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Abstract
Advanced mathematics is seen as an integral component of secondary teacher preparation, and thus most secondary teacher 
preparation programs require their students to complete an array of advanced mathematics courses. In recent years, though, 
researchers have questioned the utility of proposed connections between advanced and secondary mathematics. It is simply 
not clear in many cases—to researchers, teacher educators, and teachers themselves—exactly how advanced mathematics 
content is related to secondary content. In this paper, we propose using a conceptual analysis—a form of theory in which 
one explicitly describes ways of reasoning about a particular mathematical idea—to address this issue. Specifically, we use 
conceptual analyses for the foundational notions of equivalence and inverse to illustrate how the ways of reasoning needed 
to support productive engagement with tasks in advanced mathematics can mirror and reinforce those that are similarly 
productive in school mathematics. To do so, we propose conceptual analyses for the key concepts of equivalence and inverse 
and show how researchers can use these conceptual analyses to identify connections to school mathematics in advanced 
mathematical tasks that might otherwise be obscured and overlooked. We conclude by suggesting ways in which conceptual 
analyses might be productively used by both teacher educators and future teachers.

Keywords  Advanced mathematics · School mathematics · Teacher preparation · Abstract algebra · Conceptual analysis

1  Introduction

Developing knowledge of advanced mathematics is seen as 
an integral component of the preparation of future second-
ary mathematics teachers. This idea relies on the premise 
that future mathematics teachers benefit from viewing the 
secondary content they will soon be teaching through the 
lens of advanced mathematics. However, while this premise 
might seem imminently reasonable in theory, it has proved 
considerably difficult to implement in practice (e.g., Bukova-
Guzel et al., 2010; Even, 2011; Kondratieva & Winsløw, 
2018). As Wasserman (2017) noted, “a school teacher’s 

knowledge of advanced mathematics, such as abstract alge-
bra, [should] translate to their instructional practice in some 
way. And yet school mathematics teachers should not, in 
fact, end up teaching their students abstract algebra. This 
is a difficult tension to resolve” (p. 81, emphasis added). 
Similarly, some researchers have called into question the 
very utility of certain proposed connections between the two 
domains. Larsen et al. (2018), for example, argued that:

The CBMS (2012) recommendations for the math-
ematical preparation of teachers [include] statements 
like, “it would be quite useful for prospective teach-
ers to see how C can be built as a quotient of R[x]” 
(CBMS, 2012, p. 59). A very reasonable question to 
ask in response to such a statement is “Why?” Abstract 
algebra certainly provides a highly sophisticated per-
spective on a variety of secondary mathematics topics, 
but it simply does not follow that a teacher’s pedagogi-
cal practice would (or even could) benefit from study-
ing abstract algebra. Or perhaps, rather, we should say 
it does not follow simply (p. 74)
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As it pertains to this debate, we recognize that the cur-
rent state of affairs is perhaps not ideal, but we also recog-
nize that it is unlikely to change: future secondary teachers 
will continue to be required to take advanced mathematics 
courses. Operating within these constraints, we believe 
that researchers and teacher educators should focus less 
on the question of whether such courses are the most use-
ful way to prepare teachers and focus more on how these 
courses might be made as useful as possible. Zazkis and 
Marmur (2018) succinctly characterized this pragmatic 
view as follows: “basic knowledge of group theory is in 
fact neither necessary nor obligatory for addressing the 
(more elementary) mathematics. Nevertheless, […] it can 
be helpful” (p. 379). But currently, research that specifi-
cally addresses how advanced mathematics might be made 
more helpful and useful remains relatively scarce. That 
is, it is still “a central question as to how the gap between 
these two kinds of mathematics can be bridged” (Dreher 
et al., 2016, p. 220).

Our central argument here is that one possible way 
advanced mathematics can be made more useful and 
helpful for school mathematics lies not in the surface-
level differences in content but in the common ways of 
reasoning that underlie these differences. We center our 
argument on an empirical analysis of the ways in which 
students in advanced mathematics reason about the foun-
dational, cross-domain ideas of equivalence and inverse. 
We use this empirical analysis to propose that the ways of 
reasoning that support successful completion of tasks in 
advanced mathematics mirror those needed to productively 
engage with school mathematics. (These objectives are 
reflected in the research questions we present in Sect. 2.4). 
Essential to these efforts was our use of conceptual analy-
ses (Thompson, 2002) for the topics of equivalence and 
inverse. Broadly, a conceptual analysis is a theoretical tool 
that provides explicit descriptions of the ways in which 
one might reason about a particular mathematical idea. 
Specifically, we use conceptual analyses for equivalence 
and inverse to analyze task-based clinical interviews in 
abstract algebra; we then use the results of this empirical 
analysis to highlight commonalities in the ways of rea-
soning that are productive in both advanced mathemat-
ics and school mathematics. To conclude the paper, we 
argue that the empirically-grounded analyses we present 
here support a more general, theoretical hypothesis: that 
a conceptual analysis for a key topic can serve as a tool by 
which researchers and teacher educators can potentially 
make advanced mathematical study more useful for future 
teachers and, in doing so, address the ‘difficult tension’ 
between the two.

2 � Literature and theory

2.1 � Types of connections between advanced 
mathematics and school mathematics

Wasserman (2018) identified several ways in which advanced 
mathematics might be relevant for school mathematics, three 
of which we focus on here:

•	 Content-based connections are connections between the 
content of advanced mathematics and school mathematics.

•	 Classroom teaching connections involve content-based 
connections that are related in some way to a specific class-
room situation.

•	 Modeled instruction connections focus on the idea that 
instructors of advanced mathematics can demonstrate 
effective instructional practices.

