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Abstract
Several new approaches to calculus in the U.S. have been studied recently that are grounded in infinitesimals or differentials 
rather than limits. These approaches seek to restore to differential notation the direct referential power it had during the first 
century after calculus was developed. In these approaches, a differential equation like dy = 2x·dx is a relationship between 
increments of x and y, making dy/dx an actual quotient rather than code language for lim

h→0

f (x+h)−f (x)

h
 . An integral ∫ b

a
2xdx is a 

sum of pieces of the form 2x·dx, not the limit of a sequence of Riemann sums. One goal is for students to develop understand-
ings of calculus notation that are imbued with more direct referential meaning, enabling them to better interpret and model 
situations by means of this notation. In this article I motivate and describe some key elements of differentials-based calculus 
courses, and I summarize research indicating that students in such courses develop robust quantitative meanings for notations 
in single- and multi-variable calculus.
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1  Introduction

Long before there was The Calculus, there were the “differ-
ential calculus,” the “integral calculus,” and “the infinitesi-
mal calculus,” several among many calculuses that emerged 
in the seventeenth and eighteenth centuries (Hutton 1795). 
The fundamental notations for these calculi, which are still 
the main notations of calculus today, were invented by Leib-
niz in the mid-1670s. He used the differential (e.g., dx) to 
denote an infinitesimal difference, and the integral ∫ (big S 
for summa) to denote an infinite sum of such infinitesimal 
quantities. Isaac Newton, of course, independently devel-
oped similar foundational ideas although his notations are 
less commonly used today. During the first century in the life 
of what is now calculus, mathematicians on the continent 
used Leibniz’ notation, treating the differential calculus and 
infinitesimal calculus as being fundamentally about (unsur-
prisingly) differentials and infinitesimals. What exactly these 
continental mathematicians imagined “infinitesimals” to be 
is a matter of scholarly debate,1 but nonetheless two things 
are clear enough about their views:

1.	 The fundamental object of the differential calculus was 
the differential, not the derivative, and certainly not the 
limit.

2.	 A differential represented an infinitesimal difference 
between two values of a variable.

By the end of the nineteenth century, various calculuses 
had become The Calculus. The differential was no longer the 
primary object, nor did it any longer refer to an infinitesimal. 
By the mid-twentieth century, the story had become about 
how infinitesimals were jettisoned due to their lack of rigor. 
Bertrand Russell sums up this oft-told tale succinctly in his 
History of Western Philosophy (1946):

The great mathematicians of the seventeenth century 
were optimistic and anxious for quick results; conse-
quently they left the foundations of analytical geom-
etry and the infinitesimal calculus insecure. Leibniz 
believed in actual infinitesimals, but although this 
belief suited his metaphysics it had no sound basis in 
mathematics. Weierstrass, soon after the middle of the 
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1  For instance, some authors believe Leibniz predominately treated 
infinitesimals as fictional infinitely-small entities (e.g., Bos 1974; 
Katz and Sherry 2013). Others believe Leibniz, in his mature work, 
mainly treated infinitesimals as syncategorematic shorthands for 
variable finite quantities that can be taken as small as desired (e.g., 
Arthur 2013; Ishiguro 1990). That Jakob and Johann Bernoulli 
treated them in the former manner is less contested.
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nineteenth century, showed how to establish the cal-
culus without infinitesimals, and thus at last made it 
logically secure (Russell 1946, p. 857).

With this narrative in mind, by the early twentieth century 
the foundational concept for the calculus had become the 
limit. This replacement was done not because infinitesimals 
were difficult for students to learn but only because they 
were seen as insufficiently rigorous (Thompson 1914). Dif-
ferential notation remained omnipresent in twentieth century 
calculus texts, but as vestiges of older usage, no longer 
directly referring to infinitesimal differences. For well over 
a century now, calculus textbooks have not used the differ-
ential dx to directly denote an increment of x. A differential 
typically cannot be written meaningfully by itself. It has 
meaning only when it is amalgamated with other notations. 
Thus “dy/dx” is not directly a quotient of two quantities but 
is code language for lim

h→0

f (x+h)−f (x)

h
 . An expression like 

∫ b

a
3x4dx does not mean a sum, but is shorthand for the limit 

of a sequence of finite Riemann sums.
Differentials are not taken seriously in the overwhelm-

ing majority of calculus classrooms and curricula, to bor-
row a phrase from Dray and Manogue (2010). By this I 
mean that (a) differentials are not a primary object of study 
and (b) that they do not refer directly to quantities. Yet 
this fact is in tension with the actual practice of calculus-
users, because differentials are such a common shorthand 
for scratch-work in the margins. For example, to evaluate 
an integral such as ∫ 4

1
t
√
t2 − 1dt , students are taught to use 

substitution: First set u = t2 − 1 , then “derive” du = 2tdt , 
then reduce to tdt = du∕2 in order to replace the lefto-
vers inside the integral. This is a strange state of affairs: 
students are not supposed to believe that differentials are 
quantities, yet sometimes they are supposed to manipulate 
them as though they are. What are the equations du = 2tdt 
and tdt = du∕2 supposed to mean for these students? Per-
haps students know better than to ask such a question. At 
any rate, it is perfectly reliable to manipulate differentials 
algebraically as though they were quantities, a fact that is 
no secret to engineers and scientists, nor to several centu-
ries of practitioners of the differential calculus.

