated the 
question, are mathematical proofs explanatory? He used an 
ontological characterization to distinguish between explana-
tory proofs and non-explanatory proofs; namely, an explan-
atory proof is one that “makes reference to a characterizing 
property of an entity or structure mentioned in the theorem, 
such that from the proof it is evident that the result depends 
on the property.” (p. 143). Hafner and Mancosu (2005), 
among others, pointed to difficulties with Steiner’s approach 
on the account that the term “characterizing property” is too 
vague to determine whether a proof is explanatory and offer 
examples which count as explanatory proofs according to 
Steiner’s definition and yet they involve objects that lack 
characterizing properties. Resnik and Kushner (1987), too, 
reject Steiner’s objective characterization and offer instead 
a distinction that is relative to the new episteme one gains 
from the proof: the more why-questions a proof can help to 
answer, the more explanatory it is. Weber and Verhoeven 
(2002) agree with Resnik and Kushner’s rejection of Stein-
er’s criteria but articulate the importance of Steiner’s theory 
and further offer a way to “fix” it by exploring the knowl-
edge a person gains from being aware of and acts upon what 
the person conceives as a “characterizing property”.

This debate is intrinsically linked to a general question 
that had occupied philosophers of the 16th-17th century; 
namely, is mathematics a “scientific” domain? Adhering to 
the Aristotelian’s definition of “scientific” as “causal”, some 
philosophers of the Renaissance argued that mathematics is 
not a perfect science because mathematical proofs—proofs 
by contradiction, for example—are concerned with mere 
certainty rather than causality (Mancosu, 1996). They fur-
ther point to logically equivalent statements in mathemat-
ics to support their argument that mathematics implications 
are not scientific in the Aristotelian’s sense. If mathemat-
ics were causal, they posit, then the dual implications in “a 
if and only if b” would mean a causes b and b causes a, 
which implies that a causes itself—an absurdity.2 As I will 
discuss in Sect. 5, certain students’ mathematical behavior 
in relation to proofs can, hypothetically, be accounted for in 
terms of the need for causality, which is reminiscent of the 
intellectual perturbation that had instigated this philosophi-
cal debate.

Mathematical explanation, thus, concerns the nature of 
mathematical understanding involved in proving. Inglis 
and Mejia-Ramos (2019) used Wilkenfeld’s (2014) notion 
of functional explanation—“things that in an appropriate 
manner and at an appropriate time generate understand-
ing” (p. 56369)—to show that philosophical accounts of 

2  Ironically, this claim by the Renaissance philosophers is proof-by-
contradiction based, which they rejected as scientific in the first place.
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mathematical explanation are consequences of Wilken-
feld’s functional account and human cognitive architecture. 
Understanding, however, is achieved through questions. As 
Resnik and Kushner (1987) indicate, the more why-ques-
tions a proof can help to answer, the more explanatory it is 
for the person who asks the questions.

Epistemological justification, like mathematical explana-
tion, concerns proof understanding, but it is about a specific 
kind of understanding that provides an answer to a specific 
kind of question: why and how a piece of knowledge came to 
be? A proof can be viewed as explanatory by an individual 
and yet he or she might seek to find out what intellectu-
ally necessitated the idea underlying it—its epistemological 
justification, that is. For example, learners who have devel-
oped the habit of seeking epistemological justifications 
often are not satisfied when their successful construction of 
a proof was aided by a hint. They would seek to find out 
what necessitated the invention of the intermediate step(s) 
offered by the hint. Likewise, these learners, upon obtaining 
or presented with a counterexample to a particular asser-
tion, would seek to understand the foundational reason for 
the existence of the counterexample—whereby seeking to 
ensure that the counterexample was not the result of a ran-
dom successful search, but a necessary outcome from the 
structure at hand. Other learners avoid proof by contradic-
tion—some outright reject it (i.e., constructivist mathemati-
cians; see, for example, Bishop, 1967)—on the account that 
while this method of proof provides certainty it does not 
demonstrate cause.

Epistemological justification differs from mathemati-
cal explanation in another aspect. Namely, while the lat-
ter concerns mathematical proofs and only mathematical 
proofs, epistemological justification concerns mathematical 
knowledge broadly: why and how a piece of mathematical 
knowledge—an axiom, definition, theorem, proof, counter-
example, or abstract structure—was conceived.

3  Theoretical framework

This section outlines a theoretical framework for episte-
mological justification. The framework resides within the 
DNR-based instruction framework (DNR stands for the 
framework’s three foundational principles: duality, neces-
sity, and repeated reasoning). DNR was discussed in length 
elsewhere (e.g., Harel, 2008a, b, c) and so it will not be elab-
orated upon here. However, to make the paper somehow 
self-contained within its page limit, this section will provide 
a skeletal description of certain elements of DNR, focus-
ing on those that underly the definition of epistemological 
justification and the observational criteria for its occurrence. 
The elements are:

(a)	 A subset of DNR premises underlying knowledge and 
knowing, as well as their linkage and subjective nature.