We agree that if connections of any kind are to be realized, 
then we must be explicit about them. We therefore see a need 
for theoretical tools that researchers and instructional design-
ers can use to explicate connections (as well as illustrations 
of how these tools might be productively used). The primary 
connections we explore in this paper are content-based con-
nections. Specifically, we aim to showcase how a conceptual 
analysis is a potentially valuable theoretical tool because it 
can “establish meaningful connections between seemingly 
disjoint areas of mathematical study” (Wasserman, 2018, p. 
8). Kaiser et al. (2017) indicated that researchers have typically 
approached these kinds of issues in teacher education from two 
perspectives: cognitive and situated. Our work here aligns with 
the cognitive perspective. Cognitive approaches to content-
based connections can be categorized as follows: (1) identi-
fying ways of reasoning that are essential to both advanced 
mathematics and school mathematics (and thus are potentially 
valuable connections that future teachers might make), and 
(2) identifying fundamental ideas in school mathematics that 
establish a basis for learning more advanced mathematics. Our 
efforts in this paper fall into the first category. These kinds of 
connections are viewed as beneficial because they have the 
potential to reinforce pre-service teachers’ understandings 
of mathematical ideas and to increase the coherence in their 
mathematical reasoning. In Sect. 5, we discuss the potential 
for extending the content-based connections in this paper to 
support the realization of classroom teaching connections and 
modeled instruction connections.

2.2 � Using a conceptual analysis to identify 
potentially valuable connections

Consistent with our cognitive perspective, a conceptual 
analysis is form of theory that explicitly describes students’ 
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ways of reasoning about a particular mathematical idea 
(Thompson, 2002). Conceptual analyses, which are under-
pinned by a radical constructivist epistemology (von Gla-
sersfeld, 1995), play an important theoretical role in cogni-
tive studies because they are frameworks that researchers can 
use to generate explanations about what students’ reasoning 
about a particular mathematical idea might entail. Thompson 
(2002) argued that conceptual analyses are essential in this 
respect because these kinds of explanations “[come] from 
theories specific to what is being explained or described” (p. 
193, emphasis added). We interpret this to mean that investi-
gating students’ reasoning about an idea necessarily involves 
a theory that is specific to the idea being reasoned about. Put 
another way, examining content-based connections involving 
equivalence and inverse require conceptual analyses that are 
specific to equivalence and inverse.

Thompson (2002) explicated several different uses for a 
conceptual analysis. We use the conceptual analyses that 
we set forth for equivalence (in Sect. 2.3.1) and inverse (in 
Sect. 2.3.2) in two ways. First, a conceptual analysis can be 
used to describe (build models of) students’ ways of reason-
ing. An implicit aspect of this use is that a conceptual analy-
sis is necessarily grounded in students’ reasoning (instead 
of, for example, being grounded solely in the reasoning of 
experts). We see this as a key point that might help explain 
why many proposed connections between advanced and 
school mathematics remain unrealized by future teachers: 
such connections might account only for the experiences 
and reasoning of experts without also account for those 
of students. Second, a conceptual analysis frames issues 
of coherence in terms of consistency amongst the ways of 
reasoning that are relevant across curricula. From this per-
spective, then, the question of content-based connections 
(i.e., coherence between advanced mathematics and school 
mathematics) becomes: What ways of reasoning in advanced 
mathematics are also relevant in school mathematics? We 
are therefore using conceptual analyses of equivalence and 
inverse to shed light on the issue of connections between 
advanced mathematics and school mathematics because 
(a) as content-specific theories, they are precisely the right 
grain-size for identifying content-based connections, (b) 
they involve clear articulations of specific ways of reason-
ing (thus addressing researchers’ calls for connections to be 
made more explicitly), and (c) they center on students’ con-
ceptual experiences (helping to prevent the positing of spu-
rious connections more likely to be made only by experts).

There are analogous notions to this approach stemming 
from other theoretical perspectives, including didactic analy-
sis (e.g., Breda et al., 2017) and genetic decomposition (e.g., 
Dubinsky, 2002)—see also Sfard’s (1991) analysis of con-
cepts via the operational-structural duality. Generally, we 
believe that these other approaches can be used to achieve 
similar ends, and therefore our uses of the conceptual 

analyses in this paper are intended to showcase more broadly 
the utility of these kinds of theoretical tools (that focus on 
the common reasoning that might underlie surface-level 
differences) for teacher education. In fact, two key insights 
from this larger body of research inform our efforts in this 
paper: (1) explicating mathematical meanings and ways 
of reasoning is essential for the mathematical education 
of teachers, and (2) having teachers develop a conscious 
awareness of these meanings and ways of reasoning enables 
them to “identify and organize the multiple meanings of the 
concept they wish to teach and […] to select those mean-
ings to be studied in the instruction processes” (Breda et al., 
2017, p. 1897). Here we are primarily concerned with the 
first of these themes, though we do consider the second to 
be of commensurate importance (and therefore return to it 
in Sect. 5.3).

Jeschke et al. (2019) observed that “research on teach-
ers’ subject-specific professional knowledge usually has 
been conducted within one subject” (p. 4, emphasis added). 
Accordingly, we observe that conceptual analyses and their 
theoretical correlates have typically been used to investigate 
or strengthen pre- and in-service teachers’ understandings of 
topics in either school mathematics or advanced mathemat-
ics. Research utilizing such approaches across both of these 
domains is less common (there has, however, been some 
recent progress in this regard—see, for example, Wasser-
man, 2018). Though we provide two content-specific con-
ceptual analyses for illustrative purposes, our overarching 
goal in this paper is to illustrate a much more general (and 
far less emphasized) point: conceptual analysis is a theo-
retical tool that can help researchers and teacher educators 
to resolve the tension between advanced mathematics and 
school mathematics by identifying ways of reasoning that 
are productive in both domains.