If working with differentials as objects in their own 
right is reliable, sometimes even indispensable, then why 
not take them seriously? In this paper I discuss two objec-
tions to doing so. One objection was that differentials rely 
on infinitesimals, which cannot be rigorously grounded. 
But this objection was definitively refuted in the 1960s 
with Abraham Robinson’s development of nonstandard 
analysis. As I describe in Sect. 2, Robinson’s hyperreal 
numbers provide a rigorous development of infinitesimals, 
which allows differentials to once again directly refer to 
quantities without sacrificing rigor. Yet more than 50 years 
later, almost no textbooks and classes take differentials 

seriously or use an approach based on infinitesimals. The 
reason for this is probably the second objection: teaching 
calculus with limits is working fine, so why upset the apple 
cart by introducing a new approach that is less familiar to 
instructors? The answer to this objection is that teaching 
calculus with limits is, by and large, not working fine. As 
I discuss in Sect. 4, studies show that students often do 
not emerge from standard calculus classes with a robust 
quantitatively-based understanding of calculus concepts 
and notation that would allow them to meaningfully 
interpret and model situations with calculus. The goal of 
current approaches to calculus that take differentials seri-
ously is to remedy this situation. In this paper I describe 
such approaches, particularly those that treat differentials 
as representing infinitesimal quantities. I also provide 
rationale for such approaches and summarize some find-
ings about the kinds of reasoning students develop in such 
classrooms.

2 � What are differentials and infinitesimals?

2.1 � What are differentials?

I know of two ways to mathematically define differentials 
such as dx for students that allow this notation to mean-
ingfully represent an increment of x. Both ways allow the 
notation dx to directly represent quantities, not just short-
hands, in expressions such as “dy/dx”, “ ∫ b

a
f (x)dx ”, and 

“ 2xdx + 2ydy = 0 ”. Both of these ways can be made math-
ematically precise:

1.	 An infinitesimal increment of x: In keeping with Leibniz’ 
usage, a differential can be defined as an infinitesimal 
quantity, which itself can be formalized as a type of 
hyperreal number. This way of defining infinitesimals 
is discussed in the next section.

2.	 An arbitrarily small change in x: The differential dx is 
an increment of x that can be made arbitrarily small. 
To clarify the difference between “∆x” and “dx”, some 
treat dx as a quantity that varies continuously within any 
interval of fixed size ∆x (e.g., Thompson and Ashbrook 
2019).

Either interpretation allows differentials to be used as the 
grounding notational idea of calculus, and thus can be the 
basis for a differentials-based calculus courses (detailed in 
Sect. 4). In addition to these two ways of defining differen-
tials, there are others that can be used that are mathemati-
cally coherent but that do not as easily allow for differentials 
to be the central notational idea of calculus. These include:
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3.	 A differential form: For instance, the differential dx is a 
one-dimensional density that allows for integration over 
an oriented manifold (see, for instance, Flanders 1963).

4.	 A shorthand for limits: The differential dx is not defined 
independently, but has mathematical meaning only in 
conjunction with other symbols. For instance, dy/dx 
means lim

h→0

f (x+h)−f (x)

h
 (for y = f(x)).

5.	 A linear approximation: The differential dx is defined to 
be a small finite increment of x, equal to ∆x. If y = f(x) is 
not linear, then the differential dy serves as an approxi-
mation for ∆y, but is not equal to it. Thus dy is a func-
tion of two variables x and dx. This definition is illus-
trated in Fig. 1.

Definition 5, the linear approximation definition of differen-
tials, appears in most standard American calculus textbooks. It 
is worth noting that this definition could easily be a source of 
confusion for students, particularly since there is no obvious 
reason to refer to the approximate change of y as dy instead 
of as ∆y. Dray and Manogue (2010) point out that there is no 
need to use differentials at all when discussing linear approxi-
mations; the equation of the tangent line could quite sensibly 
be written as Δy = f �(x)Δx . Yet if ∆ notation could adequately 
serve this purpose, why did differentials ever come to be used 
as linear approximations? These authors suggest that the rea-
son is because this usage, which only became common in the 
mid-1900s, effectively prevents using differentials for any 
other purpose, such as to describe infinitesimals:

It thus appears that differential notation was appropriated 
for linear approximation only within the last 60 years, 
and that one of the motivations for doing so was to “clar-
ify” that infinitesimals are meaningless. This claim was 
convincingly rebutted by Robinson barely 10 years later, 

yet little effort has been made to restore the original role 
of differentials in calculus (Dray and Manogue 2010, 
p. 97).

Just as differentials can be mathematically defined in vari-
ous ways, students also develop a variety of ways to interpret 
them, even when they have taken standard calculus courses 
instead of differentials-based ones. For instance, David Tall 
surveyed students entering Warwick University if they had 
seen the notation dy

dx
= lim

�x→0

�y

�x
 (1980). He categorized the 

responses of the 60 students who completed the survey accord-
ing to Fig. 2, counting “½” when students gave multiple 
answers. It can be seen that well more than 25% of the students 
viewed dy as a small or infinitesimal quantity, even if it is 
unclear how they imagine ‘infinitesimal’ (or what is meant by 
the response “dy is the differential of y”).

2.2 � What are infinitesimals?

One interpretation of a differential is as an infinitesimal 
increment of a variable quantity. This raises the question: 
what exactly is an infinitesimal increment?

The mathematical machinery of the 1600s did not allow 
infinitesimals to be formally defined in a manner that would 
satisfy current standards for mathematical rigor. Here I sum-
marize two broad ways in which seventeenth century ideas of 
infinitesimal transformed and became formalized over time. 
One of these, which Bair et al. (2013) call the “A-track”, 
begins with Newtonian infinitesimals. Newton often used 
dynamic language, and described infinitesimals as “evanes-
cent” or vanishing quantities whose values are achieved at 
the moment when they disappear (Bell 2005). This is the 
imagery that led Berkeley to famously mock infinitesimals 
as being “ghosts of departed quantities” (1734). Yet this 
imagery can be seen as anticipating the idea of the limit: a 
finite variable quantity approaching zero. In this way, New-
tonian infinitesimals can be seen as ultimately formalized 
along the A-track by the epsilontic limit definition fully 
developed in the nineteenth century by Weierstrass.

