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Abstract
Early algebraic thinking is the reasoning engaged in by 5- to 12-year-olds as they build meaning for the objects and ways of 
thinking to be encountered within the later study of secondary school algebra. Ever since the 1990s when interest in devel-
oping algebraic thinking in the earlier grades began to emerge, there has been a steady growth in the research devoted to 
exploring ways of fostering this thinking. While in its early days this research had to grapple with the question of what kinds 
of algebraic thinking might be feasible for the younger student, the evolution of the field over the past 30 years has led to an 
ever-increasing range of activity that is truly multi-dimensional. In this survey paper, I have framed the multi-dimensionality 
of early algebraic thinking according to three overarching types, namely, that of analytic thinking, structural thinking, and 
functional thinking, with generalizing being the scarlet thread that runs through all three. The first part of the paper looks 
back to the history of the notion of early algebra and the initial research efforts aimed at characterizing early algebraic 
thinking. The second part delineates the three overarching theoretical dimensions of early algebraic thinking, presents a 
sampling of past empirical findings, and points to some of the more recent work in the field, including the contributions to 
this Special Issue. The paper concludes by highlighting the new directions of this domain of research and offering sugges-
tions for further research.

Keywords  Algebraic thinking · Analytic thinking · Structural thinking · Functional thinking · Generalizing · Primary level 
students

1  Introduction

When the notion of early algebra arose in the 1990s, there 
was no clear idea of what algebra for primary school stu-
dents (i.e., 5- to 12-year-olds) might look like. Early algebra 
was not going to be algebra early (Carraher et al., 2008), but 
what was it going to be? The concept of algebraic thinking 
had already emerged, but even that concept was not clearly 
defined. So, the first part (Sect. 2) of this survey paper takes 
us on a brief historical tour of the context within which early 
algebra and the genesis of the idea of early algebraic thinking 
arose and evolved—a tour that also points to the unfolding of 
its multi-dimensionality. But the heart of the paper is its sec-
ond part (Sects. 3, 4, and 5) in which I have framed the major 
theoretical dimensions of early algebraic thinking according 

to three overarching types, namely, analytic, structural, and 
functional—with generalizing being the scarlet thread that 
runs through all three. Each of Sects. 3, 4, and 5 presents not 
only the theoretical underpinnings of the given dimension, 
but also a sampling of past and more recent work in the field, 
including the contributions to this Special Issue. The paper 
concludes (Sect. 6) by highlighting the new directions of this 
domain of research and offers some suggestions of topics 
where further research is recommended. The approach taken 
in this paper, which involves going to some length in distin-
guishing the three main dimensions of the research on early 
algebraic thinking, as well as describing in some detail the 
most recent work, has necessitated abbreviating what would 
otherwise be a broader selection from a rather large pool of 
past empirical studies. For further information on research 
that is complementary to the synthesis presented in this 
paper, readers are urged to consult additional resources that 
include, for example, the ICME-13 monograph on algebraic 
thinking (Kieran, 2018a), the NCTM compendium chapter 
on algebraic thinking (Stephens et al., 2017a), the ICME-13 
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topical survey on early algebra (Kieran et al., 2016), the vol-
ume on early algebraization (Cai & Knuth, 2011), the chap-
ter on early algebra in the Second Handbook of Research on 
Mathematics Teaching and Learning (Carraher & Schlie-
mann, 2007), and of course the pioneering publication on 
algebra in the early grades (Kaput et al., 2008).

2 � Background

2.1 � School algebra and its evolution 
throughout the years

We need to turn the calendar back to the year 825 for the 
first real text on algebra. Al-Khwarizmi’s work, with its 
emphasis on equality transformations (al-jabr) and balancing 
(al-muqābala), put equation solving at the forefront of alge-
bra. Equations containing letters that represented unknown 
numbers were solved with syntactic methods inspired by Al-
Khwarizmi and later formalized by Viète and Descartes. While 
the roots of algebra can be traced back to even earlier than 
825, it was only in the sixteenth century that algebra joined 
arithmetic and geometry as the third subfield of mathematics.

A century later, polynomial expressions consisting of 
indeterminates with no fixed value, coefficients, and non-
negative integer exponents, and whose generalized terms 
could be manipulated according to the basic operations of 
addition, subtraction, and multiplication, entered explicitly 
into the subfield of algebra. School algebra in its early days 
of the eighteenth century mirrored the contents of this his-
torical period with its overall perspective on algebra as that 
of generalized arithmetic—the generalization of ways of 
operating with numbers, in accordance with the basic prop-
erties of arithmetic and equality (Kilpatrick & Izsák, 2008).

The notion of the mathematical function, which devel-
oped later and within the context of the calculus, was viewed 
as quite distinct from algebra. Its basic concept encompassed 
the idea of how one quantity depended on another quan-
tity that varied—requiring an interpretation of the letters 
used in the function relation that was quite unlike that of 
the unknowns and generalized numbers of generalized-
arithmetic algebra. Functions also brought with them new 
representations, such as graphs and tables of values. When 
functions entered school mathematics curricula, they were 
initially viewed as a minor part of school algebra. With their 
gain in prominence in the 1960s—in the aftermath of the 
Bourbaki and “new math” movements, and heightened fur-
ther in the 1980s with advances in graphing-capable digital 
tools (see, e.g., Fey, 1984; Heid, 1996)—functions came to 
be a full-fledged component of school algebra. The result 
was that there were now two rather different perspectives on 
the objects and techniques of school algebra: a generalized-
arithmetic perspective and a functional perspective. No sin-
gle definition of school algebra is widely adhered to today.

2.2 � Algebraic thinking, the genesis of the idea 
of Early Algebra, and early algebraic thinking

When the teaching and learning of school algebra became an 
important topic in research in the 1980s (see, e.g., Kieran, 
1992), the term algebraic thinking, though hardly defined, 
emerged as well. In fact, one of the recommendations 
emphasized by the international participants at the Research 
Agenda Conference on Algebra held in 1987 at the Univer-
sity of Georgia (Wagner & Kieran, 1989) was that the area 
of algebraic thinking was sorely in need of research atten-
tion. Despite contributions to this area during the decade that 
followed (e.g., Filloy & Rojano, 1989; Kieran, 1989, 1996; 
Lins, 1992; Radford, 2001), it was the idea that some form 
of early algebra needed to be engaged in before secondary 
school that underscored the importance of characterizing 
more explicitly algebraic thinking. However, the growing 
interest in algebraic thinking was not restricted to the young 
learner; the term algebraic thinking was indeed becoming 
central to the whole range of algebra research involving the 
older learner as well (e.g., Zazkis & Liljedahl, 2002). In 
the early 2000s, Radford (2006) posed the question: “What 
is it that makes algebraic thinking distinctive?” By way of 
answer, Mason and his colleagues (Mason et al., 1985) had 
proposed a decade or so earlier that “expressing generality” 
was at the heart of mathematical thinking, and that algebra 
was the language in which generality is expressed. However, 
as will be seen, algebraic thinking would come to be viewed 
more broadly in the years to come.

The research conducted during the latter decades of the 
twentieth century had documented the challenges faced by 
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13- to 15-year-olds when they began their first course of 
algebra at the secondary school level (e.g., Booth, 1984; 
Kieran, 1992; Küchemann, 1981; Sutherland et al., 2001; 
Wagner & Kieran, 1989). Students’ arithmetic ways of 
thinking that had served them well in primary school had 
not prepared them for encountering the alphanumeric 
notation and ways of operating with unknowns and vari-
ables in equations and expressions that were the standard 
fare of secondary school algebra. While arithmetic think-
ing can be quite sophisticated, researchers during those 
years were stressing the consequences of an arithmetic 
thinking that was primarily computational in nature and 
were beginning to question whether a modified type of 
mathematical activity might better prepare primary level 
students for making the eventual transition to the more 
formal study of algebra. But the question that research-
ers in algebra education were asking was what form this 
might take.

Davis (1985, 1995) had been one of the first to consider 
the notion of whether the study of algebra should be spread 
throughout the primary and secondary curricula. Other 
influences were coming from Europe (e.g., Bolea et al., 
1998; Steinweg, 2001), as well as from Russian experimen-
tal schools and from Chinese primary education; however, 
descriptions of these two latter bodies of work were not 
available in English research publications until somewhat 
later. Despite these early influences, the key figure in the 
beginning of the Early Algebra discussions was without 
doubt James Kaput (1998). His leadership was pivotal to 
conceptualizing alternative ways of construing algebra for 
the early grades.