2.3 � Conceptual analyses for the topics 
of equivalence and inverse

2.3.1 � A conceptual analysis of equivalence

Equivalence is one of the most fundamental notions in math-
ematics and, as such, is pervasive across the K-16 curriculum 
(e.g., Asghari & Tall, 2005; Baiduri, 2015; Berman et al., 
2013; Godfrey & Thomas, 2008). Much of the research on 
equivalence has concentrated on notions of equality and the 
equal sign in K-12 arithmetic and algebra, a key theme of 
which is that it is advantageous for students to interpret the 
equal sign as an expression of sameness (e.g., Knuth et al., 
2006; Molina et al., 2009; Zwetzschler & Prediger, 2013). 
In our previous work (Cook et al., 2022a), we built upon this 
idea by asking: In what ways can two objects be considered 
‘the same’? Our answer to this question included explicating 
two ways of reasoning.
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A common characteristic way of reasoning1 involves 
interpreting or determining the sameness of objects in terms 
of a feature that the objects share. Consider, for example, the 
algebraic expressions2 2(x + 2) + 1 and 2x + 5 . Referring to 
the former as f  and the latter as g , we can say that “ f  and g 
are equivalent [because] f (x) = g(x) for all x in the common 
domain” (Solares & Kieran, 2013, p. 122). This is an exam-
ple of a common characteristic way of reasoning because 
it attributes sameness to the shared numerical value of the 
two expressions. Consistent with the premise that ways of 
reasoning are based in students’ conceptual experiences, 
though, we note that a ‘common characteristic’ is not nec-
essarily fixed and is instead based upon a characteristic that 
the student attends to or infers. The key aspects of this way 
of reasoning are:

•	 Characteristic E1: uses descriptors like same, common, 
similar, invariant, identical, duplicate, or shared (or a 
reasonable synonym), and

•	 Characteristic E2: explains the sameness of the objects 
in question by identifying an attribute that the objects 
themselves share.

A transformational way of reasoning involves interpret-
ing or determining equivalence on the basis that one object 
can be manipulated into the other pursuant to an established 
procedure or set of actions, rules, or properties. For instance, 
one might interpret that 2(x + 2) + 1 and 2x + 5 are equiva-
lent because “one expression can be transformed into the 
other following certain syntactic rules” (Solares & Kieran, 
2013, p. 122). This demonstrates a transformational way 
of reasoning because the equivalence of 2(x + 2) + 1 and 
2x + 5 is framed in terms of manipulating the former into the 

latter using, for example, distributivity and associativity. We 
characterize this way of reasoning as follows:

•	 Characteristic E1: uses descriptors like same, common, 
similar, invariant, identical, duplicate, or shared (or a 
reasonable synonym), and

•	 Characteristic E3: explains the sameness of the objects in 
question by enacting or describing a sequence of actions 
by which one object might be changed into another.

We observe that the common characteristic and transfor-
mational ways of reasoning are complementary and essential 
in school mathematics—see Table 1. For example, in the 
domain of algebraic expressions in the real numbers, a trans-
formational way of reasoning is an essential complement to 
common characteristic on account of “[t]he impossibility of 
testing all possible numerical replacements [for a variable] 
in order to determine equivalence” (Kieran & Saldanha, 
2005, p. 196). Though an overemphasis on transformational 
activity has been rightly identified as a source of students’ 
difficulties (e.g., Pomerantsev & Korosteleva, 2003), it is 
nevertheless essential because it enables students to gen-
erate additional, perhaps more desirable representations of 
a given object. The key is that students should know that 
transformations preserve the equivalence relation in ques-
tion (Knuth et al., 2006)—in the language of our conceptual 
analysis, it is advantageous for students in school mathemat-
ics to know that one’s transformations preserve the common 
characteristic.

2.3.2 � A conceptual analysis of inverse

Similar to equivalence, inverse is a significant idea in 
mathematics and is ubiquitous in the K-16 curriculum. 
Students first encounter it at the primary level as a way to 
reason about the relationships between addition and sub-
traction (e.g., Baroody & Lai, 2007), as well as multipli-
cation and division (e.g., Vergnaud, 2012); the focus then 
shifts to notions of inverse elements, first in the integers 
and real numbers, and then to more advanced algebraic 

Table 1   Ways of reasoning about equivalence in school mathematics

Way of reasoning Prevalent examples in school mathematics

Algebraic expressions Algebraic equations

Common characteristic Expressions “ f  and g are equivalent 
[because] f (x) = g(x) for all x in the com-
mon domain” (Solares & Kieran, 2013, p. 
122)

Equations are equivalent when they share the same solution set (e.g., 
Alibali et al., 2007)

Transformational Expressions are equivalent if one can be 
transformed into the other by using certain 
algebraic rules (e.g., Zwetzschler & Predi-
ger, 2013)

Equations are considered equivalent when one can be manipulated into 
the other according to certain algebraic rules

(e.g., Baiduri, 2015)

1  We first encountered the term common characteristic in a study by 
Hamdan (2006) about the nature of elements that have been grouped 
together in an equivalence class.
2  For simplicity, in this paper the algebraic expressions we refer to 
are polynomial expressions in one variable over the real numbers.
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contexts like functions and complex numbers (e.g., 
McGowen & Tall, 2013). The fact that inverse appears in 
so many different algebraic contexts spurred us to iden-
tify and describe three ways of reasoning that can support 
productive engagement with inverses across algebraic con-
texts (Cook et al., 2022b).

Inverse as an undoing involves viewing inverse in 
terms of “sequences of commands which undo the action 
of other sequences of commands” (Pinto & Schubring, 
2018, p. 898). As this characterization suggests, the focus 
of inverse as an undoing is on the interplay between 
operations. For example, many students first encounter 
inverse in the form of inversion, which involves “viewing 
addition and subtraction as interrelated operations (e.g., 
for 3 + 1 − 1 , immediately recognizing that adding 1 is 
undone by subtracting 1” (Baroody & Lai, 2007, p. 133). 
We operationalize this way of reasoning via the following 
characteristics:

•	 Characteristic U1: inverse is viewed as a relationship 
between operations.

•	 Characteristic U2: the purpose of the operation (or 
sequence of operations) in question is to undo the effect 
of the original operation(s).