Leibniz’ accounts of infinitesimals are typically more 
static than Newton’s. In the 1670s, Leibniz developed tech-
niques for calculating with and comparing various orders of Fig. 1   The linear approximation definition of the differentials dx and 

dy (Dray and Manogue 2010)

Fig. 2   Undergraduate interpretations of differential notation (Tall 
1980)
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infinitesimal and infinite quantities. Formalization of this 
imagery for infinitesimal occurred along the “B-track” (Bair 
et al. 2013), through Abraham Robinson’s development of 
the hyperreal numbers and nonstandard analysis in the early 
1960s (e.g., Robinson 1961). In particular, historians have 
pointed out how operations in the hyperreal numbers capture 
and reflect the heuristics Leibniz and his immediate conti-
nental colleagues used in the infinitesimal calculus, particu-
larly Leibniz’ Law of Continuity and its implications (e.g., 
Bos 1974; Katz and Sherry 2013). It is a formalization of 
infinitesimals in the sense that it develops and grounds them 
in the normal ZFC axiomatization of modern mathematics. 
Robinson’s Transfer Principle proved that any first-order 
logical statement in standard analysis is true if and only if 
the “same” statement is true in nonstandard analysis (“same-
ness” here means that there exist interpretations for the state-
ment in both models). This means that standard analysis and 
nonstandard analysis are equivalent in power, consistency, 
and scope—calculus can be done in either.

The hyperreals are a field including all real numbers, their 
infinitesimal neighbors, and their infinite cousins. An infini-
tesimal is a nonnegative number that is smaller than every 
finite real number. A positive number is infinite when it is 
larger than every positive real number.

Each finite hyperreal number p is infinitely close to 
exactly one real number r. This real r is often called the 
shadow of p (sh(p)), or standard part of p (st(p)). Likewise, 
each real number r has a cloud or monad2 of infinitely many 
hyperreal numbers that are infinitesimally close to it. We 
notate if two hyperreals a and b are infinitesimally close to 
one another by a ≈ b. So p ≈ sh(p). Likewise, if a is real and 
ε is infinitesimal, then a + ε ≈ a. The monad of hyperreals 
around the real number p formalizes the concept image that 
an infinitesimal only becomes visible when you zoom in 
infinitely on the continuum at a particular point.

If it possible to zoom infinitely on a point p at a scale 
factor of ε to reveal a monad of hyperreals infinitely close 
to p, it is also possible to imagine zooming in again at scale 
factor ε on any of these points to reveal yet another neighbor-
hood of second-order infinitesimals. This process could be 
repeated, and Leibniz discussed such a hierarchy of infinitely 
many orders of infinitesimal and infinite numbers. He also 
developed heuristics for rounding away higher-order infini-
tesimals when deriving differential equations and deriva-
tives. These heuristics can be formalized in the hyperreals. 
For instance, consider the function y = x3 in the hyperreals. 
For any infinitesimal non-zero increment dx of x, we might 
seek to find the magnitude of the corresponding increment 
dy of y:

At this point Leibniz would use heuristics to dismiss the 
higher-ordered infinitesimal terms on the right as being neg-
ligible at this scale, ending up with the differential equation

In the hyperreals, if we wanted to define a derivative 
function, we could divide both sides by the infinitesimal dx 
(the hyperreals are a field, allowing this division by a non-
zero number):

T h i s  a l l o w s  u s  t o  d e f i n e 
f �(x) = sh

(
dy

dx

)
= sh

(
3x2 + 3dx + dx2

)
= 3x2 . This is an 

example of transfering between the hyperreals and reals by 
looking at hyperreals’ shadows. Such a process often does 
the same work as taking a limit does in standard analysis.

I have been answering the question ‘What are infinitesi-
mals?’ by summarizing how infinitesimals can be mathemat-
ically defined. A different kind of answer to this question is 
to view the concept imagery involved when imagining infini-
tesimals as being more fundamental than the mathematical 
definitions that seek to formalize that imagery. The founda-
tional image, one which is appealed to in every treatment 
of infinitesimals I have seen, is that of the infinite zoom. 
Figure 3 illustrates how imagining zooming infinitely much 
on the number line reveals how points in the shadow of c 
are distinct, when they were indistinguishable at the finite 
scale (Tall 2001). Thus the foundational image of infini-
tesimal uses scaling-continuous variational reasoning, by 
which one generalizes the properties of the continuum to 
different scales by imagining repeated zooming (Ellis et al. 
in press). Tall describes a similar mental act: “Infinitesi-
mal concepts are natural products of the human imagination 
derived through combining potentially infinite repetition and 
the recognition of its repeating properties” (Tall 2009, p. 3).

dy = (x + dx)3 − (x)3

dy = x3 + 3x2dx + 3xdx
2
+ dx3 − x3

dy = 3x2dx

dy

dx
= 3x2 + 3dx + dx2

Fig. 3   Infinite magnification of the number line reveals that c-ε, c, 
and c + ε are different (Tall 2001)

2  Robinson’s term is a tribute to Leibniz’ monads, although these 
were rather different things entirely.
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This zooming imagery also supports other images and 
heuristics that students develop for comparing and operating 
with infinitesimal quantities, even when they were not taught 
these ideas themselves. For instance, I studied a student who 
developed coherent heuristics for comparing infinitesimals 
to finite numbers, for squaring infinitesimals, and for other 
operations; all of them paralleled Leibniz’ heuristics, even 
though she had never been taught them (Ely 2010). Further 
imagery of student ideas of infinitesimals is described in 
Sect. 4 below, in the context of student reasoning that arises 
in differentials-based calculus courses.