(b)	 Definition of epistemological justification and its ante-
cedent concept of intellectual need.

(c)	 A refined taxonomy of intellectual need.
(d)	 Observational criteria for epistemological justification.

3.1  Knowledge and knowing: their linkage and 
subjectivity

DNR is based on eight premises, seven of which were 
discerned from or based on known theories. Four of these 
premises are highly relevant to epistemological justifica-
tion. The first premise, called the knowledge of mathematics 
premise was theorized in Harel (2008a). It states that knowl-
edge of mathematics consists of two related but different 
categories of knowledge: all the ways of understanding 
and ways of thinking—terms to be described shortly—that 
have been institutionalized throughout history. The second 
premise, called the knowing premise is after Piaget (1985). 
It states that knowing is a developmental process that pro-
ceeds through a continual tension between assimilation and 
accommodation, directed toward a (temporary) equilibrium. 
The third premise, called the knowledge-knowing linkage, 
too, is after Piaget, and is consistent with Brousseau’s (1997) 
notion of fundamental situation. It states that any piece of 
knowledge humans know is an outcome of their resolu-
tion of a problematic situation, conceived as such by them. 
Lastly, the fourth premise, called the subjectivity premise 
is also Piagetian. It states that any observations humans 
claim to have made are due to what their mental structure 
attributes to their environment. This premise is the basis 
for rejecting the objective ontological dichotomy between 
“proof that proves” and “proof that explains” independent 
of the epistemic subject’s conceptualization of the proof.

The constructs way of understanding and way of think-
ing are defined precisely and discussed broadly in various 
publications (e.g., Harel, 2008a; Thompson et al., 2014). 
The following descriptions are sufficient for our discussions 
here. A way of understanding is the specific meaning that 
results from having assimilated to a scheme. A way of think-
ing, on the other hand, is the habitual anticipation of specific 
meanings in reasoning. Examples of ways of understand-
ing include one’s definition of multiplication of a matrix 
Am×n = [A1 . . .An]  by a vector v = [a1 . . . an]

T  as the col-
umn vector 

∑n
i=1aiAi ; one’s meaning of row reduction as 

a mere algorithm for solving system of linear equations 
Ax = b  devoid of understanding why the algorithm pre-
serves the solution set; or one’s meaning of invertible matrix 
is in terms of one of its properties rather than in terms of its 
core definition; or one’s meaning of linear independence as 

1 3



G. Harel

a process—a function that maps vectors to vectors. Also, 
consistent with the knowing premise, the mathematician 
in his attempt to comprehend the proof, situated it into a 
probe about the relation between dimker A and dimrangeA

. The mathematician used his own way of thinking to situ-
ate the proof into his scheme of actions. And in doing so, 
he constructed his own epistemological justification for the 
textbook’s proof. Cognitively and pedagogically, this is fun-
damentally different from comprehending the proof as is, 
without constructing a conceptual basis for its birth.

The indefinite article, “a”, in the latter clause is to high-
light the subjectivity nature of epistemological justifica-
tion—it is not the conceptual basis but a conceptual basis. 
The textbook, Matrices and Matlab (Marcus, 1993), for 
example, in its entire 710 pages does not include the term 
linear transformation. Its entire approach entails a linear 
algebraic way of thinking that takes a matrix as an entity 
constituted by the structure of its entries, rather than as a 
function that preserves linear combination. It is safe to stip-
ulate, therefore, that the late Professor Marcus’s epistemo-
logical justifications for the construction of the content of 
his book was matrix-based. It is equally safe to stipulate that 
Garcia and Horn’s proofs throughout their comprehensive 
book are rooted in sophisticated practices of epistemologi-
cal justification. The two ways of thinking are not mutually 
exclusive, however. Some linear algebra textbooks utilize 
a combination of the two approaches, as does Garcia and 
Horn’s book.

The focus of this section is not to address the relative 
pedagogical advantage of these ways of thinking; rather, the 
goal is to analyze the concept of epistemological justifica-
tion by examining its theoretical basis and criteria for its 
presence. The above discussion was to illustrate the DNR 
notion of way of thinking and provide an initial image for 
the technical definition of epistemological justification.

3.2  Definitions and criteria

The definition of epistemological justification is formulated 
based on the above four premises. By the knowing-knowl-
edge linkage premise, if an individual possesses a piece of 
knowledge K—which by the mathematics premise is either 
a way of understanding or a way of thinking—then, there 

a list of vectors where one of the vectors in the list is not a 
linear combination of the other vectors in the list (an errone-
ous way of understanding resulting from a faulty negation 
of the definition of linear dependence). The term “meaning” 
here is used broadly. One’s justification for an argument or 
a solution of a problem, irrespective if correct or erroneous, 
are also examples of ways of understanding.