However, it was the year 2001 that was noteworthy for the 
advancing of the idea of Early Algebra. That year witnessed 
for the first time not only a PME Research Forum dedicated 
to the theme of Early Algebra (Ainley, 2001), but also the 
designation of one of the thematic working groups at the 
12th ICMI Study conference on algebra as the Early Algebra 
working group (Lins & Kaput, 2004).

In their chapter describing the activity of that working 
group, Lins and Kaput (2004) emphasized that the idea of 
Early Algebra was framed on understanding the early devel-
opment of algebraic reasoning (as early as 5 or 6 years of 
age) and the larger views of algebra education in which this 
could occur. While no consensual definition of algebra was 
arrived at, working group participants could agree on two 
key characteristics of algebraic thinking:

•	 It involves acts of deliberate generalization and expres-
sion of generality.

•	 It involves, usually as a separate endeavor, reasoning 
based on the forms of syntactically-structured generali-
zations, including syntactically and semantically guided 
actions. (Lins & Kaput, 2004, p. 48)

These two facets are also reflected in the core aspects of  
Kaput’s (2008, p. 11) characterization of algebraic reasoning 
within elementary school mathematics: (i) Algebra as sys-
tematically symbolizing generalizations of regularities and 
constraints, and (ii) Algebra as syntactically guided reason-
ing and actions on generalizations expressed in conventional 
symbol systems.

However, wider definitions of early algebraic thinking 
were being advanced by some researchers. Kieran adapted 
her prior model of algebraic activity (Kieran, 1996) and sug-
gested the following definition of early algebraic thinking 
(Kieran, 2004, p. 149):

Algebraic thinking in the early grades involves the 
development of ways of thinking within activities for 
which the letter-symbolic could be used as a tool, or 
alternatively within activities that could be engaged 
in without using the letter-symbolic at all, for exam-
ple, analyzing relationships among quantities, noticing 
structure, studying change, generalizing, problem solv-
ing, justifying, proving, and predicting.

Carpenter and Franke (2001, p. 156) argued at the 2001 
ICMI Study Conference on algebra that one of the hallmarks 
of algebraic thinking is a “shift from a procedural view to a 
relational view of equality, and that developing a relational 
understanding of the meaning of the equal sign underlies the 
ability to make and represent generalizations.” Other aspects 
of early algebraic thinking that were promoted during the 
years that followed the Conference include, for example, 
Blanton et al.’s (2011) emphasizing that mathematical struc-
ture and relationships are central to the practice of develop-
ing early algebraic thinking, in particular the practices of 
generalizing, representing, justifying, and reasoning with 
mathematical relationships. For Britt and Irwin (2011), 
early algebraic thinking involves coming to use numbers 
and words to express arithmetic transformations in general 
terms—this emphasis in line with Malara and Navarra’s 
(2003) stressing the role of natural language within gener-
alizing. And, Carraher and Schliemann (2007) characterize 
early algebraic thinking in terms of basic forms of reasoning 
that express relations among number or quantities, in par-
ticular, functional relations. Clearly, early algebraic thinking 
is multi-dimensional.

Structuring the multi-dimensionality of early algebraic 
thinking for this paper into a form that both reflects the 
diverse ways in which the research in early algebra has 
evolved over the years and, at the same time, draws out a set 
of overarching dimensions that could connect with the two 
central perspectives on secondary school algebra was indeed 
a daunting task—made even more challenging by the various 
intersections that characterize early algebra research, as well 
as the presence of differing definitions of widely-used terms. 
While several structurings of the main lines of research 
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are indeed possible, the one that was finally opted for is a 
threefold framing of early algebraic thinking that consists 
of the following dimensions: Analytic Thinking, Structural 
Thinking, and Functional Thinking. In that both analytic 
and structural thinking are rooted in the generalized-arith-
metic perspective, where number is the basic mathematical 
object, there is considerable overlap and interaction between 
these two dimensions. While both could be collapsed into 
the single, more general dimension of relational thinking, it 
was considered that separating the two would allow for dis-
tinguishing between, on the one hand, the kind of thinking 
that underpins the transformations and equivalence aspects 
of equations and equation-solving, and on the other hand, 
the thinking that is more aligned with seeing and express-
ing structure and properties within numbers, operations, 
and expressions. And the third dimension of early algebraic 
thinking, namely, the functional, where function is the basic 
mathematical object, reflects its undeniable status in current 
school algebra curricula.

At this point, one would be justified in asking about gen-
eralizing, and where this kind of thinking fits into the above 
framing. In that generalizing is a scarlet thread that runs 
through the three dimensions, treating it separately proved 
unfeasible. Thus, it will be seen to permeate all three. As 
mentioned above, in the 1980s Mason and his colleagues 
(Mason et al., 1985) proposed that generalizing was at the 
heart of algebraic thinking. In their book titled Routes to/
Roots of Algebra, Mason et al. used a variety of activities 
(e.g., patterns, functional situations, and think-of-a-number 
games) to exemplify how 11- to 13-year-olds might be intro-
duced to those facets of algebraic thinking that they referred 
to as expressing, recording, and manipulating generality. In 
a later publication, Mason (1996, p. 65) argued further that 
“there is no single program for learning algebra through the 
expression of generality; it is a matter of awakening and 
sharpening sensitivity to the presence and potential for alge-
braic thinking.” The notion that the recognition and articula-
tion of generality is central to algebraic thinking has struck 
a positive chord with early algebra researchers and is an 
aspect of most studies, no matter which other dimension 
might predominate the researcher’s theoretical framework. 
Thus, the expression of generality is what stitches together 
the three dimensions, albeit with its own particular flavor in 
each of them separately.

3 � Analytic thinking

3.1 � Theorizing related to analytic thinking

For Radford (2014), analyticity is central to algebraic think-
ing—the aspect that distinguishes it from arithmetic think-
ing. In fact, Viète referred to algebra as the Analytic Art. 

Radford characterizes thinking as algebraic when it deals 
with indeterminate quantities in an analytic way, that is, the 
indeterminate quantities (unknowns or variables) are consid-
ered as if they were known and calculations are carried out 
with them in the same way as would be done with known 
numbers, with emphasis on the deductive nature of these 
calculations. Note, however, that for Radford, the use of 
alphanumeric symbolism is neither necessary nor sufficient 
for thinking algebraically. The denotation of indeterminate 
quantities can be signified through recourse to a host of vari-
ous semiotic resources, including natural language, gestures, 
and unconventional signs.

In that Radford (2018) also applies his notion of analytic-
ity to the activity of patterning, analyticity is herein deemed 
to be only a part of the analytic-thinking dimension of early 
algebraic thinking. A return to Al-Khwarizmi, where the 
origins of algebra were based on equality transformations 
and balancing within equation solving, and extended to 
include the later introduction of the equal sign and adop-
tion of the term equivalence, suggests that these additional 
notions be included within our characterization of analytic 
thinking. While notions of equality and equivalence could 
also be said to interweave with aspects of the structural-
thinking dimension of early algebraic thinking, they are 
nevertheless central to activity involving equations and 
equation solving and to the kind of thinking related to trans-
forming equations and their numerical counterparts. Fur-
thermore, and in line with Radford (2014), the dimension of 
analytic thinking does not require alphanumeric signs; such 
thinking can be expressed with natural language, concrete 
materials, unconventional symbols, and even with numbers 
used in a generic manner.

Equivalence, a key component of our analytic-thinking 
dimension of early algebraic thinking, was only defined 
in the twentieth century; but as Asghari (2018) recounts, 
its history as a lived experience goes back to much earlier 
times. Its modern definition is that of a binary relation that 
is reflexive, symmetric, and transitive—the relation “is 
equal to” being its canonical example. Within equation 
solving, the properties of equality include not just reflexiv-
ity, symmetry, and transitivity, but also a property that was 
first formulated by Euclid: “if equals be added to equals, 
the wholes are equal” (and extended to include the other 
basic operations)—properties that serve to maintain the 
top-down equivalence between one equation and the next in 
the equation-solving chain. As Freudenthal (1983) reminds 
us, it is not the numerical value of left and right sides that 
remains the same throughout the equation-solving process, 
but rather the truth-value. Additionally, other properties are 
also involved in maintaining the balance of both sides within 
equation solving—the basic field properties applied to the 
individual expressions of the equations when they too are 
transformed.
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In that equality is defined as a relationship between two 
quantities, or more generally two mathematical expres-
sions—asserting either that the quantities have the same 
value or that the expressions represent the same mathe-
matical object—the equality relation straddles two facets 
of equivalence: the computational and the structural. And, 
so it is that equation solving has both computational and 
structural aspects in its dealing with both indeterminates 
and determinates. However, it is noted that expressions, 
their properties, and their structurings are treated primarily 
in the section on structural thinking—equations and equali-
ties being the main focus of this section on analytic thinking.