3 � Calculus classes that use differentials 
and infinitesimals

I am aware of a variety of approaches over the last few dec-
ades for teaching first-year calculus using differentials and/
or infinitesimals.3 These approaches fall roughly into two 
categories.

The first category includes classes that are explicitly 
grounded in the hyperreal numbers, using the textbooks of 
Keisler or of Henle and Kleinberg. Keisler’s textbook, Ele-
mentary Calculus: An Infinitesimal Approach (2011) devel-
ops calculus formally using the hyperreal numbers. It first 
appeared in 1976, saw widespread use during the following 
decade, and is still in use in various classrooms around the 
world. Henle and Kleinberg’s Infinitesimal Calculus (1979) 
is short and formal, and to my knowledge has been used 
mainly in some honors undergraduate courses.

Studies of student reasoning in such courses focus on 
how students learn formal definitions more robustly in the 
hyperreals than with limits. Sullivan found that students in 
classes using Keisler’s book were much more successful 
proving a particular function’s continuity using the formal 
nonstandard definition of continuity than were students in 
the standard classes using the formal δ-ε limit definition 
(1976). The teachers of the nonstandard classes tended to 
report that their students understood the course material bet-
ter than in the previous times when they had used a standard 
approach. In another recent study, first-year calculus stu-
dents at a university in Israel were taught both the formal 
standard epsilontic definitions and nonstandard definitions 
of limit, continuity, and convergence (Katz and Polev 2017). 
The students overwhelmingly responded that they preferred, 
and better understood, the nonstandard definitions. The pri-
mary results of both studies are unsurprising in light of how 
thorny the formal epsilontic definitions of these concepts 

are known to be for students (e.g., Davis and Vinner 1986; 
Roh 2008).

The second category includes differentials-based 
approaches to calculus. These approaches treat differen-
tials as quantities and develop differential equations inde-
pendently of, and before, derivatives. They use an informal 
approach to infinitesimals, rather than developing them for-
mally with the hyperreals. It is courses of this kind that I 
profile more extensively in the following section. Examples 
of such courses are the ones taught and studied by Dray and 
Manogue (2003, 2010), by Boman and Rogers (2020), and 
the ones I have taught and studied (e.g., Ely 2017, 2019), as 
well as the approach developed by Thompson and Ashbrook 
(2019). Some of these courses employ a historical approach 
to calculus, such as the one studied by Can and Aktas 
(2019), in which the instructor’s perspective on teaching 
calculus was transformed by teaching with primary sources 
(notably Euler’s 1775 Foundations of Differential Calculus) 
that develop the subject using differentials. Finally, I note 
that there are plenty of researchers and instructors around 
the world who treat differentials as quantities in carefully 
chosen moments while teaching, to provide intuition of 
the big ideas of the subject for their students. For example, 
Moreno-Armella provides such reflections drawing on his 
experiences teaching calculus in Mexico (2014).

4 � Differentials‑based approach to calculus

In this section I describe in more detail the elements of dif-
ferentials-based approaches to calculus. Such courses may or 
may not use infinitesimals, formally or informally, to define 
differentials. I provide rationales for these elements that is 
grounded in prior research about student reasoning in calcu-
lus. Along the way I also summarize research about student 
reasoning in differentials-based approaches, for the handful 
of topics for which this research has been conducted.

4.1 � A grounding idea: correspondence 
between amount equations and differential 
equations

The fundamental object in a differentials-based approach to 
calculus is the variable quantity, not the function. It accords 
with Leibniz’ view that any variable can be written in terms 
of other related variables. Any such relationship is repre-
sented by what I will here call an “amount” equation. An 
amount equation is an equation with finite quantities with 
more than one variable—it tells how the (finite) amounts of 
several variable quantities relate to each other. Examples 
include y = 5x3 + 7cost and y2 − xy = x2 . At this point there 
is no a priori assumption that one quantity is a function of 3  I am always looking to hear about others, so I welcome readers to 

contact me if they know of more.
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the other. This idea reflects Ransom’s proposal to treat equa-
tions, not functions, as fundamental in calculus (1951).

A differential equation tells you the relative magni-
tudes of infinitesimal increments (differentials) of the vari-
able quantities in terms of each other. Examples include 
dy = 15x2dx − 7sintdt and 2ydy = xdy + ydx + 2xdx.

One broad overarching goal in differentials-based calcu-
lus is to find correspondences between amount equations and 
differential equations. This idea grounds the further devel-
opment of derivatives and integrals. Figure 4 shows how a 
differential equation can be imagined as a zoomed-in ver-
sion of an amount equation. Figure 5 shows how an amount 
equation can be imagined as a sum of infinitely many dif-
ferentials in a differential equation.4 Most of what we want 
to represent, calculate, and interpret in calculus stems from 
the idea of this correspondence.

4.2 � The chain “rule” and implicit differentiation

Methods for deriving a differential equation from an amount 
equation are relatively systematic, as Newton and Leibniz 
discovered. A differentials-based example of such a deri-
vation is seen in Sect. 2.2 above. Standard approaches to 
calculus develop these methods (power rule, product rule, 
etc.) very similarly with limits. On the other hand, a sig-
nificant difference can be seen with the chain “rule.” In 
standard calculus approaches, the chain rule states that 
the derivative of the composite function F(x) = f (g(x)) is 
F�(x) = f �(g(x)) ⋅ g�(x) . This formulation can be baffling for 
students (Clark et al. 1997); it is not readily supported by the 
underlying logic of converting units, and seems purposefully 

designed to guarantee that students do not think about can-
celling fractions. On the other hand, in a differentials-based 
approach where dt and dy are quantities rather than short-
hands, students really are cancelling fractions. There is noth-
ing baffling about why dy = dy

dt
dt or dy

dt
=

dy

du

du

dt
.