Inverse as a manipulated element involves viewing 
inverse in terms of a procedure by which an element is 
changed into its inverse element. Inverse as a manipulated 
element is immediately distinct from inverse as an undo-
ing because its focus is on inverse elements. The procedure 
by which inverse elements are obtained can be viewed as a 
unary operation (Vlassis, 2008) that is applied to a single 
element. In the real numbers, for example, one can find the 
additive inverse by multiplying the original element by − 1 
and the multiplicative inverse (of a nonzero number) by tak-
ing the reciprocal. Inverse as a manipulated element has two 
definitive characteristics:

•	 Characteristic M1: inverse is viewed as an element.
•	 Characteristic M2: the inverse element is associated with 

a procedure by which a given element is manipulated into 
its inverse element.

Inverse as a coordination of the binary operation, iden-
tity, and set involves conceiving of inverse as a relationship 
between two elements such that the combination of those 
two elements via the relevant binary operation yields the 
identity element. There are three core characteristics of 
inverse as a coordination:

•	 Characteristic C1: inverse is viewed as a relationship 
between a pair of elements and their interaction via the 
relevant binary operation.

•	 Characteristic C2: involves an awareness that the two 
elements in question combine via the binary operation 
to produce the relevant identity element.

•	 Characteristic C3: attends in some way to the fact that an 
element an its inverse must both be elements of the set in 
question.

Wasserman (2016) argued that “[u]nderstanding the gen-
eral notion of inverse, where additive, multiplicative, func-
tional, etc., inverse become examples of the same concept, 
unified within some algebraic structure, can help provide a 
sense of consistency for teachers in developing and discuss-
ing these ideas” (p. 36). We propose that the ‘general notion’ 
of inverse involves being able to move flexibly between each 
of the aforementioned ways of reasoning as needed. We cau-
tion, however, that an overreliance on any particular way of 
reasoning can be problematic. For example, an overreliance 
on inverse as an undoing can lead to the belief that inverses 
always exist, and an overreliance on inverse as a manipu-
lated element (and procedures such as ‘switch-and-solve’) 
can lead to compartmentalized and incoherent ways of rea-
soning about inverse (e.g., Kontorovich & Zazkis, 2017). It 
is the flexible interchange between all three that supports 
productive reasoning with inverses in school algebra con-
texts (Table 2).

2.4 � Research questions

The conceptual analyses of equivalence and inverse set 
forth above provide a theoretical framing for the empirical 
analysis on which we base our arguments in this paper. We 
advance our argument by answering the following research 
questions:

•	 RQ1: What ways of reasoning about the foundational 
topics of equivalence and inverse support the successful 
completion of tasks in advanced mathematics?

•	 RQ2: How do these ways of reasoning about equivalence 
and inverse in advanced mathematics relate to those that 
support productive engagement with the same topics in 
school mathematics?

3 � Methods

The episodes in this paper occur in the context of task-based 
clinical interviews (Clement, 2000), a methodology that, in 
accordance with one of the uses of a conceptual analysis, 
aims to develop models of students’ intuitive mathematical 
reasoning. Researchers construct these models by observ-
ing students’ mathematical behaviors and then proposing 
descriptions of students’ ways of reasoning that might plau-
sibly underlie and explain these behaviors. We observe that 
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the uses of a conceptual analysis (as a theoretical frame-
work) and task-based clinical interviews (as a methodology) 
align well with each other because they provide comple-
mentary tools (one theoretical and one empirical) by which 
researchers can develop clearer images (models) of students’ 
ways of reasoning. For example, the conceptual analyses for 
equivalence and inverse that we proposed above—in addi-
tion to describing key ways of reasoning in school math-
ematics—provided the primary analytical framework that 
guided the development of these models.

3.1 � Data collection and task design

The participants in these episodes—referred to by the 
pseudonyms Isaac (Episode 1) and Meagan and Josh (Epi-
sode 2)—were enrolled at a large research university in 
the United States. At this university, abstract algebra is a 
required course for pre-service mathematics teachers. All 
were selected for participation because (a) their mathemati-
cal experience indicated to us that they would be able to 
engage productively with tasks in abstract algebra, and (b) 
we anticipated that they would be able to articulate their 
thinking clearly and without reservation as they engaged 
with potentially challenging mathematical tasks. A typi-
cal session lasted approximately 90 min and involved a 
researcher (the second author for Episode 1, the first author 

for Episode 2) administering a series of tasks (here we focus 
on the tasks listed in Table 3). Upon the students’ comple-
tion of a task, the researcher would (1) ask the student to 
explain and justify their general approach, and then (2) ask 
follow-up questions to clarify some aspect of the students’ 
mathematical activity or test an emerging conjecture the 
researcher had developed about the students’ underlying 
ways of reasoning. Isaac’s activity in Episode 1 spans one 
session; Episode 2 includes excerpts from 3 sessions. Each 
session was recorded with an iPad application that created 
videos of students’ writing with synchronized audio.

We designed the tasks featured in these episodes—which 
involve attending to multiple, equivalent representations in 
the domain of a proposed correspondence (Episode 1) and 
proving results about the structure of a finite field (Episode 
2)—to reflect fundamental considerations in abstract alge-
bra and elicit reasoning about the topics of equivalence and 
inverse. The tasks in Episode 1 were drawn from an analysis 
of examples and non-examples of functions given in abstract 
algebra textbooks (Uscanga & Cook, 2022). The tasks in 
Episode 2 were informed by researchers’ observations that 
inverses can emerge in students’ activity as they prove basic 
conjectures about a finite algebraic structure (Larsen, 2013). 
These tasks are particularly useful for our purposes here 
because they involve notions—multiple representations 
in the domain and finite fields—that have little (if any) 

Table 2   Ways of reasoning about inverse in school mathematics

Way of reasoning Examples from school mathematics

Multiplicative inverses in the real numbers Compositional inverse of a function

Inverse as an undoing An inverse “will return you to the starting point. Let’s 
say I pushed the wrong button on the calculator and 
multiplied by 5. For correcting this, I need to divide 
by 5” (Kontorovich & Zazkis, 2017, p. 31)

An inverse function is “the operation needed to go 
in the reverse direction, from the final state to the 
initial state” (Vergnaud, 2012, p. 441)

Inverse as a manipulated element The multiplicative inverse of any nonzero real num-
ber can be found by taking its reciprocal (e.g., Clay 
et al., 2012)