In sum, handling unknowns as if they were known, along 
with the thinking related to equivalence transformations and 
the notions of balance and truth-value, serve to characterize 
the overarching dimension of analytic thinking within early 
algebraic thinking. In the following sampling of empirical 
research related to this dimension, the sub-dimensions to 
be treated include: (i) thinking about the equal sign and 
equivalence (Sect. 3.2), (ii) distinguishing sameness from 
substitution (Sect. 3.3), (iii) solving equations in non-let-
ter-symbolic form (Sect. 3.4), and (iv) solving equations in 
letter-symbolic form (Sect. 3.5).

3.2 � Thinking about the equal sign and equivalence

From the 1970s, when research on the ways in which stu-
dents view the equal sign began to emerge (e.g., Behr et al., 
1976; Denmark et al., 1976; Kieran, 1981), and on up to the 
present day, studies have been carried out on the understand-
ings that students come to have regarding the equal sign 
(e.g., Knuth et al., 2006; Lee & Pang, 2021; Rittle-Johnson 
et al., 2011), as well as on the ways in which instruction 
can affect those understandings (e.g., Baroody & Ginsburg, 
1983; Blanton et al., 2018; Carpenter et al., 2003; McNeil, 
2008; Molina & Ambrose, 2006; Sáenz-Ludlow & Wal-
gamuth, 1998).

Briefly, young students’ interpretations of the equal 
sign have been characterized in terms of varying degrees 
of “operational” and “relational” thinking. The operational 
interpretation is one where students view the equal sign 
computationally as a “do something signal” rather than as 
a relational sign that involves comparing expressions and 
equations (Jacobs et al., 2007). Stephens et al. (2013) further 
distinguish the relational view of the equal sign by separat-
ing it into the relational-computational and the relational-
structural. These nuances brought forward by Stephens et al. 
suggest an interaction between students’ arithmetic think-
ing and the beginnings of their algebraic thinking. Related 
to this aspect, Kieran and Martínez-Hernández (2022a, 
2022b) report that computational underpinnings were cen-
tral to young students’ algebraic approaches to transforming 

numerical equalities. In fact, the relation between arithmetic 
and algebraic thinking, and attempts to more finely distin-
guish between the two, were a theme of discussion at the 
recent CERME12 conference with participants at the Work-
ing Group on Algebraic Thinking arguing that this is indeed 
an important area for further research (Hewitt et al., 2022).

Research has shown that the way in which primary 
school students are typically introduced to the equal sign, 
as reflected in the textbooks and teacher guides being used, 
is instrumental to the way in which they view the equal sign 
(e.g., Li et al., 2008). However, with appropriate instruc-
tion, students evolve in their thinking about and manner of 
dealing with the equal sign. For example, Carpenter et al. 
(2003) describe how students learn to establish the truth-
value of numerical equalities such as 56 + 47 = 54 + 49 by 
transforming them as follows: 56 + 47 = (54 + 2) + 47 = 54 
+ (2 + 47) = 54 + 49 (these transformations expressed by the 
young students in their own words).

The kinds of tasks that have generally been used in the 
studies gauging students’ views of the equal sign have 
tended to include (i) true–false equalities where students are 
asked to state their truth-value, (ii) open sentences requiring 
them to determine the value of the unknown, and (iii) the 
request to provide a definition of the equal sign. By means 
of such tasks, Rittle-Johnson et al. (2011), for example, were 
able to assess how U.S. students’ knowledge of mathemati-
cal equivalence develops through the 7- to 12-year-old age 
range. Their results indicated that students evolved in their 
view of equivalence throughout the primary grades and that 
four levels of equivalence knowledge served to capture the 
transitional nature of their growing understandings: rigid 
operational, flexible operational, basic relational, and com-
parative relational. They noted in particular that generat-
ing a non-computational definition of the equal sign was 
much harder than solving or evaluating equations with 
operations on both sides. They also commented that com-
pensation items were easier than items requiring explicit 
thinking about the addition/subtraction property of equality, 
that is, “judging 89 + 44 = 87 + 46 to be true without com-
puting” was easier than “recognizing and justifying that 
if 56 + 85 = 141 is true, 56 + 85 – 7 = 141 – 7 is also true” 
(Rittle-Johnson et al., 2011, p. 97). Lastly, their results sug-
gested that by about the 5th grade most students have begun 
to compare both sides of an equation (i.e., they can accept 
and solve equations with one occurrence of the unknown and 
with operations on both sides).

The majority of the above research studies on students’ 
thinking about numerical equalities and equations-with-
unknowns have focused on left–right equivalence, that 
is, equivalence of the left and right sides of the equality/
equation. In contrast, a focus on top-down equivalence 
was studied by Kieran and Martínez-Hernández (2022a, 
2022b). They investigated students’ thinking and ways of 
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transforming numerical equalities in a manner that fore-
shadows the kind of thinking that would be called upon 
later in dealing with alphanumeric equations and identities. 
Sixth graders were presented with numerical equalities of 
the form a + b = c + d and were asked whether the equality 
was true or false. Initially, they computed the total of both 
sides in order to answer the question. When then asked if 
they could determine the truth-value without calculating, the 
students wondered aloud: “What other way is there?” After 
some instructional intervention, and their ensuing attempt to 
respond to the question by rewriting the initial equality with 
unrelated decompositions on each side, they eventually came 
to generate a third common form for each side by means of 
top-down equivalence. When asked in a general way how 
they would show if an equality was true, without calculat-
ing, and regardless of the numbers involved in the equality 
(Kieran & Martínez-Hernández, 2022b), they responded 
(with the aid of generic examples) that they would “convert 
the numbers in a different way [from the initial equality], 
but that they should be the same [on both sides of the trans-
formed equality].”

3.3 � Distinguishing sameness from substitution

Jones (2009, p. 175) argues for a distinction between same-
ness and substitution in students’ thinking about the equal 
sign, stating that “the sameness view promotes distinguish-
ing statements by truthfulness; the exchanging view pro-
motes distinguishing statements by form in terms of the 
notation they transform,” and that one does not necessar-
ily imply the other. Jones et al. (2012) carried out a study 
with English and Chinese 11- and 12-year-olds and found 
that the notion of substitution (i.e., “swapping”, “changing 
sides”, “exchanging”) is an important part of a sophisticated 
understanding of mathematical equivalence—one that they 
claim Rittle-Johnson et al. (2011) did not take into account. 
Jones et al. (2013) drew further evidence for their argument 
from their research involving the Sum Puzzles digital envi-
ronment: the students were asked to transform 31 + 40 into 
a single result by selecting from among the various tiles 
that were offered, tiles that allowed the students to substitute 
as follows: 31 + 40, 30 + 1 + 40, 1 + 30 + 40, 1 + 70—which 
led to the desired single result of 71. They found that some 
students made substitutions without considering sameness/
truth-value—thereby adding more support for their claim 
of a distinction between sameness and substitution. How-
ever, Kieran and Martínez-Hernández (2022b) suggest that 
the justification for 30 + 1 in the Sum Puzzles being “sub-
stituted” for 31 would seem to be precisely because 30 + 1 
is the “same” as 31. In the Kieran and Martínez-Hernández 
(2022b) study on sameness, students used the language of 
sameness—both visible and invisible—to describe both the 

truth-value of their transformed equalities and the validity 
of the substituted expressions.

Further research on the substitution versus sameness 
perspective on equality was carried out by Donovan et al. 
(2022). These researchers compared the impact of a lesson 
focused on the sameness conception alone with a lesson 
focused on a dual sameness and substitutive conception. 
They found that the 4th and 5th grade participants of the 
Sameness condition were more likely to notice numerical 
relationships across the equal sign than were those in the 
Sameness + Substitutive condition. They suggest further that 
substitution follows logically from the sameness conception 
and that holding a substitutive view without a sameness view 
is potentially problematic.

3.4 � Solving equations in non‑letter‑symbolic form

As noted above, indeterminates can be denoted without 
conventional symbols. In a teaching study by Molina and 
Castro (2021) with 3rd graders, where the indeterminates 
were represented by square brackets, the equations were 
designed in such a way (e.g., 12 + 7 = 7 + [], [] + 4 = 5 + 7) 
that the approach used to solve them, and the way in which 
students justified the truth-value of the solution obtained, 
could indicate whether they had used computational or 
non-computational approaches. As the study progressed, 
the intervention provided feedback that emphasized those 
approaches that were non-computational in nature, which led 
to an evolution in both non-computational solving strategies 
and ways of justifying true equalities.