In some sense with differentials there really is no chain rule 
at all, just the recognition of the benefit of changing variables 
to aid with differentiating. In practice this often looks like: If 
dy = pdu and du = qdt , then dy = p(qdt) . For example, sup-
pose you want to find the differential equation corresponding 
to the amount equation y = sin2

(
3�4 + 1

)
 . Performing a few 

substitutions helps you stay organized:

y = sin
2(3�4 + 1)

d[y] = d
[(
sin

(
3�4 + 1

))2] Let u = sin
(
3�4 + 1

)

dy = d[u2] d[u] = d
[
sin

(
3�4 + 1

)]
Let v = 3�4 + 1

dy = 2udu du = d[sin(v)] dv = 12�3d�

du = cos(v)dv

du = cos
(
3�4 + 1

)
(
12�3d�

)

dy = 2sin
(
3�4 + 1

)
cos

(
3�4 + 1

)(
12�3d�

)

This flexibility with differentials also allows one to find 
a differential equation from an amount equation, and then 
to work flexibly with that equation to answer various ques-
tions about the situation at hand. Dray and Manogue (2010) 

Fig. 4   Infinite zoom reveals a relation between differentials

Fig. 5   Amounts as sums of differentials

4  The figure is meant to illustrate how the differentials can be seen as 
aggregating to comprise an amount; it should be noted that it would 
require an infinite zoom for these differentials to be visible.
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illustrate this flexibility in the context of a cylinder of vol-
ume V = �r2h . Using the product rule in the form

one gets the differential equation

Now, suppose the problem is about related rates. This 
equation is valid no matter what rate is sought; it does not 
require the student to decide from the outset whether the 
problem seeks the rate of change of one of these quantities 
with respect to radius, time, temperature, or whatever else. 
If they find out that they want the rate of change of radius 
with respect to time, then they can divide both sides of the 
equation by an infinitesimal time increment dt, and solve for 
the ratio dr

dt
 . If the problem is about optimization, they can set 

dV = 0 and solve for dh
dr

 (or perhaps dr
dh

).
Implicit differentiation can also be thorny for students in 

a standard calculus class. In a differentials-based approach 
the term does not even need to be used; nothing is different 
about it. In a standard calculus class, when students differ-
entiate y2 = xy + x2 , it is a source of confusion why the y2 
becomes 2yy′ while the x2 becomes just 2x . Using differen-
tials, this doesn’t happen. The differential of y2 is 2ydy , the 
differential of x2 is 2xdx , the differential of ♣2 is 2♣ d♣, etc. 
The differential equation for

is thus

This could be used for a variety of purposes now. For 
instance, if you want the slope of the tangent line to the 
original curve at some point ( x0, y0), you can plug that point 
into the differential equation and divide both sides by dx to 
determine the slope dy

dx
 at that point.

4.3 � Derivatives and rates

Although the above discussion touches on the idea of rate, 
the development of robust student reasoning about rates in 
calculus goes far beyond calculating a differential equation 
or a derivative function. A variety of studies have explored 
the complexity of reasoning involved in conceptualizing rate 
of change among secondary and university students (e.g., 
Bezuidenhout 1998; Herbert and Pierce 2012; Thompson 
1994). Students often understand rate of change as one 
experiential quantity, developed from their embodied expe-
rience, such as the speed of their own walking. Few have 
constructed from this a robust coordination between two 
covarying quantities that itself composes a new quantity 

d[uv] = vdu + udv,

dV = 2�rhdr + �r2dh.

y2 = xy + x2

2ydy = xdy + ydx + 2xdx.

(Carlson et al. 2003). Such a new composed quantity has 
been called a multiplicative object (Thompson and Carlson 
2017); flexible student reasoning with it entails the ability 
to mentally decompose it as needed into its two component 
coordinated varying quantities (Thompson 1994). The coor-
dination is not just between pairs of values of these two 
variables, but between pairs of changes or increments in the 
values of these two variables.

This understanding supports the abstraction of the idea 
of a rate of change at a moment, an image that is crucial for 
a meaningful understanding of derivative (Thompson and 
Ashbrook 2019). In a differentials-based approach to cal-
culus, this coordination between increments over an infini-
tesimal (or small enough) scale is seen in two forms. In a 
differential equation such as dy = r(x)·dx, the rate is a factor 
that converts between an increment of x and an increment 
of y. As x changes, y changes by a proportional amount, 
and this proportionality factor r(x) depends on what value 
of x you’re at. In a derivative such as dy

dx
= r(x) , the rate is a 

ratio of increments of the two quantities, which can also be 
represented as the slope of a curve over such an increment.

When differentials have quantitative meaning for a stu-
dent, the students have a basis for making a robust rate-based 
meaning of both notations, as coordinations of changes in 
covarying quantities. In contrast, in standard treatments of 
calculus, dy

dx
 is code language for lim

h→0

f (x+h)−f (x)

h
 , which is 

quickly replaced with the notation f �(x) . Since dy and dx 
cannot be decoupled, this reinforces a monolithic student 
interpretation of rate. Many students develop only a vague 
idea of slope as “slantiness” of a curve, without seeing how 
this represents a rate composed of two covarying quantities 
(Thompson and Ashbrook 2019).