A student’s habitual anticipation in reasoning—his or her 
way of thinking, that is—might be procedural, in that it is 
typically restricted to how to obtain a result rather than seek-
ing to know what makes the result the way it is. Likewise, 
the habitual anticipation that, for example, a concept can 
be understood in different ways, and it is advantageous to 
understand a concept in different ways, are instances of way 
of thinking.

Epistemological justification is a way of thinking. To 
illustrate, before introducing its precise definition, con-
sider the following episode. Figure 1 depicts a proof of the 
Rank-Nullity Theorem taken from Garcia and Horn (2017). I 
showed the proof to a mathematician with extensive experi-
ence teaching linear algebra. To ensure subjectivity, I only 
asked the mathematician to comment on the proof. The 
mathematician quietly studied the proof, and then exclaimed 
something to the effect that the proof is “unmotivated” (his 
word). Asked to elaborate, he responded that to understand 
the proof he had to translate it into linear transformations 
terms. Specifically, the mathematician explained that he 
thought of A  as a matrix transformation from Fn  to Fm . 
As a linear transformation, A  has a kernel and a range. 
Assuming dimkerA = r , the question was, continued the 
mathematician to explain, what would dimrangeA  be? 
Bringing to bear his meaning of linearity and linear com-
bination, he mapped the product AW  in the proof onto the 
span (Aw1, . . . , Awn−k), where w1, . . . , wn−k  are the col-
umns of W . The rest of the proof steps he then mapped onto 
the process which shows that Aw1, . . . , Awn−k  form a basis 
for colA , concluding that rankA = n− r . He then added 
that this is how he understood the proof and how he would 
teach it to his students.

We see here two important linear-algebraic ways of 
thinking, one rooted in matrix theory, where a matrix is 
conceived as a conceptual entity, the other in the theory 
of linear transformations, where a matrix is conceived as 

Fig. 1  Proof of the rank-nullity 
theorem
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3.2.3  Need for computation

The need for computation encompasses various aspects 
of quantification and representation. Examples include the 
need to quantify a physical sensation (e.g., speed as quan-
tification of “fastness”, weight of “heaviness”, directional 
derivative of steepness), the need to determine the value of 
an abstract object (e.g., dimension of a subspace, determi-
nant of a matrix, orthogonality of functions), and the need 
to determine the values that satisfies quantitative constraints 
(e.g., solving a system of scalar or differential equations).

3.2.4  Need for communication

The need for communication refers to two acts: formulation 
and formalization. Formulation is the act of transforming 
strings of spoken language into algebraic expressions. For-
malization is the act of externalizing the logical foundations 
underlying a mathematical concept or claim.

3.2.5  Need for structure

The need for structure encompasses a broad range of cases. 
It includes but not limited to instantiations of pattern gener-
alization, reduction of an unfamiliar structure into a famil-
iar one, and reasoning in terms of conceptual entities, what 
Dubinsky and McDonald (2001) call object conception.

In sum, any epistemological justification process is 
anchored in these five categories of intellectual needs, in 
that the latter serve as stimuli for the former.

4  Sources of illustrative events

This paper is theoretical, not empirical. As such, the epi-
sodes accompanying the discussions do not purport to 
serve as supporting empirical evidence; rather, they are 
merely illustrations for the theoretical analyses addressed 
in the paper. The illustrative events were taken from empiri-
cal studies, but these studies were not initially designed to 
investigate epistemological justification; rather, they were 
designed to understand the development of linear-algebraic 
knowledge among students, including the difficulties they 
encounter with foundational concepts and ideas of the 
field (see, for example, Harel, 2017). As often happens in 
research on student learning, certain segments of the data 
analysis invoke ideas and questions not initially intended 
as part of the study at hand. Epistemological justification, a 
notion which took years to form as a construct of the DNR 
framework, emerged as a side product of the analyses of 
these studies.

exists a problematic situation P out of its resolution K was 
constructed. By the knowing premise and the subjectivity 
premise, P is subjective in that it is a perturbational state 
resulting from an individual’s encounter with a situation that 
is incompatible with, or presents a problem that is unsolv-
able by, her or his current knowledge. Such a problematic 
situation P, prior to the construction of K, is referred to as 
an individual’s intellectual need. One might experience P 
without ever constructing K. But if the person elicits K from 
a resolution of Pand is cognizant of how K resolves P, then 
we say that the person has constructed an epistemological 
justification for K. Colloquially, I describe epistemological 
justification as a person’s conception of the reason for the 
birth of a piece of knowledge.

Entailed from these definitions are criteria for the con-
stitutive elements of epistemological justification; they are:

(a)	 A subjective perturbational experience P constituting 
intellectual need for the learner, referred to as the intel-
lectual need condition.

(b)	 Elicitation of K from a resolution of P , referred to as 
the elicitation condition.

(c)	 Awareness by the learner of the elicitation process, 
referred to as the awareness condition.

There remains the question, what constitutes intellectual 
need? Elsewhere (Harel, 2013), I offered a taxonomy of five 
categories of intellectual need: need for certainty, need for 
causality, need for computation, need for communication, 
and need for structure. These needs were discussed exten-
sively in Harel (2013) and will not be elaborated upon here. 
They are briefly outlined next.