Material objects—marbles, colored boxes, images of two 
children to indicate each side of an “equation”—were used 
in a study by Lenz (2022) to represent indeterminates and 
determinates (see also the use of varied materials in Cooper 
& Warren, 2011, and in Stephens et al., 2022). In one of the 
tasks of the Lenz study (adapted from Carraher et al., 2008), 
Kindergarten, Grade 2, and Grade 4 students were asked 
how they would determine the number of marbles hidden 
in the green box (see Fig. 1). The students, who had not had 
any prior experience with such tasks, were told that boxes of 
the same color always contain the same number of marbles 
and that each child has the same total number of marbles.

The students at all three grade levels found this a diffi-
cult task (success rates of 10%, 30%, and 50% respectively 
for the Kindergartners, 2nd graders, and 4th graders). Lenz 
points out that the presence of unknown quantities that did 
not have to be determined stimulated those who were suc-
cessful to approach the “equation” in a structural manner 
and thereby solve it. In contrast, the tasks that initially had 
a single box on one side and loose marbles on the other side 
could be approached arithmetically by comparing and were 
considerably easier for these young students to solve.
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Few studies in early algebra have tackled the issue of 
representing and solving equations of the type ax + b = cx + d 
with two occurrences of the unknown, one on each side—a 
kind of equation that requires operating on the unknown as if 
it were known (see Filloy & Rojano, 1989). Radford (2022) 
introduced 3rd graders to such equations by means of the 
following story problem:

Simon and Françoise have some hockey cards. Fran-
çoise has 6 cards and Simon has one card. Their 
mother puts some cards into three envelopes and 
makes sure to put the same number of cards in each 
envelope. She gives one envelope to Françoise and 
two to Simon. Now the two children have the same 
number of hockey cards. How many hockey cards are 
inside each envelope?

In Radford’s study, this story is first represented with 
a Concrete Semiotic System (CSS) comprised of mate-
rial objects, namely, paper envelopes that each contain 
the same unknown number of cards, loose cardboard 
cards, and the equal sign. The Iconic Semiotic System 
(ISS), which is used next, replaces the concrete objects 
with iconic drawings. The 3rd graders seen in Fig.  2 
were faced for the first time with such an “equation” (i.e., 
2x + 1 = 6 + x). They knew from their previous experience 
with equations having just one occurrence of the unknown 
that they had to isolate one envelope; but the present 

situation with envelopes on both sides puzzled them. As 
Radford points out, they had to move from 2x = x + 5 to x 
equals something.

The teacher’s intervention was crucial to their learning 
that not only could an equal number of loose hockey cards 
be removed from both sides, but so too could an equal 
number of envelopes with their unknown number of cards 
within. The transformation that the students had applied 
to the knowns had now been generalized so as to apply to 
the unknowns.

Perhaps just as important from the report of this 
research is Radford’s (2022) observation of how difficult 
it was for the students, when subsequently inventing their 
own story problem and solving it, to put the equality situa-
tion and the equal sign into words. This same phenomenon 
on the difficulty experienced by students in expressing 
with natural language their ideas about relational situa-
tions is found in Blanton et al. (2015a); in fact, students 
were more adept in the Blanton et al. study at using sym-
bols to represent their thinking than they were with natural 
language. Recognizing this difficulty has led researchers 
such as Malara and her colleagues (e.g., Cusi et al., 2011; 
Malara & Navarra, 2003, 2018) to devote considerable 
effort to developing young students’ language use in alge-
braic situations involving indeterminates and the equal 
sign.

3.5 � Solving equations in letter‑symbolic form

In China, first graders are introduced to indeterminates and 
to their representation by means of brackets “()” within the 
activity of equation solving, for example, 1 + () = 3 (Xie 
& Cai, 2022). They are taught to solve such equations 
by means of inversing operations; that is, the subtraction 
3 – 1 = 2 is used for finding the number in the brackets. 
This method continues through to the beginning of the 
5th grade, when the formal method of equation solving 
is introduced. The indeterminate is now referred to as an 
unknown, which is represented by a letter. The balance-
scale model and the addition and multiplication properties 
of equality for solving the equations take center stage. By 
means of a post-test involving both the use of brackets and Fig. 1   Task involving unknowns in Lenz (2022)

Fig. 2   Solving the equa-
tion 2x + 1 = 6 + x in the CSS 
and the ISS (Radford, 2022)
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letters to represent the indeterminates in the equations, Xie 
and Cai found that half the students in their study of 5th 
graders attempted to apply their inversing strategy to the 
equations with letters, not always successfully due in some 
cases to an intermingling of aspects from both solving 
approaches. The inversing strategy clearly interfered with 
most students’ learning of the formal method.

The above research finding from the Xie and Cai study 
raises questions about the transition to the letter-symbolic 
representation of the unknown within the balance-oriented 
approach to equation solving. Many studies with young 
students (e.g., Blanton et al., 2015a; Britt & Irwin, 2011; 
Molina & Ambrose, 2006) have involved representing the 
single occurrence of the unknown with various non-tradi-
tional notations (e.g., empty boxes, blank lines, question 
marks, ink blots, etc.) and using non-formal methods of 
equation solving (e.g., number facts, trial substitutions, 
cover-up method). And, in a number of Asian studies 
with primary level students, unknowns are represented 
by rectangular bars within a pictorial linear model that 
depicts the relations within a problem situation—some-
times referred to as the Singapore model method (e.g., 
Cai et al., 2011; Ng & Lee, 2009). While younger students 
initially solve problems arithmetically by means of this 
model, Cai et al. (2011) argue that by the 5th grade the 
rectangular unit of the pictorial equation is replaced by 
the letter x (yielding equations such as x + x + 100 = 410), 
which Cai et al. claim allows students to treat unknowns as 
if they were knowns. However, the obstacles encountered 
by students in the Xie and Cai (2022) study suggest the 
need for further intervention-related research on the tran-
sitional challenges faced by young students as they move 
from the non-letter-symbolic to the letter-symbolic form of 
equations, especially equations of the type ax + b = cx + d 
with an occurrence of the unknown on each side of the 
equation.

4 � Structural thinking

4.1 � Theorizing related to structural thinking

Mason et al. (2009, p. 10) have characterized structural 
thinking as follows:

Recognising a relationship amongst two or more 
objects is not in itself structural or relational think-
ing, which, for us, involves making use of relation-
ships as instantiations of properties. Awareness of 
the use of properties lies at the core of structural 
thinking. We define structural thinking as a disposi-
tion to use, explicate and connect these properties in 
one’s mathematical thinking.

Similar to this is Carpenter et al.’s (2005, p. 54) defini-
tion of relational thinking:

Relational thinking involves using fundamental prop-
erties of number and operations to transform math-
ematical expressions rather than simply calculating 
an answer following a prescribed sequence of pro-
cedures. This implies some level of awareness of the 
properties.

Kaput (2008) too has described an aspect of the gener-
alized-arithmetic strand of algebra as including the gener-
alizing of arithmetic operations and their properties, and 
reasoning about more general relationships from the struc-
ture of arithmetic. Clearly, relationships and properties are 
at the heart of structural thinking. While these characteri-
zations of structural thinking within early algebraic think-
ing all focus on the numerical, another perspective on this 
dimension is one that was developed by Davydov and his 
colleagues (Davydov et al., 1999). The Davydovian view 
tends to be non-numerical in the early stages of learning 
and is based rather on relationships among quantities—a 
view that also involves the use of literal symbols right 
from the first grade (see also Dougherty, 2003; Schmittau 
& Morris, 2004).

Kieran (2018b) argues that the emphasis on using prop-
erties to transform the structure of numerical and alge-
braic expressions is one that would benefit from taking a 
wider perspective on structure and properties. In line with 
Freudenthal (1983, 1991), who refers to the order struc-
ture, addition structure, multiplicative structure, as well 
as structure according to divisors, structure according to 
multiples, and so on, there are many different but related 
properties associated with these structures—not simply 
the basic properties of arithmetic. Freudenthal also uses 
the phrasing, means of structuring, which puts forward the 
notion of alternative structurings that can be deduced from 
the basic structures. These structurings have properties, 
such as the basic properties of arithmetic, but also a mul-
titude of other properties, such as the successor property, 
the sum of consecutive odd numbers property, the sum of 
even and odd numbers property, and so on.