In a standard limits-based calculus course, the image that 
is often used to develop the understanding of derivative at a 
point is the slope of a secant line approaching a tangent line 
as two points on the curve get closer. In a differentials-based 
calculus course, the grounding image is that of zooming 
or rescaling (Fig. 4). Whether the zoom is imaged as infi-
nite, or just as “enough,” depends on the course. In Tall’s 
locally-straight approach to calculus, the image of zooming 
was deliberately fostered to anchor the idea of derivative 
(1985). Zoomed in enough, the magnified graph looks like 
a straight line, so it is indistinguishable from its tangent line 
over that neighborhood. Tall notes, “by choosing a suitably 
small value of dx, we can see dy/dx, as the slope of the tan-
gent, now a ‘good enough’ approximation to give a visual 
representation for the slope of the graph itself” (2009, p. 5). 
Others have further developed calculus approaches grounded 
in the idea of local linearity and zooming rather than in the 
limiting secant line (Samuels 2017). This image has been 
found to be helpful and flexible for developing single vari-
able calculus ideas such as the derivative, tangent line and 
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non-differentiability (Samuels 2012), and multivariable cal-
culus ideas such as partial derivatives, tangent vectors, and 
tangent planes (Fisher and Samuels 2019).

Frid studied the student understandings of derivative 
that developed in three different Canadian calculus courses 
(1994). The first class was a standard calculus course focus-
ing on techniques and procedures. The second was also a 
standard but much more conceptually-oriented course. The 
third used infinitesimal language and shared many features 
with differentials-based approaches, including the consistent 
imagery of zooming in. Frid found that students who used 
infinitesimal language were by far the most likely to demon-
strate coherent interpretations of derivative at a point. Stu-
dents in the first class could not explain what the limit nota-
tion for the derivative meant, while students in the third class 
could talk about the function as locally straight and describe 
its slope where the “rise and the run would be infinitesimal”.

This finding supports the idea that a differentials-based 
calculus class can foster student understanding of derivative 
as a composed quantity rather than as just a unitary slope. 
In such an approach, the notation dy

dx
 transparently reflects a 

rate understanding of derivative at a point, while the notation 
f �(x) does not. On the other hand, with the notation f �(x) it 
is easier to specify whether one is talking about a derivative 
at a point or a derivative function—the notation f �(3) is less 
cumbersome than dy

dx
|x=3.

4.4 � Integrals

Differentials-based approaches can also provide students 
with more robustly meaningful interpretations of integrals. 
Recently a number of studies have shown the limitations of 
the understandings students develop for definite integrals 
in standard calculus courses. Jones notes several distinct 
modes students use for interpreting definite integral nota-
tion ∫ b

a
f (x)dx:

1.	 The integral is an area of the region bounded by the 
x-axis and the curve y = f(x), between x = a and b—this 
region is taken as a whole that is not partitioned into 
smaller pieces.

2.	 The integral is an instruction to find the anti-derivative 
of f and evaluate it at x = a and b.

3.	 The integral is a sum of pieces over a specified domain 
(more detail about this type of interpretation follows).

Area and anti-derivative interpretations are commonly 
displayed by calculus students, while sum-based interpreta-
tions are rare (e.g., Orton 1983; Sealey and Oehrtman 2005; 
Jones 2013, 2015a, b; Wagner 2016; Fisher et al. 2016). For 
example, Jones et al. (2017) used two prompts to survey 
150 undergraduate students who had completed first-semes-
ter university calculus. Nearly every student used an area 

interpretation or anti-derivative interpretation, or both, on 
the two prompts. Only 22% of students made even a passing 
reference to summation of any kind, and on each prompt less 
than 7% used a sum-based interpretation. Fisher et al. (2016) 
found that the majority of students in a standard calculus 
class used only the area interpretation when describing the 
meaning of a definite integral, and Grundmeier et al. (2006) 
found that only 10% of students mentioned an infinite sum 
when asked to define a definite integral.

This reveals a significant problem in American under-
graduate calculus classes, because many studies indicate that 
sum-based interpretations are much more productive for sup-
porting student reasoning than area and anti-derivative inter-
pretations (e.g., Sealey 2014; Sealey and Oehrtman 2005; 
Jones 2013, 2015a, b; Jones and Dorko 2015; Wagner 2016). 
The area and anti-derivative interpretations have serious 
limitations for students modeling in various applications, 
particularly in physics, when the sought quantity is often dif-
ficult to imagine as the area of a region (e.g., Meredith and 
Marrongelle 2008; Nguyen and Rebello 2011; Jones 2015a).

In contrast, Jones (2013, 2015a) found that students who 
used sum-based reasoning were more successful on physics 
modeling tasks than students who used only area or anti-
derivative interpretations. The reason for this can be seen by 
looking more closely at the types of interpretation involved 
in sum-based reasoning:

•	 The adding up pieces (AUP) interpretation treats an inte-
gral generally as a sum ∫ b

x=a
dA . The domain has been 

broken into increments of size dx, and the summand dA 
is a piece of a sought quantity A that corresponds to each 
such increment. These pieces are summed to produce a 
total amount of that quantity A, from x = a to b.

•	 The multiplicatively-based summation (MBS) interpreta-
tion is similar but it requires multiplicative structure in 
the summand: dA = f(x)·dx. The f(x) is then seen as a rate 
at which A changes over any increment dx (terminology 
adapted from Jones 2015a, b; Jones and Dorko 2015; Ely 
2017).

If the differential dx is viewed as an infinitesimal incre-
ment, then these sum-based interpretations view the integral 
directly as a sum of infinitely many infinitesimal bits, each 
corresponding to a distinct increment dx. In an approach 
without infinitesimals, an integral ∫ b

a
f (x)dx is the limit of a 

sequence of Riemann sums of the form 
∑

f (x∗)Δx , so the dx 
might be seen as a vestige of Δx.