3.2.1  Need for certainty

The need for certainty is a human’s desire to know whether 
a conjecture is true—whether it is a fact. Consonant with 
the subjectivity premise, when a person fulfills this need, 
through whatever means deemed appropriate by her or him, 
the person gains new knowledge—the knowledge that the 
conjecture is true or false.

3.2.2  Need for causality

The need for causality is the need to determine the cause of 
a phenomenon. It has roots in the history of the debate dur-
ing the Renaissance about the scientificaness of mathemat-
ics, as was discussed in Sect. 2.
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created by others, for example in the process of reading a 
mathematical text. An individual can successfully compre-
hend the text without ever attempting to discern an episte-
mological justification for it. In fact, current mathematical 
instruction is typically driven toward mere comprehen-
sion rather than construction of epistemological justifica-
tion. Embedded epistemological justification occurs as an 
individual invents a piece of mathematical knowledge, for 
example as one solves a problem or constructs a proof.

5.1  Embedded epistemological justification

This section is structured around four learning-teaching 
events. Each event is labeled by the data source from which 
it was extracted (TE for Teaching Experiment; ETE for 
Exploratory Teaching Experiment; CS for Case Study) and 
the linear algebra concept it addresses.

5.1.1  Existence and uniqueness of solution (TE)

The event discussed below occurred as the teacher partici-
pants were gradually transitioning from questions about the 
validity of the Gauss-Jordan elimination process to theoreti-
cal questions about existence and uniqueness of solutions 
of linear systems. One of the conjectures produced by the 
teacher participants was: If the equations of a consistent n × 
n linear system S are independent, then S has a unique solu-
tion. The proof produced by the group is remarkable in its 
innovative quality, and it offers a glimpse into the conceptual 
transformation that occurred with the participants during the 
teaching experiment. As has been the case throughout the 
teaching experiment, the proofs offered by the participants 
were typically “messy” and mostly generic. In this case, the 
proof was formulated in the context of a general 3 × 3 linear 
system, but it was clear that conceptually the referent was a 
general n × n system. Figure 2 depicts the proof distilled by 
the teacher-researcher from the group’s presentation.

There were three data sources, all in linear algebra: the 
first was a teaching experiment with 12 in-service second-
ary school teachers; the second was conducted in the form 
of an exploratory teaching experiment (Steffe & Thomp-
son, 2000) with a class of 48 undergraduate students; the 
third was a longitudinal case study with a single 11-year-old 
learner.

A lesson in the teaching experiment with teachers typi-
cally lasted 6 h, during which the participants worked col-
laboratively in small groups on linear algebra problems, 
followed by group presentations and whole group discus-
sion. A lesson in the undergraduate teaching experiment 
lasted 110 min, twice a week for 10 weeks. The case study 
was conducted with a single learner, who currently is a six-
grader (11 years old), referred to in this paper by the ini-
tials LB. The study began with LB’s first steps in forming 
his early counting schemes and continued progressively to 
arithmetic, Euclidean geometry, elementary algebra, cal-
culus, and linear algebra, with recreational mathematics in 
between. The linear algebra program started as he entered 
fourth grade with systems of linear equations over the reals, 
gradually covering the usual terrain of matrix-based ele-
mentary linear algebra over the complex field. By the end of 
his fourth grade, LB began studying abstract vector spaces.

5  Learning-teaching epistemological 
justification events

This section discusses the question, what instances of stu-
dents’ mathematical behaviors manifest epistemological 
justifications? These behaviors are illustrated in a series of 
events classified into two categories: discerned epistemo-
logical justification and embedded epistemological justifi-
cation. Discerned epistemological justification occurs when 
an individual discerns, or attempts to discern, an epistemo-
logical justification for a piece of mathematical knowledge 

Fig. 2  Representation of the 
participants’ proof of the theorem 
“If the equations of a consistent 
square system are independent, 
then the system has a unique 
solution.”
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the fact stated in Step 3. This, in turn, led the participants 
to the breakthrough expressed in Steps 4. Following this, 
the participants hastily concluded Step 6, without ensuring 
that their conclusion requires that f is different from zero. 
This matter was resolved through further discussion with 
the teacher-researcher about the relation between the value 
of f and the assumption made in Step 1.

We see here cycles of perturbation-resolution pairs, illus-
trating the presence of the intellectual need and elicitation 
conditions. The data, however, provide no memory of the 
participants’ self-reflection and awareness of the elicitation 
processes.

5.1.2  Cross product (ETE)

The instructor posed the question “Given two noncollinear 
vectorsa = [a1, a2, a3]

Tand b = [b1, b2, b3]
T , find a vector 

that is orthogonal to the plane spanned by them.” Students’ 
responses indicate that the problem constituted an intellec-
tual need for them, in that they were engaged in attempts to 
look for ways to express algebraically conditions for a vec-
tor x = [x1, x2, bx3]

T  to be orthogonal to the plane spanned 
by a and b. This segment of the event, thus, fulfills the intel-
lectual need condition.