In sum, the overarching dimension of structural thinking 
is characterized as encompassing the broader, Freudenthal-
related perspective on structure and properties within activ-
ity aimed at seeing relations, properties, and structure within 
numbers, operations, and expressions. Such early algebraic 
thinking is considered to underpin the kind of thinking 
involved in transforming and generating equivalent alge-
braic expressions. In the following sampling of empirical 
studies related to the structural dimension of early alge-
braic thinking, the sub-dimensions that are treated include: 
(i) seeing structure within number and numerical expres-
sions (Sect. 4.2), (ii) representing the structure of numerical 
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operations (Sect. 4.3), (iii) extending the structural dimen-
sion beyond the realm of natural numbers (Sect. 4.4), and 
(iv) extending the structural dimension beyond number 
(Sect. 4.5).

4.2 � Seeing structure within number and numerical 
expressions

Linchevski and Livneh (1999) propose that early-algebra 
instruction be designed to foster the development of struc-
ture sense by providing experience with equivalent structures 
of expressions and with their decomposition and recomposi-
tion. Subramaniam and Banerjee (2011, p. 91) suggest that 
“numerical expressions must be viewed not merely as encod-
ing instructions to carry out a sequence of binary operations, 
but as revealing a particular operational composition of a 
number.” Molina and Ambrose (2008) stress the importance 
of young students’ learning to use both their number and 
operation sense so as to come to view arithmetic expres-
sions from a structural rather than a procedural perspective. 
Malara and Navarra (2018) point to the value of expressing 
structural aspects of number in transparent, non-canonical 
ways, as illustrated by one student’s representing of the sum 
of 5 and its successor as “5 + 6,” whereupon one of her class-
mates suggested that “5 + 5 + 1” was better because it more 
clearly represented the successor property. Kieran (2018b) 
reports how 12-year-olds became aware of various structural 
properties related to multiples and divisors in their decom-
posing of numbers within the “Five Steps to Zero” activ-
ity—properties such as, “within every interval of n numbers, 
there is exactly one number divisible by n.”

Carpenter et al. (2003) elaborate on classroom activity 
that fosters young students’ conjecturing and justifying of 
properties such as, “when you multiply a number by another 
number that is not zero and then divide by the same number, 
you get the number you started with.” Britt and Irwin (2011) 
describe how students noticed and used compensation 
properties in their structural transformations of numerical 
expressions. Similarly, Schifter (2018) illustrates the ways 
in which 3rd graders examined a sequence of numerical 
expressions and came to generalize the property that when 
1 is subtracted from one addend and added to the other, the 
sum is unchanged. In another study with 3rd graders, Isler 
et al. (2013) report on conjecturing and justifying property-
based rules such as “anytime you add three odd numbers, 
you always get an odd number.” An often-referred-to exam-
ple of this kind of structural activity with properties involves 
the use of numbers as quasi-variables (Fujii, 2003; Fujii & 
Stephens, 2001). Fujii introduced young Japanese students to 
algebraic thinking through generalizable numerical expres-
sions, using numbers as if they were variables.

A somewhat more complex example of structural think-
ing leading to generalization is reported in a recent study 

by Coles and Ahn (2022). These researchers describe the 
journal entries of 11- and 12-year-olds on the “1089” task:

Take a 3-digit number (whose first digit is larger than 
the last), reverse the digits and subtract the second 
number from the first. This gives you a 2- or 3-digit 
answer. You reverse the digits of the answer and add 
it to that answer. The result will be 198 or 1089, if you 
have done the subtraction and addition correctly.

After working for a couple of lessons on this 3-digit chal-
lenge, students went on to trying out 4- and 5-digit numbers. 
Coles and Ahn report that, after the students performed the 
algorithm on many numbers, some wrote about relations 
involving operations on unspecified numbers, classifying 
and generalizing their work. The way in which the students 
were able to structure and generalize the underlying rela-
tions between unspecified numbers of the same constrained 
set with both deduction and certainty led Coles and Ahn 
to suggest that there was an element of analyticity in the 
students’ conjecturing and justifying activity that is related 
to Radford’s (2014) theorizing on analyticity. The study by 
Coles and Ahn also points to an area of research that is pres-
ently underdeveloped in early algebra—an area that includes 
the use of numerical “puzzles” that always yield the same 
surprising result (e.g., see also the “think of a number” prob-
lems in Mason et al., 1985). Such puzzles can serve to moti-
vate the introduction of alphanumeric symbols—symbols 
that allow for justifying those surprising outcomes, and for 
proving in early algebra more generally.

4.3 � Representing the structure of numerical 
operations

The use of student-generated representations for express-
ing and proving generalizations about numerical operations 
underpins the research program of Schifter and Russell 
(2022). They delineate three criteria for characterizing a 
representation that supports students’ arguments for a gener-
alization about an operation: (i) the meaning of the operation 
is represented in diagrams, manipulatives, or story contexts; 
(ii) the representation shows how the conclusion of the gen-
eralization follows from the premise; and (iii) the represen-
tation can accommodate a class of instances, for instance, 
all whole numbers. The researchers illustrate with several 
examples drawn from the work of students in grades 1–5 the 
nature of the representations that support the students’ argu-
ments. For instance, with “Brian’s blob,” a drawing that a 
4th grade student used to show the relation between 145–100 
and 145–98, classmates explored Brian’s general claim that 
“the less you subtract, the more you end up with and, in fact, 
the thing you end up with is exactly as much larger as the 
amount less that you subtracted.”
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Other kinds of representations that have been featured 
in various studies on developing students’ structural under-
standing of operations include number lines for exemplify-
ing the inverse relationship of addition and subtraction (War-
ren & Cooper, 2009) and story problems to represent, for 
example, the distributive property (Ding & Li, 2014)—the 
use of such representations usually being complemented by 
the students’ expressing their thinking in natural language 
(e.g., Cooper & Warren, 2011; Empson et al., 2011).

4.4 � Extending the structural dimension 
beyond the realm of natural numbers

Recent research extends the structural-thinking dimension 
of early algebraic thinking by introducing the notion of 
subtractive number (Vlassis & Demonty, 2022) and that of 
reverse fractions (Pearn et al., 2022). Vlassis and Demonty 
investigated the nature of students’ structural thinking about 
negative numbers in a study with 6th graders. The research-
ers aimed to determine the extent to which the students who 
answered the compensation questions correctly also per-
formed the operations with integers better than those who 
answered them incorrectly. They found that students’ ability 
to see a number that was preceded by a subtraction opera-
tion as a transformation involving a unary use of the minus 
sign, which they referred to as a subtractive number, was a 
decisive factor in their success in operating with negative 
numbers. This study by Vlassis and Demonty illustrates how 
the structural dimension of early algebraic thinking can be 
appropriately extended to encompass a numerical domain 
that has not up to now been considered within its purview—
that of negative number.

Another numerical domain that has received scant atten-
tion within the study of early algebraic thinking is that of 
fractions. An earlier venture into this area was carried out by 
Empson et al. (2011), who provided evidence for the notion 
that the kind of structural thinking that is based on the fun-
damental properties of operations also underpins student 
work with fractions (see also the related research with older 
students carried out by Hackenberg & Lee, 2015). More 
recent research by Pearn et al. (2022) focuses on reverse-
fraction tasks, that is, finding an unknown whole when pre-
sented with a quantity representing a fraction of that whole. 
Interviews conducted with 10- to 12-year-olds who had just 
worked with reverse-fraction tasks involving specific num-
bers culminated with the general question: “What if I gave 
you any number of counters, and they represented any frac-
tion of the number of counters I started with, how would you 
work out the number of counters I started with? Can you tell 
me what you would do? Please write it in your own words.” 
The researchers found that the students who were reliant on 
diagrams or additive strategies struggled to solve the more 
generalized task. The successful students recognized the 

multiplicative structure that related the given fraction to its 
unknown whole.

4.5 � Extending the structural dimension 
beyond number

A further extension to the structural-thinking dimension 
is embodied in the work of Tondorf and Prediger (2022), 
whose study focused on the interplay between numeric and 
geometric transformations within equivalence activity by 
5th graders. The researchers explored the manner in which 
the design of successively refined instructional environ-
ments could enhance students’ bridging of the gap between 
description equivalence and transformation equivalence. 
They first defined result equivalence (also referred to in the 
literature as the computational aspect of equivalence); then 
transformation equivalence as the transformation of one 
expression into another (also referred to in the literature as 
the structural aspect of equivalence); and description equiva-
lence as the relating of two symbolic expressions to the same 
situation or geometric figure.

The geometric figure in their study was a drawing of two 
floor plans for the same room, which was accompanied by 
the numerical expressions 8× 12 + 2 × 4 and 26 × 4—these 
two expressions corresponding to the manner in which the 
two floor plans had been structured (see Fig. 3).