An inverse function can also be viewed in terms of 
“switching the x and y variables and solving for y ” 
(Pinto & Schubring, 2018, p. 900)

Inverse as a coordination “We remember multiplication if we take a number 
and multiply it by its multiplicative inverse you will 
get the multiplicative identity 1” (Clay et al., 2012, 
p. 769)

The composition of a function with its inverse func-
tion yields the identity function (e.g., Vidakovic, 
1996)

Table 3   Tasks used to elicit reasoning about equivalence and inverse

a Here, [a]4 represents the congruence class (modulo 4) that contains the integer a . It can be represented in multiple ways (e.g., [0]4, [4]4, and [8]4 
are all different representations of the same congruence class)

Episode 1 Episode 2

Task 1.1: Is � ∶ ℚ → ℤ given by �
(

a
b

)

= a + b a function? Explain

Task 1.2: Is g ∶ ℚ → ℚ given by g
(

a

b

)

=
a+b

b
 a function? Explain

Task 1.3: Is f ∶ ℤ4 → ℤ given by f
(

[a]4
)

= a a function? Explaina 

Task 2.1: Prove: for all a, b ∈ ℤ3[i] , all equations of the form a + x = b 
have a unique solution in ℤ3[i]

Task 2.2: Prove: for all a ∈ ℤ3[i]�{0} and b ∈ ℤ3[i] , all equations of the 
form ax = b have a unique solution in ℤ3[i]
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relevance in school algebra, thus embodying the ‘difficult 
tension’ between abstract algebra and school algebra.

3.2 � Data analysis

Our primary goal of data analysis was consistent with the 
first use of conceptual analyses given in Sect. 2.2: to create 
viable models of students’ reasoning; we considered a model 
‘viable’ insofar as it offered a plausible frame of reference 
for our observations of students’ mathematical behaviors. 
To prepare for data analysis, all sessions were transcribed in 
full. We then created enhanced transcripts that incorporated 
images of students’ written work. We then used our concep-
tual analyses in conjunction with Clement’s (2000) stages for 
developing models of students’ reasoning—see Table 4 for 
an illustration of the prominent role that our conceptual anal-
yses played in this process. This process typically resulted 
in modifying the emerging model of the students’ reasoning 
(e.g., by revising a hypothesis); it was iterated until stable, 
viable models of the students’ ways of reasoning emerged.

4 � Results

In this section, we analyze students’ reasoning in response to 
abstract algebra tasks, which included, for example, exam-
ining a proposed correspondence with domain ℤn (Episode 
1), and proving results about the structure of ℤ3[i] , the finite 
field of order 9 (Episode 2). Our objective is to identify the 
students’ ways of reasoning about equivalence and inverse 
(informing RQ1) in order to examine their potential rele-
vance to the ways of reasoning that are productive in school 
mathematics, such as those in Table 1 (informing RQ2).

4.1 � Episode 1—reasoning about correspondences 
in abstract algebra

In this episode, we focus on the mathematical activity of 
Isaac as he engaged with function-based tasks in abstract 
algebra (Tasks 1.1–1.3). In response to Task 1.1, Isaac 
argued at first that � is a function, explaining that “there’s 
not an element when we input it into the function that maps 
to two different outputs.” He based this claim on specific 
input–output pairs he computed. For example, he stated that 
“1/3 would map to 4” and “ � of 2/3 would go to 2 + 3, and 
you have 5. […] That works out, you have one element and 
it goes to another element.” Eventually the interviewer, not-
ing that all of the rational numbers Isaac was using were in 
reduced form, prompted him to consider unreduced rational 
numbers (for which gcd(a, b) > 1 ). He noted that “2/3, well, 
that’s the same thing as 4/6, but they would map to a differ-
ent element. […] And so now you no longer have a func-
tion […] because 2/3 and 4/6 are equivalent.” In response 

to Task 1.2, Isaac, who correctly identified this proposed 
correspondence as a function, described his approach as fol-
lows (see Fig. 1):

Isaac: I would maybe see if, like, some sort of element 
would map to two different elements, right? And in this case, 
I would probably pick an element that is, quote unquote, 
equivalent. So I could probably pick like 1/3 or something. I 
guess I would maybe do it like g(1∕3) […] which is 4/3. And 
then see if I can find something that’s like kind of equivalent 
to 1/3. So maybe like g(2∕6) […] which would be 8/6. […] 
4/3 is the same thing as 8/6. And you would ultimately get 
some sort of function.

We note that Isaac’s (correct) identification of the pro-
posed correspondences in Tasks 1.1 and 1.2 as a nonfunc-
tion and function (respectively) hinged on his attention to 
equivalence in the domain. Isaac even pointed this out him-
self: “in my first example, I didn’t even consider 2/3 and 4/6, 
you know, and stuff like that. And so, and then the second 
example, I was a little bit more careful. I was like, OK, well, 
there’s some elements that are equivalent to each other.”

Isaac explained that he approached Task 1.3 in a similar 
way to Tasks 1.1–1.2: “in example 1 and example 2 how I 
was, you know, picking fractions that ultimately looked dif-
ferent but represented the same thing, or the same property 
or sameness, or whatever. I wanted to do the exact same 
thing in this case.” That is, attending to the fact that ele-
ments in ℤ4 (the domain) could be represented in differ-
ent, equivalent ways, he set out to identify such equivalent 
representations in the domain and see if their image in the 
codomain was the same. He observed, for example, that even 
though [0]4 = [4]4 , the images of [0]4 and [4]4 with respect 
to the correspondence f  are not the same (the integers 0 and 
4, respectively—see Fig. 2):

Isaac	� You have 0, 4, 8 or whatever. They’re all the 
exact same thing in ℤ4 . But in my outputs, I’m 
getting different values, you know, and that is 
a no–no, in this case.

Interviewer	� OK.

Isaac	� So that would be my reasoning to say like, oh, 
like, bam, no, not a function.