One reason sum-based reasoning is more successful for 
modeling is that it focused attention on the quantities and 
units of the situation at hand. Jones found that students 
who used MBS could appeal to the multiplicative structure 
between the integrand and differential to explain why they 
had produced the correct integrand, since (revolutions per 
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min) (mins) would cancel to the desired quantity, revolu-
tions. This accords with Thompson’s view that a meaningful 
interpretation of integrals is grounded in the recognition of 
the multiplicative relationship between the two quantities 
inside the integral (1994).

Nearly all calculus books define the definite integral using 
Riemann sums, but this fact seems to contribute little to 
building sum-based reasoning for the students who use these 
books. When investigating this apparent pedagogical dis-
connect, Jones et al. (2017) found that instructors’ teaching 
moves lead students to perceive the limit of Riemann sums 
not as a conceptual basis for understanding the definite inte-
gral, but merely as a calculational procedure that allows an 
integral to be estimated accurately. This is one way that the 
limit process involved in the Riemann sum interpretation can 
form a didactical obstacle to building sum-based concep-
tions of the integral. A differentials-based approach, where 
the big S really is a sum, and the dx really is an infinitesimal 
increment of x, avoids this obstacle.

Recent evidence supports the conclusion that students 
in differentials-based calculus classes can develop robust 
sum-based interpretations of definite integral notation. In a 
recent case study, students used the AUP interpretation for 
modeling a novel volume problem using integral notation, 
and readily converted to the MBS interpretation when transi-
tioning from modeling with integrals to evaluating integrals. 
Similar benefits of a differentials-based approach scaled up 
to a large lecture format. In a recent comparison study, the 
same eight multiple-choice items appeared on the final exam 
for students in a differentials-based Calculus I lecture and 
a standard Calculus I lecture (Ely 2019). Figure 6 shows 
the two items that focused on interpreting ̄notation pertain-
ing to integrals. In the differentials-based class (n = 92), 
91.3% answered Item 8 correctly (response e), while 58.6% 
of students in the standard class (n = 133) did. On Item 4,5 
65.2% of students in the differentials-based class answered 

correctly (response d), compared to 37.6% of students in the 
standard class.

4.5 � Accumulation functions and the fundamental 
theorem of calculus

Differentials-based approaches also provide a way for stu-
dents to make sense of the deep connection at the heart of 
calculus, which is reflected in the Fundamental Theorem 
of Calculus (FTC). Thompson and Ashbrook’s approach 
foregrounds this connection (2019). An accumulation func-
tion f can be notated as f (x) = ∫ x

a
rf (t)dt . To ground this 

approach, these authors define a differential dt as a variable 
whose value varies smoothly, repeatedly, through infinitesi-
mal intervals (x, x + ∆x]. This treatment of differentials uses 
smooth covariational reasoning both at the finite real-valued 
scale and at the infinitesimal scale. The function f varies 
smoothly with t and dt: t varies smoothly through the real 
numbers, while dt varies smoothly at the infinitesimal scale, 
within infinitesimal intervals (x, x + ∆x].

One reason they define differentials in this way is that 
it provides a clear way to connect rate of change and accu-
mulation, to support the Fundamental Theorem of Calculus 
(FTC). This connection, and how differentials figure into it, 
is illustrated when they define integral notation for accumu-
lation functions:

When rf is an exact rate of change function, any value 
rf(x) is an exact rate of change of f at the moment x. 
The function f having an exact rate of change of rf(x) at 
a value of x means that f varies at essentially a constant 
rate of change over a small interval containing that 
value of x. This means that we can, in theory, approxi-
mate the variation in f around that value of x to any 
degree of precision. We just need to make Δx small 
enough so that rf(x)dx is essentially equal to the actual 
variation in f as dx varies from 0 to Δx over that Δx-
interval (Thompson and Ashbrook 2019, https​://patth​
ompso​n.net/Thomp​sonCa​lc/secti​on_5_3.html).

Fig. 6   Sample assessment items 
with notation that pertains to 
interpreting integrals

5  In Item 4, ∆t was used instead of dt to be fair to the control class.

https://patthompson.net/ThompsonCalc/section_5_3.html
https://patthompson.net/ThompsonCalc/section_5_3.html
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The integral ∫ x

a
rf (t)dt thus represents an accumulation 

over an interval from a to x of the function f that comes 
from this rate-of-change function rf. A definite integral 
can be defined after this: it is simply an accumulation 
function evaluated at two specific values, like f(14) − f(4).

Many meaningful treatments of calculus ideas in class-
rooms around the world can be adapted to differentials 
with only, let’s say, infinitesimal changes. Practically 
speaking, working with differentials often just involves 
writing dx instead of ∆x and not taking a limit. For exam-
ple, consider Arnold Kirsch’s discussion (2014) of Part I 
of the FTC. As Kirsch states the theorem, if 
F(x) = ∫ x

a
fa(t)dt , then F�(x) = fa(x) (for continuous func-

tions r). On the one hand, the accumulation function F(x) 
can be seen as an area bounded between the curve f and 
the axis, between a and x (see Fig. 7a). Then F�(x) =

dF

dx
 is 

the rate that this area changes as x moves. Therefore 
dF

dx
≈

Area under f between x and x+Δx

(small) time intervalΔx
≈

Area of rectangle f (x)⋅Δx

(small) time intervalΔx
= f (x).

How does this idea of area relate to the idea of the slope 
of the tangent line? Kirsch graphs the area accumulation 
function F0(x) (noting the difficulty of the idea that the 
changing areas on the top of Fig. 7 are being kept track of 

as changing heights on the bottom). The slope of F’s graph 
is Fa(x+Δx)−Fa(x)

Δx
 , which means:

•	 On the one hand, the average height of f in the interval 
[x, x + ∆x];

•	 On the other hand, the slope of the secant line from Fa in 
the interval [x, x + ∆x].

Then Kirsch describes how, as ∆x gets smaller and 
smaller, these become, respectively,

•	 The average height of f at x, and
•	 The slope of the tangent line of Fa at the position x.