At first, the students attempted to express the condition 
that x is orthogonal to the plane by stating that x · z = 0 
for each z that is a linear combination of a and b. With 
further discussion, they came to realize (first visually 
and later algebraically) that it is sufficient (and neces-
sary) to require that the vector x is orthogonal to the non-
collinear vectors a and b; that is, x · a = 0 and x · b = 0
. Finding a vector x satisfying the latter two conditions 
amounted to solving a system of two linear equation with 
the three unknowns, x1, x2, x3. The solution obtained 
wasx = [a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1]

T , which was 
then converted by the teacher-researcher into the symbolic 
determinant defining cross product. This segment of the 
event, thus, fulfills the elicitation condition, for the formula 
for obtaining a vector orthogonal to a plane was elicited by 
means of resolving a problematic situation understood as 
such by the students.

As to the awareness condition, I can only say that the 
instructor conducted a brief discussion reflecting on the 
students’ construction process of cross product. Absent 
from the data of this event is a clearer indication that the 
latter instructional move resulted in the fulfillment of this 
condition.

As was mentioned earlier, epistemological justification 
concerns the origins of mathematical knowledge broadly, 
not only proof. To illustrate this feature, the discussion 
below is divided into two parts. The first part deals with 
the elicitation of the theorem by the participants; the second 
part deals with their construction of its proof.

Elicitation of the theorem.  The investigation conducted 
by the participants was about the relationships among three 
constructs: order relation between the number of equations 
and number of variables in a linear system, dependency 
relation among the system’s equations, and the “size” of 
the system’s solution set (empty, singleton, or infinite). It is 
within this need that the participants elicited the above theo-
rem, first in the form of a conjecture and then as an assertion 
to be proved. In this respect, the theorem as a piece of math-
ematical knowledge was elicited from the problematic situ-
ation characterized by the need for structure—specifically, 
the need to investigate relations among different mathemati-
cal constructs—whereby fulfilling both the intellectual need 
condition and the elicitation condition.

A possible indication for the awareness condition is that 
during the group presentation the participants described 
in detail how they encountered the need to systematically 
list the various possible relations among the above three 
constructs and how they gradually narrowed the list by 
eliminating redundancy and impossibilities into a short 
list of conjectures, among which was the theorem under 
consideration.

Construction of the proof.  The proof of the theorem was 
elicited from a problematic situation constituted by a combi-
nation of intellectual needs: the need for structure, the need 
for formulation and the need for formalization. The need 
for structure stemmed from the participants’ background 
knowledge about homogeneous systems, a topic addressed 
in an earlier stage of the teaching experiment. This need was 
expressed by one of the participants who suggested to con-
sider the homogenous system associated with S (Step 2). 
The need for formalization manifested itself as the group 
struggled to persuade each other of certain arguments. 
Their debate converged into an agreement—to pursue the 
suggestion made by one of the group members to consider 
the previously established fact that if the system does not 
have a unique solution, then it must have a free variable 
(Step 1). This, in turn, raised the need to formulate this idea 
algebraically. Through sustained effort, the participants 
resolved this need by constructing a system analogous to 
the homogeneous system in Step 2. At this stage the partici-
pants encountered a roadblock, which required the interven-
tion of the teacher-researcher, who suggested considering 
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1.	 LB: If an operator T has an ordered basis α  of eigen-
vectors [for an n-dimensional vector space V over a 
field F], then we can easily determine if the operator is 
injective or surjective; and we can as well determine the 
dimensions of the operator’s null space and range.

2.	 I: How can we determine these properties and values of 
the operator from its matrix representation?

3.	 LB: It is because the explicit formula.3 The explicit for-
mula establishes an isomorphism between L(V, V ) and 
Fn . If we want to know something about a linear opera-
tor, the explicit formula allows us to look for it in the 
matrix representation.

4.	 I: can you give an example of how this is done?
5.	 LB: An example is when computing the eigenvalues of 

a linear operator through the characteristic polynomial 
of its matrix representation. Another example is injec-
tivity. T is injective if and only if the matrix representa-
tion [T ]α is invertible.

Upon request, LB proved the injectivity claim. His proof is 
depicted in the left-hand column of Fig. 3. The brevity of the 
proof was due to LB’s level of internalization of the reasons 
underlying the proof’s steps, where he no longer saw a need 
to state them explicitly. For better clarity, the right-hand col-
umn accompanies line by line LB’s proof together with the 
explanations he provided upon request.

At this point, I reminded LB that he didn’t attend to his 
claim concerning eigenvalues—that isomorphism facili-
tates the computation of eigenvalues of an operator. He 
responded something to the effect that this is done by com-
puting the roots of the characteristic polynomial of the oper-
ator’s matrix representation. The following (paraphrased) 
exchange ensued.