Tondorf and Prediger found that the gap between descrip-
tion and transformation equivalence was bridged by the 
students’ direct modification of the structured figure. The 
researchers suggest that this restructuring equivalence 
replaces the more usual approach of comparing each of two 
numerical expressions to possible sub-structurings of a given 
figure so as to ensure that both expressions describe the same 
figure and are thereby equivalent. While existing research 
tends to focus rather on connecting result equivalence with 
transformation equivalence (e.g., Banerjee & Subramaniam, 
2012; Kieran & Martínez-Hernández, 2022a; Schwarzkopf 
et al., 2018), Tondorf and Prediger’s study adds another 
facet to the structural component of equivalence and thereby 

Fig. 3   Geometric floor plans used in the Tondorf and Prediger (2022) 
study
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contributes to expanding the structural-thinking dimension 
of early algebraic thinking.

5 � Functional thinking

5.1 � Theorizing related to functional thinking

Kaput (2008, p.13) states that the functional strand of alge-
braic reasoning can be thought of as “describing systematic 
variation of instances across some domain.” Blanton et al. 
(2011, p. 13) propose that functional thinking “entails gener-
alizing relationships between co-varying quantities, express-
ing those relationships in words, symbols, tables, or graphs, 
and reasoning with these various representations to analyze 
function behavior.”

More broadly, Blanton and Kaput (2011, p. 8) have speci-
fied that the framework underpinning their research on the 
functional thinking found in classroom data is based on the 
three modes of analyzing patterns and relationships outlined 
by Smith (2008): (i) recursive thinking, which involves find-
ing variation within a single sequence of values; (ii) covari-
ational thinking, which is based on analyzing how two quan-
tities vary simultaneously (e.g., “as x increases by one, y 
increases by three”; and (iii) correspondence thinking, which 
is based on identifying a correlation between variables (e.g., 
“y is 3 times x plus 2”).

During the years that followed Blanton and Kaput’s 
(2011) use of the above framework for analyzing functional 
thinking, further theorizing related to functional thinking 
occurred, namely, the development of two more-elaborated 
frameworks that have served as the basis for additional 
research in this area. The first of these frameworks—in fact, 
a learning trajectory to describe first graders’ (6-year-olds) 
thinking about generalizing functional relationships—was 
the outcome of a study carried out by Blanton et al. (2015b). 
During an 8-week sequence of classroom teaching sessions 
and student interviews, with functional task situations such 
as, “the relationship between Keisha’s and Janice’s age if 
Janice is 2 years younger than Keisha” (adapted from Car-
raher et al., 2006), the students were taught how to organize 
their problem data into tables of values. The analysis of the 
levels of sophistication in students’ thinking arising from 
their exploration of functional relationships led to the fol-
lowing learning trajectory:

•	 Level 1: Prestructural;
•	 Level 2: Recursive-Particular;
•	 Level 3: Recursive-General;
•	 Level 4: Functional-Particular;
•	 Level 5: Primitive Functional-General;
•	 Level 6: Emergent Functional-General;
•	 Level 7: Condensed Functional-General; and

•	 Level 8: Function as Object.

The Blanton et al. (2015b) framework was subsequently 
refined by Stephens et al. (2017b) in the light of the lat-
ter’s study on grades 3–5 students’ abilities to generalize 
and represent functional relationships. During the instruc-
tional interventions, the teacher, who followed the students 
as they moved up through the grades, prompted them to 
reason about the recursive, covariational, and correspond-
ence relationships of the patterns being investigated and to 
represent them in multiple ways (i.e., pictures, words, vari-
ables, tables, and graphs). The trajectory of students’ levels 
of thinking that was generated was based on assessment data 
obtained at the beginning of grade 3 and at the end of grades 
3, 4, and 5—one of the two written assessment tasks being 
the “Brady birthday party at school” task: a pattern sequence 
involving desks being joined together with persons sitting on 
opposite sides of each desk. The trajectory developed by Ste-
phens et al. (2017b, p. 153) consists of the following levels:

•	 L0: No Evidence of Functional Thinking;
•	 L1: Variational Thinking (i.e., recursive pattern-particu-

lar);
•	 L2: Variational Thinking (i.e., recursive pattern-general);
•	 L3: Covariation Thinking (i.e., covariation relationship);
•	 L4: Correspondence Thinking (i.e., single instantiation);
•	 L5: Correspondence Thinking (i.e., functional-particu-

lar);
•	 L6: Correspondence Thinking (i.e., functional-basic);
•	 L7/8: Correspondence Thinking (i.e., functional-emer-

gent)—student identifies incomplete function rule in 
variables (L7) or words (L8);

•	 L9/10: Correspondence Thinking (i.e., functional-con-
densed)—student identifies function rule in variables 
(L9) or words (L10).

It is noted that, in contrast to the Blanton et al. (2015b) 
trajectory, the Stephens et  al. (2017b) trajectory makes 
explicit the distinctions among variation, covariation, and 
correspondence. As well, the researchers draw attention to 
the separation within the functional-emergent (L7/8) and the 
functional-condensed L9/10) levels of two sub-levels that 
allowed for distinguishing generalizations expressed with 
variables (L7 and L9), which were easier for the students, 
from generalizations using words (L8 and L10).

In sum, the overarching dimension of functional think-
ing within early algebraic thinking is characterized as seek-
ing, expressing, and reasoning about relationships between 
co-varying quantities (whose initial presentation might be 
in any of several possible formats) in a manner that makes 
explicit in a general way the underlying relation of the 
given function, by means of some type of conventional or 
unconventional representation. For the following sample of 
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empirical studies related to the functional-thinking dimen-
sion of early algebraic thinking, two sub-dimensions are 
featured: (i) generalizing within various representations of 
functional situations (Sect. 5.2), and (ii) generalizing with 
respect to recursive, covariation, and correspondence modes 
of functional thinking (Sect. 5.3).

5.2 � Generalizing within various representations 
of functional situations

Functional situations can be presented to students in a vari-
ety of ways. Many of the function-related studies with pri-
mary school students favor the use of figural or non-figural 
patterns—presented with a brief storyline and represented 
by an accompanying visual of the first three or so items of 
the sequence—and aim at investigating the manner in which 
students come to generalize the pattern in the form of a rule, 
as well as the influence of the particular type of task presen-
tation on students’ thinking.

Based on his extensive work in this area, Rivera (2010) 
argues that visual growing patterns support students’ 
attempts to generalize relationships between two quantities 
in ways that non-figural function tasks do not. However, 
instructional effort is needed to assist students in detecting 
the salient features of such patterns. Warren (2005a, 2005b) 
reports on a study that involved 9- and 10-year-olds working 
with growing patterns, but without accompanying tables of 
values. Students were required to find the general rule for 
these growing patterns directly from the visual geometry of 
the objects. According to Warren, it was very difficult for the 
students to detect a commonality that they could extend to a 
general rule. Ultimately, they benefitted from learning how 
to do a visual analysis of growing patterns (i.e., learning how 
to separate a figural/geometric pattern into its components).

In fact, distinguishing between what is invariant and what 
it is that is varying constitutes a crucial first stage in the 
activity of patterning (Kieran, 2006; Mason, 2005). Accord-
ing to Rivera (2013), and in line with Mason et al. (2009), 
the development of attention to structural aspects within pat-
terning activity involves the recognition of relationships of 
similarity and difference within a structure, followed by the 
perceiving of properties that characterize the objects being 
analyzed, and then by reasoning on the basis of the identi-
fied properties. And for the case of figural patterns, Radford 
(2011, p. 19) argues that:

Generally speaking, to extend a figural sequence, the 
students need to grasp a regularity that involves the 
linkage of two different structures; one spatial and the 
other numerical; from the spatial structure emerges 
a sense of the figures’ spatial position, whereas their 
numerosity emerges from a numerical structure. (ital-
ics in the original)

Radford (2011) describes the nature of the specific teach-
ing interventions that assisted the 7- and 8-year-olds of his 
study to make the links between the numerical and spatial 
structures of the various growing patterns. Papic and Mul-
ligan (2007) too emphasize the importance of teacher inter-
vention in developing within preschool children the ability 
to focus on the structure of repeating patterns—interven-
tion that enabled the children to spontaneously go on to 
extending the growing patterns they were presented with. 
In a study by Moss and London McNab (2011), a combina-
tion of function-machine tasks involving representation with 
tables of values and tile-based growing patterns, with move-
ment back and forth between the two types of functional 
tasks, helped to bring out the salience of the geometric and 
numerical structural integration required to find commonali-
ties and generate functional rules. Wilkie and Clarke (2016) 
report how upper level primary students’ visualization of the 
structure of a geometric pattern in different ways and the use 
of this variety promoted the generalization of the functional 
relationship.