Accordingly, we propose that Isaac’s activity with these 
functions tasks in abstract algebra was supported by two 
distinct (yet complementary) ways of reasoning about 
equivalence. When first asked what it meant for elements 
of ℚ to be equivalent, Isaac framed his response in terms 
of a question: “do they have some sort of property in com-
mon?” He elaborated that, with respect to “equivalence, 
we’re just looking at this sort of the same property between 
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whatever we’re looking at, you know, they might not look 
the same but they have the same property”. For Isaac, the 
“same property” in Tasks 1–2 was the numerical value of the 
quotient obtained by dividing the numerator by denominator. 
In Task 3, he framed equivalence in a similar way, suggest-
ing a coherent, cross-cutting view of equivalence: “I’m just 
seeing if there’s one property that they share in common. 
And if they have that property in common, then I would 
say that they’re equivalent.” For instance, referring to his 
written work (see Fig. 2), Isaac explained: “so like 0, and 4, 
and 8, they’re all evenly divided by four.” Put another way, 
each of these integers has the same remainder—zero—upon 
division by 4. These excerpts of Isaac’s activity indicate a 
common characteristic way of reasoning about equivalence 
because Isaac identified collections of elements as the same 
(rational numbers in Tasks 1.1–1.2 and integers in Task 1.3; 
characteristic E1) and attributed this sameness to a common 
property shared by the rational numbers in each of these 
collections (the quotient in Tasks 1.1–1.2 and the remainder 
upon division by 4 in Task 1.3; characteristic E2).

Isaac also demonstrated strong notions of equivalence in 
terms of “simplifying” or “reducing” elements. For exam-
ple, when explaining how to identify other elements that are 
equivalent to a particular element (i.e., populate an equiva-
lence class), he said, “take a fraction and you see if you can 

simplify all the way down.” He noted, for example, that 4/3, 
8/6, and 12/9 are equivalent because “they can all reduce 
to 4/3.” Additionally, he explained that, with respect to 1/3 
and 2/6, “ultimately I could reduce one or think of them 
as the same thing.” Isaac reduced these fractions using the 
canonical procedure of multiplying both the numerator and 
denominator by the same nonzero factor. The fractions that 
resulted, he noted, “all have this sameness property that I can 
reduce all of them to one of those fractions.” Isaac exhib-
ited a similar strategy when engaging with integers that are 
equivalent modulo 4: 0 in ℤ4 is the same as 4 in ℤ4 , right? 
[…] You know, I’m just, it’s kind of like those fractions. We 
kind of reduce them down.” The reduction procedure that 
Isaac employed in ℤ4 involved repeated subtraction (or addi-
tion) of the modulus 4. We therefore claim that Isaac is also 
demonstrating a transformational way of reasoning about 
equivalence because he was interpreting the sameness of 
elements (rational numbers in Tasks 1.1–1.2 and integers in 
Task 1.3; characteristic E1) in terms of a procedure by which 
one element might be manipulated into another (dividing 
the numerator and denominator by the same factor in Tasks 
1.1–1.2 and repeatedly subtracting/adding the modulus in 
Task 1.3; characteristic E3).

We therefore propose that the common characteristic 
and transformational ways of reasoning about equivalence 
were central to his successful completion of Tasks 1.1–1.3, 
thus informing RQ 1. Additionally, on the surface, function-
related tasks that hinge on issues of multiple representa-
tions in the domain appear to have very little to do with 
school mathematics. Our analysis, however, highlights that 
the underlying ways of reasoning that support productive 
engagement with such tasks in abstract algebra (in this case, 
common characteristic and transformational) are exactly 
the ways of reasoning needed to reason productively about 
equivalence in school mathematics (see Table  1), thus 
informing RQ 2. Importantly, our use of the conceptual 
analysis of equivalence (in Sect. 2.3.1) is what enabled us 
to identify this relationship between advanced mathematics 
and school mathematics. We discuss this point in greater 
depth in Sect. 5.

4.2 � Episode 2—proving conjectures about a finite 
field in abstract algebra

In this episode, we discuss the reasoning of Josh and Mea-
gan as they explored the algebraic structure of ℤ3[i] , the 
finite field of order 9. We focus here3 on their mathematical 
activity as they attempted to prove that, for all a, b ∈ ℤ3[i] , 
all equations of the form x + a = b have a unique solution 

Fig. 1   Isaac uses equivalence to conclude that g is a function

Fig. 2   Isaac attends to issues caused by multiple representations in ℤ4

3  Other aspects of and episodes from these sessions are discussed in 
Cook and Uscanga (2017).
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in ℤ3[i] . As in Episode 1, we note that this task—exploring 
and proving conjectures about the algebraic structure of the 
finite field of order 9—is one whose connections to second-
ary algebra are initially neither obvious nor guaranteed.

When attempting to identify a solution candidate 
(the ‘existence’ part of the proof), Josh manipulated 
x + (c + di) = (a + bi) to obtain x = (a − c) + (bi − di) . Mea-
gan explained that they subtracted c + di from both sides 
of the equation because “we want to get x by itself.” We 
interpret that the students were demonstrating inverse as an 
undoing because they used operations (subtraction, char-
acteristic U1) to undo the effects of addition (as evidenced 
by their desire to “get x by itself,” characteristic U2). Hop-
ing to encourage Josh and Meagan to focus on the binary 
operation of addition, the researcher asked how they might 
reformulate their use of subtraction in terms of addition. 
Josh amended his initial solution x = (a + bi) − (c + di) 
tox = (a + bi) + (−c − di) . When asked how they could be 
sure that such an element −c − di existed for each element 
c + di inℤ3[i] , Josh responded that “you multiply it by nega-
tive one” and then “simplify it from there.” For example, 
Meagan used her knowledge of modular arithmetic (specifi-
cally that −2 and 1 are congruent modulo 3) to reason that 
the additive inverse “of 2i is −2i , which is just i .” They were 
able to use this procedure to identify an additive inverse ele-
ment for each of the 9 elements in ℤ3[i] (see Fig. 3 for two 
additional examples) . We interpret that Josh and Meagan 
were demonstrating an inverse as a manipulated element 
way of reasoning because they were viewing the inverse 
relationships in this task in terms of inverse elements (char-
acteristic M1) that were obtained by manipulating the origi-
nal element via a procedure (multiplying by − 1 and then 
using modular congruence, characteristic M2).