6.	 I: Could you explain how this is done?
7.	 LB: We calculate the roots of the characteristic polyno-

mial of the operator with respect to any basis. It doesn’t 
matter which basis because the determinant of a matrix 
representation of an operator is independent of the basis 
with respect to which the operator is represented.

8.	 I: Can you prove this independence?

LB then turned to his notebook and produced a complete 
proof using the explicit formula.

Note that in Line 1 LB’s response attended not only 
to the need for computation—in determining the values 
of quantities associated with the operator (dim (nulT ) 
and dim (rangeT )), but also to the need for structure—in 

3  A term coined by LB and myself for the relation between a linear 
operator T and its matrix representation with respect to a basis α, [T]α, 
expressed through the equation, Tv = α[T]α[v]α, where [v]α is the coor-
dinate vector of v with respect to α

5.1.3  Rank (CS)

About two years after LB was first introduced to the concept 
of rank of a matrix, he was asked about the purpose of the 
concept of rank. The following paraphrased exchange cap-
tures the essence of the dialogue that ensued.

1.	 LB: The rank of a matrix A tells us the maximum num-
ber of linearly independent columns in A.

2.	 I: what questions might the concept of rank answer?
3.	 LB: If we know the rank of a matrix A, we know the 

number of free variables in the associated homogeneous 
system A. So, we know the dimension of its solution set.

4.	 I: How does rank provide this information?
5.	 LB: Because of the fundamental theorem of linear alge-

bra [known also as the rank-nullity theorem], number of 
free variables plus rank equals number of columns.

6.	 I: Do you know the proof of this theorem?

LB answered affirmatively and upon request he provided a 
complete linear-transformation-based proof along the lines 
offered by the mathematician (Sect. 3).

To understand how this dialogue might be interpreted in 
terms of the epistemological justification criteria, it is nec-
essary to analyze it in the context of how LB was initially 
introduced to the concept of rank, two years prior to this 
dialogue. Through repeated experience of solving systems 
of linear equations and representing their solutions in the 
vector form, x = v0 + t1v1 + · · · + tkvk , LB came to recog-
nize, gradually, that k represents the “size” of the solution 
set. In a web of activities involving the conceptual interlinks 
among linear combination, linear independence, basis, and 
dimension, “size” was necessitated and formulated in this 
context as “dimension”. This illustrates how a stimulus for 
an epistemological justification for the concept of rank was 
developed through a resolution of the need for computation, 
leading up to the formal concept of dimension. Considering 
this background, I stipulate that LB’s response indicates the 
fulfilment of the intellectual need condition and the elicita-
tion condition.

Indication for LB’s awareness of the elicitation process 
might be inferred from the fact that LB recognized the 
mathematical reason for why rank determines the “size” of 
the solution set, not just as a fact but as an intellectual need.

5.1.4  Isomorphism (CS)

During a review session on elementary canonical forms, 
LB was asked why we care about diagonalizable operators. 
Below is a synopsis of the dialogue that ensued.
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5.1.5  Summary

This section addressed the question, what instances of stu-
dents’ mathematical behaviors manifest epistemological 
justifications? It offered a series of learning-teaching events 
illustrating the presence or absence of one or more of the 
epistemological justification conditions: the intellectual 
need condition, the elicitation condition, and the awareness 
condition. The events discussed here are of the embedded 
epistemological justification kind, which occur as learners 
engage in the process of inventing a piece of mathematical 
knowledge

5.2  Discerned epistemological justification

5.2.1  Dependence lemma (ETE)

The first lesson of an upper division linear algebra course 
included a review of several theorems from the prerequi-
site course of the same subject. The review included the 
dependence lemma: Supposev1, . . . , vm is a linearly depen-
dent list in a vector space V over a fieldF . Then there exists 
aj ∈ {1, 2, . . . , m} such that (a)vj ∈ span (v1, . . . , vm); (b) 
if thej -th term is removed fromv1, . . . , vm , the span of the 
remaining list equalsspan(v1, . . . , vm). Figure 4 depicts the 
proof the instructor presented in class.

At the end of the lesson, Elana, one of the students in 
the class, approached the instructor to tell him that she did 
not understand the “first part of the proof”. As the instructor 

determining the structure of the operator as injective and 
surjective. I infer that the respective problems associated 
with a linear operator constituted problematic situations 
for LB, whereby his response satisfies the intellectual need 
condition.

LB’s responses in Lines 1–5 suggest that he interpreted 
the question “why we care about diagonalizable operators?” 
in a broader context of (a) the role of isomorphism as a tool 
for transferring questions about a linear operator to ques-
tions about its matrix representation, and (b) the concept of 
matrix representation as a vehicle for the application of this 
role. However, these responses could have been mere state-
ments not supported by actions. His proof, however, gives 
credence to the claim that this is not so—that LB concep-
tualized the role of isomorphism as he claimed it to be, a 
resolution of the need for computation. We might speculate, 
then, that at some point during his learning of this subject 
LB elicited the concept of isomorphism from the need to 
investigate properties associated with linear operators, 
whereby fulfilling the elicitation condition.