Function machines of the sort used by Moss and London 
McNab (2011)—a device that favors an input–output notion 
of functions (see Doorman et al.’s, 2012, related research 
with older students)—also served as a prelude for a pro-
gramming activity with 6th graders’ involving the visual 
programming language of Scratch (Kilhamn et al., 2022). 
After playing with the cardboard function machines and 
guessing the “secret” rules, the students were given the pro-
gramming task of examining a block of code in Scratch that 
featured the rule y = 2x + 1. They were tasked with finding 
the rule within the programming code and with figuring out 
how the program worked. Further activity involved inspect-
ing a table of values that was produced by a program and 
trying to deduce the rule—a task that the students found to 
be challenging. According to the researchers, learning to 
coordinate the way in which variables are treated in pro-
gramming code (where running a code requires assigning 
starting values to the variables) with the way in which the 
same variables are treated in standard functional usage 
requires specific teacher intervention. In this regard, Benton 
et al. (2017) have noted that the integration of programming 
within mathematics classes does not automatically enhance 
mathematics learning.

In a study involving only the table-of-values representa-
tion (and without an accompanying storyline or pattern) that 
was carried out by Xolocotzin et al. (2022) with 3rd and 5th 
graders, the students were found to experience considerable 
difficulty in reorganizing their arithmetic knowledge in such 
a way that would allow them to reconceptualize numbers as 
instances of an indeterminate quantity and thereby extract 
the general rules for functions and express them in symbolic-
equation format (see Ellis, 2011, for related results involving 
middle schoolers). Nevertheless, a large number of studies 
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have relied on the use of tables of values as a central tool to 
assist in the development of students’ generalizing of func-
tional relations and have pointed to the positive role that this 
kind of representation can play, when used in conjunction 
with stories and other representations in an instructional 
context (e.g., Blanton & Kaput, 2011; Blanton et al., 2015b; 
Brizuela et al., 2015; Carraher et al., 2008).

The use of specific cultural contexts and representations 
was at the heart of a study by Hunter and Miller (2022), 
who investigated the ways in which 6-year-old New Zealand 
students of Pacific descent identified functional structures in 
growing patterns related to contexts that were part of their 
cultural heritage—arranging tables at family feasts, and the 
design of quilts (see Fig. 4).

Interestingly, the use of these familiar contexts led to a 
large variety of ways of structuring the patterns—a variety 
that called upon specific teaching interventions to assist the 
students in reaching the desired higher levels of functional 
thinking. One of the pivotal interventions was pressing the 
students to find far terms—an aspect of the generalizing 
process emphasized in other studies (e.g., Pinto & Cañadas, 
2021; Radford, 2011; Twohill, 2018).

The use of familiar situations was also an important com-
ponent of a study carried out by Goñi-Cervera et al. (2022), 
involving 26 students (aged 6–12 years) who were all diag-
nosed with autism spectrum disorder. The students were 
presented with a story situation and visual display of people 
seated around tables in a restaurant, which was based on the 
function y = 2x + 2, and adapted from Carraher et al. (2008). 
Having been supplied with paper and building blocks for 
exploring the functional situation, the students were found to 
rely strongly on the use of drawings within their generalizing 
attempts, especially for the near items of the pattern. Those 
who were successful at generalizing used a combination of 
drawing and numerical approaches.

The way in which students justify their function-related 
generalizations has also been an area of research interest. 
In fact, Lannin (2005) argues that generalization cannot be 
separated from justification. In his study of 6th graders, one 
of the tasks involved the Theater Seats pattern for which 
students were asked to explain the formula they had gener-
ated. Lannin found that they tended to test their formulas 

by empirical justification, even though they considered this 
an inadequate type of proof. In Blanton et al. (2015b), one 
6-year-old was able to justify her functional rule by relating 
its parts to the specific items of the story context. Rivera 
and Becker (2011) found that the 6th graders of their study 
justified their generalized linear pattern rules in one of four 
ways: (i) using more examples to verify the correctness of a 
formula, (ii) describing a structural similarity in an imagined 
general instance, (iii) demonstrating the validity of a formula 
on various figure items, and (iv) using a numerical expla-
nation that fits the formula to the corresponding generated 
table of values—this last being the most common method of 
justification. Rivera and Becker add that the students were in 
fact constructing and validating their formulas at the same 
time. Ellis (2007) suggests that justifying be introduced early 
on in the generalizing process and not be left until after stu-
dents have arrived at a final generalization.

5.3 � Generalizing with respect to recursive, 
covariation, and correspondence modes 
of functional thinking

Blanton et al. (2015b) emphasize that the levels of sophisti-
cation that are developed within young students’ functional 
thinking are tightly connected to the instructional sequence 
that gives rise to them. Thus, their finding that the 1st grad-
ers’ thinking about recursive patterns did not become as 
sophisticated as their thinking about the functional corre-
spondence relationships is due to the fact that their instruc-
tional interventions did not focus on eliminating recursive 
thinking, but rather on developing the more advanced forms 
of functional thinking. They did notice, however, that some 
students might use a recursive form of thinking with sequen-
tial values of a table. While several researchers have noted 
that students tend to gravitate initially toward recursive 
approaches (e.g., Lannin et al., 2006), others have found 
that this is not always so (e.g., Pinto & Cañadas, 2021). It is 
widely considered that generalizing recursively (e.g., to find 
the elements in Term 100: “you keep adding 2, and 2, and 2 
to Term 1 until you get to Term 100”) is arithmetic in nature 
(e.g., Radford, 2014) and does not support the development 
of algebraic thinking.

This particular point of view has led some researchers, 
for example, Moss and London McNab (2011), to experi-
ment with the use of non-consecutive values in a table. 
These researchers describe how the 7- and 8-year-olds of 
their study of function-machine activity were encouraged to 
generate non-sequential pairs of input and output numbers. 
Assisting students to steer away from recursive approaches 
and to focus on correspondence relationships has involved 
various types of interventions, such as decomposing a 
repeating pattern into its repeats and recognizing the synergy 
between the visual growing pattern and its table of values 

Fig. 4   Part of a growing leaf pattern from the design for a Cook 
Island quilt (Hunter & Miller, 2022)



1144	 C. Kieran 

1 3

(Warren & Cooper, 2008). Despite the apparent effective-
ness of such interventions, Amit and Neria (2008) document 
the limited success encountered by students who begin with 
a recursive approach and attempt to switch over to a corre-
spondence approach; a similar challenge has been noted in 
students’ efforts to coordinate covariation and correspond-
ence approaches (Ellis, 2011). Complementary to the role 
of instruction in developing student thinking regarding the 
correspondence relationship is the positive role that can be 
played by collaborative student discussion of their various 
approaches (Moss & Beatty, 2006).

With respect to the covariation mode of thinking, Ste-
phens et al. (2017b) comment that this mode is not often 
emphasized in the primary levels of schooling. An exception 
is a study by Levin and Walkoe (2022) who explored the 
influence of covariational thinking across a range of activi-
ties using their Seeds of Algebraic Thinking frame (Walkoe 
& Levin, 2020). Among the examples they provide of the use 
of covariation is that of 4th graders programming a Sphero 
robot to complete an obstacle course created by their teacher. 
Covariation also underpinned a study carried out by Ramirez 
et al. (2022), who presented a group of high-achieving 6th 
graders with a set of tasks that involved quadratic functions 
with continuous variables in the geometric setting of an area 
problem. It is reported that while the successful students 
identified regularity in particular cases and extended it to 
include the set of numbers in a particular interval, they nev-
ertheless relied primarily on the use of natural language to 
express their generalizations in the face of their difficulties 
with using symbols correctly.

Despite the challenges reported in students’ moving from 
a recursive to a correspondence mode of thinking, or from 
a covariational to a correspondence mode, Stephens et al. 
(2017b) found that, after three years of early algebra lessons, 
most of the students evolved in their ability to express cor-
respondence rules in both words and variables. The research-
ers observed that the students operated at different levels 
depending on the context. It was also noted that they were 
more apt to express function rules in variables than in words 
as the complexity of the function increased. Brizuela et al. 
(2015) and Molina et al. (2018) report similar results.