Notice how small of a change it is to adapt this intuitive 
treatment of the FTC by replacing ∆x with dx and avoiding 
limits. The key ideas remain clear, and even become a bit 
more direct. The shaded region in the upper right of Fig. 7, 
which is Fa(x + Δx) − Fa(x) , is simply dF! Writing the rate 
as dF

dx
 directly indicates the ratio of such an area to its width.

Fig. 7   The FTC Part I, from Kirsch (2014)
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4.6 � Multivariate and vector calculus

Taking differentials seriously makes multivariate and vec-
tor calculus more quantitatively grounded and easier to use 
when modeling in physics and other arenas. In particular, 
as the geometry gets more complex, differentials can trans-
parently represent magnitudes and vectors, to more clearly 
illustrate how important identities are derived. Dray and 
Manogue (2003) illustrate this using as an example the ques-
tion of describing the infinitesimal vector displacement dr⃗ 
along a curve, whose magnitude is ds and whose direction 
is tangent to the curve (Fig. 8a–d). Because ds can be seen 
as the hypotenuse of an infinitesimal right triangle (Fig. 8b), 
the Pythagorean theorem gives us the differential equation 
ds2 = dx2 + dy2 . In rectangular vector coordinates, we have 
that dr⃗ = dx�i + dy�j  . Suppose we wish to describe this same 
displacement with polar coordinates, using as a basis r̂  as 
the unit radial vector and �̂ as the unit vector orthogonal 
to it, which points in the direction in which the coordinate 
� increases. Reasoning with infinitesimal similar triangles 
allows us to see that dr⃗ = dr�r + rd𝜙�� . The infinitesimal 
rotational factor d� has been scaled by multiplying it by 
r, to correspond to the distance along an arc of radius r, 
not of radius 1. At an infinitesimal scale, the difference is 
negligible between this straight vector component and the 
actual arc length.

It is not uncommon for standard multivariate and vector 
calculus classes to use differentials directly when describing 
vector geometry, rather than using the clumsier approach 
of writing these quantities in terms ofΔy or Δ� and then 
taking limits. For instance, consider the illustration of the 
conversion factor to polar coordinates rdrd� for a double 
integral from the Stewart textbook in Fig. 9 (Stewart 2016, 
p. 1052). This direct use of differentials is a standard prac-
tice in STE disciplines.6 For example, in a recent study of 
how experts in various STEM disciplines reason with par-
tial derivatives, physicists and engineers almost invariably 
treated derivatives and partial derivatives as ratios of small 
quantitative measurements (Roundy et al. 2015). They were 
also more comfortable than the mathematicians in approxi-
mating derivatives using small measurements, and they used 
language of differentials when doing so.

5 � Limits and limitations

In calculus classes that use differentials and infinitesimals, 
how and when do students learn about limits?

Fig. 8   a Zooming in to visualize an infinitesimal vector displacement 
dr⃗ along a curve. b Magnitude ds of displacement as hypotenuse of 
an infinitesimal right triangle. c Vector version of b using rectangular 

basis vectors. d Vector version of 8b using polar basis vectors (From 
Dray and Manogue 2003, p. 285)

6  For example, a colleague pointed out to be a well-known electro-
dynamics text (Griffiths 1999) whose summary of calculus is entirely 
differentials-based.
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Limits are taught in most such classes, although they 
appear later than in standard approaches. Limits are not 
needed for defining derivatives and integrals, but they are 
important for (a) sequences and series and (b) describing 
asymptotic behavior of functions and their graphs.7 At the 
end of my first-semester calculus class I teach students (c) 
how derivatives and integrals are defined using limits, so 
that they are familiar with how the majority of people see 
these ideas.8 I see no reason why this approach would ham-
per students’ development of a robust informal understand-
ing of limits, although I know of no research addressing 
the question. More research is warranted studying how well 
such students can work with limits in subsequent courses. 
One potential benefit for delaying the introduction of the 
limit idea is that it avoids an antididactical inversion that 
commonly occurs in standard calculus classes, when limits 
are defined before the students have met any contexts that 
warrant the definition. Delaying the idea of limits may have 
significant pedagogical benefits, as David Bressoud notes in 
his foreword to Toeplitz’s (2007) The Calculus, A Genetic 
Approach: “Though it would have been heresy to me earlier 
in my career, I have come to the conclusion that most stu-
dents of calculus are best served by avoiding any discussion 
of limits.”

This raises a more general question about using infinitesi-
mals and differentials in calculus: How well does such an 
approach prepare students for later classes? The research is 
sparse. One arena for continued study is how such students 
interpret the array of calculus notations. I have argued that 
students develop a more robust understanding of notations 
such as dy

dt
 , ∫ b

a
f (x)dx , and rdrd� , but what meanings do they 

develop for notations that do not use differentials, such as 
f ′ , f ′′ , Fx , and ẋ?

There are plenty of broader institutional limitations to 
teaching calculus with infinitesimals and/or differentials. 
Students can encounter confusion and opposition from 
their peers and other instructors. They can find it more dif-
ficult to interact with tutors, or to learn from standard online 
resources. Textbooks using infinitesimals are not (yet?) sup-
ported by vast multi-million dollar publishing companies. 
Instructors using such approaches have reported pushback 
from colleagues, particularly 30 years ago when nonstand-
ard analysis was less familiar as a rigorous grounding for 
infinitesimals (Pittenger 1995). These institutional factors 
can make teaching calculus with infinitesimals and/or differ-
entials feel like swimming upstream, but if this was a good 
enough reason not do something, when would change ever 
occur? The benefits for student understanding of calculus, 
as research has been uncovering, make it worth the effort.
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