The awareness condition is typically harder to document. 
However, in this case not only was LB explicit as to how the 
explicit formula facilitates inference of properties of linear 
operators through their matrix representations, but he was 
also aware of the critical condition (2nd sentence in Line 7) 
for this act to work.

Fig. 3  LB’s proof of the theorem 
“A linear operator is injective 
iff its matrix representation is 
invertible”

 

Fig. 4  The instructor’s proof for 
dependence lemma
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result?” “What is the purpose of a particular definition?” 
“Where was a particular condition used in the proof?” I 
attribute the emergence of such questions to the effort by 
the instructor to model epistemological justification consid-
erations throughout the course. Some questions, however, 
presented a challenge to interpret. In the rest of this section, 
I discuss two episodes where such questions occurred, and 
theorize a possible conceptual basis for them in terms of the 
Aristotelean causality discussed in Sect. 2.

The first episode occurred following the presentation of 
the proof depicted in Fig. 5 to the claim “n + 1vectors inRn

are linearly dependent.”
A group of students working collaboratively said some-

thing to the effect that while they understood the proof’s 
steps, they thought that the proof was incomplete. For—
according to them—the proof is valid in the case that the 
system is homogeneous but, they wondered, “what about 
the case where the system is not homogeneous?”

A similar and equally puzzling question was asked by 
students in the context of the proof the theorem “If eigen-
vectorsv1, . . . , vm of an operatorT correspond to different 
eigenvaluesλ1, . . . , λm , then the eigenvectors are linear 
independent” (Fig.  6). Some students asked something 
to the effect that the proof does not seem to be complete 
because it deals with one kind of polynomials—“what if dif-
ferent polynomials were selected?”, they asked.

At the time of their occurrence these questions, as well 
as explicit requests by some students to avoid the use of 
proofs by contradiction, were puzzling, especially that 
typically they were raised by the better students in class. 
In what follows, I offer a hypothetical conceptual basis for 
this phenomenon in terms of Aristotelian causality. His-
torically, the mathematicians of the Renaissance subscribed 
to this philosophy which equated scientific understanding 
with causality. Some of these mathematicians questioned, 
others rejected, the scientificaness of mathematics based of 
the claim that mathematical proofs are not causal. To sup-
port this claim, they analyzed proofs of Euclid’s proposi-
tions involving the use of auxiliary lines. They argue, for 
example, that the proof of the triangle sum theorem is not 
causal because the theorem’s conclusion that the sum of the 
triangle’s angles is 180° is independent of the auxiliary line 

proceeded to explain the proof, Elana interjected, saying 
something to the effect that she understood the steps of the 
proof, but she still was uncomfortable (her phrase) with 
it. Elana clarified that she was referring to a comment the 
instructor made as he stated the lemma; namely, “no matter 
in what order linearly dependent vectors are listed there will 
always be a vector in the list that is a linear combination of 
its preceding vectors.” This comment puzzled Elana: “what 
order has to do with linear dependence?” she wondered.

Elana was not seeking to better understand the proof as 
a validating statement. Rather, she was puzzled about what 
she saw as an unexpected relation between order and lin-
ear dependence. This type of puzzlement, together with its 
resolution, if constructed, is an instance of epistemologi-
cal justification. The resolution that the instructor offered, 
which seemed to quell Elana’s wonder, was something to 
the effect that the lemma provides an answer to a question 
about construction. Namely, given a set of linearly depen-
dent vectors, how would one extract from the list a vector 
that is a linear combination of the rest? The lemma, the 
instructor explains, can be thought of as an algorithm: list 
the vectors in any order, v1, . . . , vm  and set the equation, 
a1v1 + · · · + amvm = 0 . Now start with the last addend, 
amvm  in the equation. If am �= 0, then the process ends since 
vm  can be extracted from the equation as a linear combina-
tion of its preceding vectors. If am = 0, proceed to the next 
addend, am−1vm−1 , and apply the same process. Continue 
this process recursively. Since, by definition, not all the 
weights a1, . . . , am  are 0 , the process must end; and it ends 
at the largest index j  for which aj �= 0, whereby provid-
ing the desired vj  as a linear combination of its preceding 
vectors in the list. For Elana—if she had internalized the 
instructor’s response—the lemma and its proof would be 
elevated from a mere statement and its validation to an epis-
temological justification that accounts for the emergence of 
the lemma and its proof.

5.2.2  Linear dependence relations (ETE)

Occasionally, students ask questions such as “How did you 
know to partition a matrix in a particular way?” “How did 
you know to choose a particular vector to arrive at a certain 

Fig. 6  Proof of the theorem 
“eigenvectors corresponding to 
different eigenvalues are linear 
independent”

 

Fig. 5  Proof of the claim “n + 
1 vectors in Rn are linearly 
dependent”
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the contribution goes beyond proving in that epistemologi-
cal justification attends to mathematical conceptualization 
broadly, as the discussions of Sect. 5 demonstrate.