In contrast, Pinto and Cañadas (2021) found that all 
the 5th graders in their study, which involved the function 
y = 2x + 6, generalized the relationship, primarily using 
natural language. This same reliance on natural language to 
express a generalization was also reported in the study by 
Goñi-Cervera et al. (2022). The role played by language was 
further addressed, albeit somewhat differently, in a study by 
Ayala-Altamirano et al. (2022) where functional word prob-
lems with questions on the general case were presented using 
natural language, drawn figures, non-algebraic symbols, and 
letters. The keyword “many” within the natural language 
mode of questioning was found to induce the expression of 

generalization more successfully than questions using other 
modes of representation for the indeterminates. In view of 
the disparity in the findings of various studies regarding the 
role of natural language (in contrast to the use of symbols) 
in the expression of generality for functional situations, it 
would seem appropriate for more research to address this 
particular facet of functional thinking.

Reflecting the importance accorded by most studies to the 
role of instruction in the development of functional thinking, 
Pang and Sunwoo (2022) designed a pattern and correspond-
ence unit for a revised Korean textbook for primary school 
mathematics—a unit that was underpinned by key instruc-
tional elements. A review of the literature on functional 
thinking, in particular the frameworks developed by Blanton 
et al. (2015b) and Stephens et al. (2017b), led Pang and Sun-
woo to integrate certain specific instructional elements into 
their curriculum design. The students who were taught with 
the new draft were found to be more successful than their 
counterparts in exploring and representing the relationship 
between two quantities, thereby illustrating the role that can 
be played by fostering functional thinking through changes 
to curricular materials that draw on existing research find-
ings. The final version of the unit that was developed is now 
in use in all schools of the country.

6 � Summing up and new directions

In this survey paper, I have framed the overarching dimen-
sions of early algebraic thinking according to the analytic, 
the structural, and the functional. Within the treatment of 
each dimension, I first described its theoretical underpin-
nings and then offered a sampling of the related empirical 
research. The first and second dimensions—the analytic and 
the structural—were related to the generalized-arithmetic 
perspective on algebra and the third, quite obviously, to the 
mathematical-functional perspective on algebra. The focus 
of the analytic-thinking dimension was primarily on the 
notion of dealing with unknowns as if they were knowns, 
along with the thinking related to the balance-maintaining 
equivalence transformations of equations and equation solv-
ing in both non-symbolic and symbolic form—including the 
thinking related to the equal sign in various equation for-
mats. To complement the analytic-thinking dimension, the 
focus of the structural-thinking dimension of early algebraic 
thinking was primarily on seeing and expressing structure 
and properties within numbers, operations, and expressions. 
The focus of the functional-thinking dimension was that of 
generalizing within different representations of functional 
situations, as well as generalizing related to the recursive, 
covariation, and correspondence modes of functional think-
ing. However, generalizing was not restricted to the func-
tional dimension; it was a salient thread that ran through all 
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three dimensions. In presenting examples of research exem-
plifying the three overarching dimensions, I also signalled 
some of the newer developments and directions, together 
with areas in need of further research. I return to these latter 
aspects now.

With respect to new directions, we are reminded that 
the title of this Special Issue refers not only to the multi-
dimensionality of early algebraic thinking, but also to its 
ever-expanding vision. This ever-expanding vision com-
prises both the theoretical and the empirical. In the theo-
retical area, the new developments that were highlighted in 
this survey paper are of two types: the first involving novel 
theoretical ideas and the second, the act of building upon 
the existing frameworks developed previously by research-
ers in this same field of early algebra. Some of the novel 
theoretical ideas include, as a first example, the Seeds of 
Algebraic Thinking frame initiated and further developed 
in this Special Issue by Levin and Walkoe (2022). A second 
example is the theorizing by Tondorf and Prediger (2022) 
related to equivalence: that of restructuring equivalence, 
which some students used as a means to bridge transforma-
tion and description equivalence. A third example is that 
offered by Vlassis and Demonty (2022) whose work on 
the structural notion of the subtractive number brought the 
domain of negative numbers into the theorizing related to 
early algebraic thinking.

The new developments related to drawing upon theoreti-
cal frames developed in and for the field of early algebra 
is a striking aspect of recent research, one that illustrates 
the evolution in the field. In this regard, but related more 
broadly to the story of mankind, the explorer Salopek (2021) 
reminds us that it was only when human populations grew 
large and stable enough to retain and build upon past break-
throughs that we could truly advance. Within our own field, 
the theoretical frames developed earlier by Blanton et al. 
(2015b) and refined by Stephens et al. (2017b) provided the 
foundation for Pang and Sunwoo’s (2022) development of a 
curricular unit aimed at fostering student functional thinking 
related to pattern and correspondence. The same frameworks 
were used by Hunter and Miller (2022) to analyze 2nd grad-
ers’ levels of generalization with growing patterns, as well 
as by Goñi-Cervera et al. (2022) in their study with autistic 
students. Another example of building on theory previously 
developed by researchers in our own field is the use by Coles 
and Ahn (2022) of Radford’s (2014) notion of analyticity in 
their analyzing of students’ journal writing on the relations 
in the “1089” problem and for their subsequent proposal that 
this notion be extended to include conjecturing and justify-
ing of a generalized nature.

In the empirical area, the ever-expanding vision relates 
not only to the individual contributions of each of the papers 
in this Special Issue, but also and especially to work in three 
novel areas: curriculum development, research with special 

education students, and research in programming environ-
ments. Pang and Sunwoo’s (2022) work in developing a cur-
ricular unit, which was based on extracting key instructional 
elements from the review of the literature on functional 
thinking, serves as a model of how curriculum development 
aimed at fostering early algebraic thinking could be carried 
out. Research with special education students, which was 
realized by Goñi-Cervera et al. (2022) with autistic students, 
sheds light on the design of teaching methods that can help 
these students develop functional thinking. Research by 
Kilhamn et al. (2022) in the Scratch programming environ-
ment emphasizes the specific didactic interventions that are 
required in order to link the non-standard usage of variables 
within programming environments to their standard usage 
in algebra.

This survey paper, with its sampling of past and more 
recent research on early algebraic thinking, also pointed to 
some areas where further research would be in order. These 
areas include, but are not limited to, the following:

•	 There is a need for detailed intervention studies of the 
transitional challenges faced by young students as they 
move from the non-letter-symbolic to the letter-sym-
bolic form of equations, especially equations of the type 
ax + b = cx + d with an occurrence of the unknown on 
each side of the equation, and with the solving of such 
equations by performing the same operation on both 
sides.

•	 The contrasting findings regarding the use of natural lan-
guage versus the use of symbols to express generalized 
functional rules suggests that more research is needed so 
as to better characterize the nature of the circumstances 
that lead to one finding or the other.

•	 More studies are needed that research the ways in which 
students can be assisted in analyzing the visual structure 
of growing patterns, and in generating related diagrams, 
so as to better equip them to develop in their functional 
thinking.

•	 Further research is needed to explore student thinking 
about sameness and substitution with respect to equiva-
lence and to the roles that these two notions play in sup-
porting students’ thinking about the equal sign, equation 
solving, and equation-solving transformations.

•	 The tendency in many countries towards integrating com-
putational thinking and programming into the mathemat-
ics curriculum right from the earliest grades of primary 
school suggests the need for research programs that focus 
on ways in which early algebraic thinking can be fostered 
in learning environments involving digital resources.

•	 Long-term research is needed regarding the impact of 
early algebraic thinking on students’ later study of alge-
bra.
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•	 A presently underdeveloped area of research includes a 
focus on number puzzles with their surprising, always-
the-same results (e.g., think-of-a-number puzzles), which 
can serve to motivate the introduction of alphanumeric 
symbols as a tool for justifying the surprising results of 
such puzzles, and for proving in early algebra more gen-
erally.

•	 More research is needed that describes explicitly the 
nature of the instructional interventions that are found 
to be pivotal to developing the different dimensions of 
students’ early algebraic thinking.

•	 The relationship between arithmetic thinking and alge-
braic thinking remains an area where further research 
that better differentiates the two is warranted.

•	 While an abundance of research exists on seeing rela-
tions, properties, and structure within the numerical 
domain, there is comparatively little at the primary 
school level on the development of structural thinking 
related to the transformation of alphanumeric expressions 
within algebraic equation solving.

It is hoped that the story told by this synthesis of research, 
with its particular theoretical framing and descriptions of 
related empirical work on the multi-dimensionality of 
early algebraic thinking, both reflects the dynamism of the 
research being carried out in this exciting field and proves 
useful to members of the early algebra community and 
beyond.

Acknowledgments  Photo credit: Photo of the Al-Khwarizmi monu-
ment by Nick Stooke.
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