Later, after attempting to prove the analogous result for 
multiplicative linear equations in ℤ3[i] , they experienced 
some difficulties justifying that each nonzero element has 
a multiplicative inverse. They employed a reciprocal-based 
procedure (which we interpreted as another demonstration 
of inverse as a manipulated element), but they were unable 
to adapt it so that it clearly identified which element of ℤ3[i] 
was the multiplicative inverse of the given element. For 
example, when attempting to find the multiplicative inverse 
of 2, Josh and Meagan took the reciprocal to obtain 1/2 but 

were initially unable to identify an element of ℤ3[i] to which 
this corresponded. Eventually, however, Meagan, using the 
multiplication table for ℤ3[i] as a guide, realized that mul-
tiplying an element by its multiplicative inverse yields 1, 
enabling her to resolve the issue of the multiplicative inverse 
of 2, concluding that 2 is its own inverse because “2 and 2 
equal 1.” She went on to identify several more inverse pairs: 
“ i times 2i , and then, um, 2i times i again, obviously, and 
then, like, 2 + i and 1 + i also equal 1.” Josh, also referenc-
ing the multiplication table, reasoning similarly, referred to 
2 + i and 1 + i as “inverse pairs” and explicitly identified in 
the multiplication table that their product is 1 (see Fig. 4).

Josh and Meagan were able to reason in this way to iden-
tify a multiplicative inverse for all 8 nonzero elements of 
ℤ3[i] . We claim that they were demonstrating an inverse 
as a coordination of the binary operation, identity, and set 
way of reasoning here. We first observe that their attention 
has shifted from manipulating one element into another 
(as they did when enacting inverse as a manipulated ele-
ment) to focusing simultaneously on pairs of elements and 
their image under the binary operation of multiplication. 
As evidence, consider that Josh and Meagan make repeated 
reference to (1) pairs of elements—both implicitly (e.g., 
Meagan’s references to “2 and 2,” “ i times 2i ,” and “ 2 + i 
and 1 + i ”) and explicitly (e.g., Josh’s reference to “inverse 
pairs”)—and (2) their image under multiplication (e.g., 
several mentions of “times” and “multiplying”); this satis-
fied characteristic C1. For characteristic C2, we note that 
Josh and Meagan identify that the image of these pairs of 
elements under multiplication is 1, the multiplicative iden-
tity (e.g., “2 and 2 equal 1”). Lastly, we observe that Josh 
and Meagan have attended to the fact that an element and 
its inverse must be in the same set (characteristic C3) both 
explicitly (in their work above with additive inverses, they 
adapted their manipulation procedure so that they could 
identify which element of ℤ3[i]—the relevant set from which 

Fig. 3   Meagan (left) and Josh (right) demonstrate their procedure to 
manipulate an element of ℤ3[i] into its additive inverse

Fig. 4   Meagan used this multiplication table to identify a multiplica-
tive inverse for each nonzero element in ℤ3[i]
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the original element was taken—was the additive inverse) 
and implicitly (when identifying inverse elements with a 
multiplication table, the only elements in question are the 
elements of ℤ3[i] that are arranged across the top row and 
leftmost column) (Fig. 4).

Our analysis here highlights that Meagan and Josh’s 
efforts were supported by their demonstration of three ways 
of reasoning about inverse: inverse as an undoing, inverse 
as a manipulated element, and inverse as a coordination 
(informing RQ1). Furthermore, even though the relevance 
of this abstract algebra task—which required reasoning 
about the algebraic structure of a modular ring with a com-
plex component—to school algebra is initially unclear, the 
underlying ways of reasoning mirror those needed to engage 
productively with inverse in school algebra contexts (see 
Table 2), affording insight into RQ2. As in Episode 1, the 
empirical analysis in this episode supports our more general, 
theoretical argument: that a conceptual analysis is a tool that 
can be used to highlight potentially valuable connections for 
future teachers to make between advanced mathematics and 
school mathematics.

5 � Discussion

5.1 � Revisiting the research questions

In this paper, we have considered the persistent and well-
documented tension that pervades discussions of productive 
connections between advanced mathematics and secondary 
mathematics instruction; this tension is compounded by 
proposed connections that are vague and underspecified. In 
response, we adopted the pragmatic stance that advanced 
mathematics should be made as useful as possible for future 
teachers, and posed two research questions that aimed to 
illustrate a particular way in which advanced mathematics 
can be made useful for future teachers. Answering our first 
research question involved an empirical analysis of the ways 
of reasoning demonstrated by abstract algebra students in 
task-based interviews. In the case of equivalence, these ways 
of reasoning included common characteristic and transfor-
mational; in the case of inverse, inverse as an undoing, 
inverse as a manipulated element, and inverse as a coordi-
nation. In response to our second research question, we have 
also illustrated that these ways of reasoning about equiva-
lence and inverse in advanced mathematics mirror those 
that support productive reasoning in secondary mathemat-
ics (observe, for example, how the ways of reasoning that 
emerged in Sects. 4.1 and 4.2 mirror those in Tables 1 and 
2, respectively). Our capacity for answering these questions 
hinged on our use of two conceptual analyses (Thompson, 
2002), which focused our attention on the ways of reasoning 
that underlie the surface-level differences in content that are 

in large part responsible for the ‘difficult tension’ between 
advanced mathematics and school mathematics. In this way, 
the specific ways of reasoning that form the foundation of 
our answers to our research questions illustrate a more gen-
eral, theoretical point: that researchers and teacher educa-
tors can potentially use conceptual analyses to overcome the 
difficult tension between advanced mathematics and school 
mathematics and highlight coherent ways of reasoning that 
might otherwise be obscured.