The analyses presented in this paper invoke a range of 
questions. Examples include the following:

1.	 What are the relations between epistemological and 
justification and mathematical explanations? The 
historical discussion of the last episodes (Sect.  5.2.2) 
points to one potential relation.

2.	 Are there connections between the development of 
epistemological-justification way of thinking and 
means by which one obtains certainty and seeks expla-
nation? Weber, Lew, and Mejia-Ramos’ (2020) found 
that most mathematics majors do not obtain certainty 
by means of empirical evidence. Might this finding be 
due to the mathematical sophistication of the subjects 
being mathematics majors who likely developed ele-
ments of epistemological-justification way of thinking? 
Theoretically, there is a reason to assume such connec-
tions since epistemological justification necessarily 
involves reflection on one’s process of problem solving 
and proving, which might, in turn, lead one to recognize 
the different spheres of explanatory practice, those that 
belong to mathematics versus those that belong to sci-
ence and in everyday life (see, however, Baker, 2012).

3.	 What instructional practices promote the habit of 
seeking epistemological justification among students? 
Based on my classroom observations, I hypothesize 
that two factors play a significant role in the promo-
tion of this goal. The first is a persistent effort to model 
the application of intellectual need by raising questions 
whose answers lead to new knowledge rather than offer-
ing new knowledge a priori in absence of such ques-
tions. The second factor is the focus on ways of thinking 
broadly as central instructional objectives. To state the 
obvious, epistemological justification cannot be pro-
moted, nor it occurs, in isolation. Rather, it is inter-
woven in a network of other ways of thinking, as the 
following summary illustrates.

Algebraic representation  Recall that a critical stage in the 
construction of the proof by the participants in the Existence 
and Uniqueness event was the recognition by the working 
group of the need to translate the ideas offered by the group 
members into linear-algebraic language. This recognition 
played a crucial role in enabling the participants to assem-
ble the different components of their ideas into a coherent 
whole in the form of valid proof. Experience suggests that 
the way of thinking of converting statements from a spoken 
language into algebraic expressions is not acquired easily. 
In our teaching experiments it receives major attention. This 

drawn at one of the triangle’s vertices. As was mentioned in 
Sect. 2, these mathematicians also rejected proofs by con-
tradiction on the ground that these proofs provide certainty 
but do not demonstrate cause. Mancosu (1996) argues that 
this very need had a profound effect on the development of 
mathematics. Mathematicians such as Cavalieri and Guldin 
explicitly avoided proofs by contradiction to conform to the 
Aristotelian causality position. Descartes, whose work rep-
resents the most important event in 17th -century mathemat-
ics, appealed to constructive proof because they are causal 
and ostensive.

Might the students in the first episode, seeking to identify 
cause, interpreted the homogeneous system as a cause for 
the n + 1 vectors in Rn  to “become” linearly dependent? 
Similarly, might the students in the second episode inter-
preted Lagrange polynomials as a cause for the eigenvec-
tors to “become” linearly independent? Recall that the need 
for causality was theorized as one of the five intellectual 
needs. Based on this hypothetical account then, we might 
speculate that students’ questions in the above two events, 
even if erroneous, fulfill the intellectual need condition for 
epistemological justification. If we assume that epistemo-
logical obstacles encountered by the individual echo those 
that occurred historically (Brousseau 1997), then investiga-
tions of these phenomena might shed light on an obstacle 
with roots in the historical development of mathematics not 
yet addressed in the literature on students’ conceptualization 
of proof.

6  Implications for research and instruction

One might wonder what Weyl meant by his statement in 
the quote appearing in the opening of this paper about the 
mathematicians’ disposition to understand the ideas under-
lying proofs. Weyl was clear that mere acceptance of “a 
mathematical truth by virtue of a complicated chain of for-
mal conclusions and computations” is not the sole desire. 
In essence, the literature on mathematical explanation is an 
effort to articulate the kinds of proof understanding desired 
by mathematicians. Stanford Encyclopedia of Philosophy 
(2009) outlines the historical development of the debate 
on mathematical explanation in philosophy of mathemat-
ics—from Aristotle’s distinction between demonstration of 
“facts” and demonstration of “reasoned facts” to Steiner’s 
(1978) and Kitcher’s (1989) models of mathematical expla-
nation. This and other literature reviews show that such 
understanding is multi-faceted. This paper, being pedagogi-
cal rather than philosophical, does not belong to the genre 
of this literature, but its contribution is highly germane to 
it, in that it pours meaning into a critical aspect of proof 
understanding, production, and appreciation. Furthermore, 
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underlying theoretical basis? (3) What are the observational 
criteria for its occurrence? (4) What instances of students’ 
mathematical behaviors manifest epistemological justifica-
tions? (5) What instructional approaches might facilitate the 
development of epistemological justification? The analyses 
of these questions presented in this paper amount to field-
based hypotheses which might serve as initial foundations 
for follow-up empirical studies.
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