5.2 � Contributions

This paper’s primary contribution to the literature stems 
from addressing an important need: though many research-
ers agree that advanced mathematics should be made as use-
ful as possible for pre-service teachers, there are relatively 
few explicit theoretical tools and illustrations available to 
assist in achieving this goal. In this respect, the episodes fea-
tured here highlight a new insight: a conceptual analysis can 
help identify coherence that might otherwise be obscured 
by some of the obvious differences between advanced and 
secondary mathematics. This contribution addresses two 
notable gaps in the literature. First, as Larsen et al. (2018) 
quotation in the introduction underscores, many attempts 
to identify connections between advanced and secondary 
mathematics have focused on researchers’ and educators’ 
views of connections (in our view, a necessary but insuffi-
cient initial step). Our work here extends one step further by 
grounding the associated ways of reasoning in the concep-
tual experiences of students. Second, we observe that, while 
this general approach is not altogether novel, such studies 
have typically constrained their focus to either advanced 
mathematics or secondary mathematics. Our efforts here 
contribute to a small (but growing) body of literature that 
has used such approaches—which, at their core, examine 
the ways of reasoning that underlie topics and tasks—across 
both domains.

5.3 � Limitations and future directions

We have focused most of our efforts on illustrating poten-
tial benefits of this approach for researchers and teacher 
educators, as researchers and teacher educators must first 
develop clear images of connections between advanced 
mathematics and school mathematics for themselves before 
they can support future teachers in doing so. We view this 
as a critical initial—though by no means final—step toward 
our pragmatic objective to make advanced mathematics as 
useful for teachers as possible. A notable limitation of this 
work, in fact, is that it addresses only mathematical—and not 
pedagogical—knowledge. Thus, it remains to be seen how 
the ideas we have discussed here might influence teachers’ 
practice in various classroom situations and environments 
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(Hoth et al., 2018). Another limitation is that this general 
insight emerged retrospectively, after our analysis of spe-
cific empirical episodes. Ideally, we would like for instruc-
tional designers at the postsecondary level to use this general 
insight prescriptively as a means of instructional design. In 
this section, we address how these points inform and might 
be realized in future research and in teacher education more 
extensively.

Broadly, we believe that conceptual analyses can address 
the tension between advanced and secondary mathematics 
in (at least) three ways, which we relate to the types of con-
nections emphasized by Wasserman (2018) and discussed 
in Sect. 2.1. The first is to use conceptual analyses retro-
spectively (as we have here) to identify content-based con-
nections that otherwise might have been obscured within 
advanced content. The second use involves the potential 
for supporting the development of classroom teaching con-
nections. This could involve using a conceptual analysis 
prescriptively as a means of instructional design. That is, 
researchers and teacher educators might identify and support 
classroom teaching connections by starting with an idea in 
school mathematics and using a conceptual analysis of that 
idea to identify potential ideas in advanced mathematics that 
might reinforce ways of reasoning that are productive in that 
classroom situation (indeed, this is a limitation of our ret-
rospective, empirically-driven approach in this paper). In 
order to partially address this limitation and position future 
research efforts that align with this objective, we provide an 
example of how we envision such a process unfolding for the 
key topic of identity—see Table 5. We further note that our 
analysis here is entirely cognitive (and not situated), and—as 

“both perspectives provide powerful insights into teacher 
professional knowledge” (Kaiser et al., 2017, p. 165)—there 
is still much work to be done to identify how the tools we 
have presented here might influence teachers’ pedagogical 
knowledge and the factors that condition its implementation 
in various classroom situations and environments.

The third use involves a modeled instruction connection. 
Related to the point we raised in the previous paragraph, 
another way for the kinds of connections we propose in 
this paper to positively influence teachers’ instruction is to 
make them explicit to teachers. Though we have primar-
ily focused on how researchers and teacher educators can 
use conceptual analyses, we note that others have suggested 
that it might also be beneficial for teachers themselves to 
become explicitly aware of their own ways of reasoning so 
that they can draw upon more intentionally and strategically 
in their instruction (e.g., Breda et al., 2017). As a concep-
tual analysis is an explicit description of ways of reason-
ing, we suggest that teacher educators can make progress 
toward accomplishing this goal by (1) modeling their own 
use of conceptual analyses in their advanced mathematics 
instruction, and (2) promoting conversations in which future 
teachers reflect on and attend to a conceptual analysis and 
how it was (or might be) used. We thus also call for research-
ers to examine ways in which pre-service teachers might be 
encouraged to reflect upon their own mathematical reason-
ing in order to develop their capacity for identifying and 
leveraging such connections in the future.

Funding  This material is based upon work supported by the National 
Science Foundation under Grant no. 2055590.

Table 5   Stages for identifying potential connections to school mathematics

Stage Specific example

Identify a key idea in secondary mathematics The notion of identity appears in school algebra in many different 
forms, including the real numbers (addition and multiplication), 
functions (composition), and matrices (addition and multiplication)

Develop/use a conceptual analysis to describe ways in which students 
might reason about this idea

Reasoning about the identity as the element that ‘does nothing’ can 
support attention to a more coherent concept of identity across vari-
ous contexts (e.g., Clay et al., 2012)

Identify various situations in advanced mathematics in which these 
ways of reasoning are useful

The notion of ‘doing nothing’ is also productive in advanced math-
ematical settings in which the connections to school mathematics 
are not immediately clear, including (a) the dihedral groups Dn 
in abstract algebra (e.g., Larsen, 2013) and (b) the invertibility of 
matrix transformations in linear algebra (Bagley et al., 2015)

Promote reflection on the similarity of the ways of reasoning across 
domains

Reflecting upon the similarities highlighted by notions of the ‘do 
nothing’ function across matrix transformations in linear algebra 
and polynomial functions in school algebra, a student commented, 
“essentially this [the vector (x, y)] is the vector x, so essentially I did 
end up with […] x as in the, whatever I had here. Yeah, it is identical 
[to the function case]. That’s cool! I’m glad I did that, that’s interest-
ing” (Bagley et al., 2015, p. 44)
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