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Abstract
Educators often argue that students should engage in activities such as conjecturing, proving, and deductive reasoning. The 
underlying principle is that learning mathematics means doing as mathematicians do. However, “mathematician” implicitly 
refers to a pure mathematician at university. The aim of our paper is to critically question the logic model underpinning 
these premises in order to suggest which aspects of mathematicians’ practice could be salutary for students in schools and 
university and which are not. We argue that aligning learning with these practices might not meet the broader educational 
goals of pragmatism and vocationalism. We show that activities attributed to pure mathematicians are largely ignored by 
biologists, engineers, and physicists and in workplace settings. In contrast the practices of professional modellers are highly 
valued. We argue that such practices are desirable for learning to use and apply mathematics. Next, we illustrate the suitability 
of practices from studies of professional modellers and applied mathematicians for classroom learning using empirical data. 
We conclude that the interpretation of mathematicians’ practice to be emulated must be broadened to include professional 
modellers’ practices to better serve meeting educational goals for more students.

Keywords Citizenship · Goals · Mathematicians’ practices · Mathematical modelling · Occupational preparation · 
Professional modellers

1 Introduction

In many countries, influential guiding documents such as 
Adding It Up (Kilpatrick et al. 2001), Principles and Stand-
ards (National Council of Teachers of Mathematics 2000), 
the Common Core (National Governors Association Center 
for Best Practices and Council of Chief State School Officers 
2010) and The Stockholm Declaration (Centre for Curricu-
lum Redesign 2013) seek to shift how teachers, educational 
researchers, and the public view mathematical knowledge 
and achievement. Watson (2008, p. 3) articulates these 
expectations well:

school students should be introduced to authentic 
mathematical activity such as is practiced by profes-

sional mathematicians, and those forms of explora-
tion that contribute to the development of the subject. 
Through this kind of activity, students get a sense of 
mathematics as a human invention, as certain habits 
of mind, that is more engaging and meaningful than 
learning a procession of given facts, methods, and 
question-types.

The logic model that we see as supporting the shift we 
have unpacked as the following premises:

1. Imitation of experts’ practice in scholastic settings leads 
to development of expertise of that discipline (Zhou and 
Gou 2016).

2. Learning the discipline of mathematics means learn-
ing it as professional mathematicians (are perceived) to 
know and practice it (Fernández-León et al. 2020; Harel 
2008).

3. Professional mathematicians should be taken to mean 
research-active pure mathematicians.

4. The core practices of research-active pure mathemati-
cians are conjecturing, proving (Alibert and Thomas 
1991), and deductive reasoning (Harel 2008).
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5. Therefore, to learn mathematics, students should engage 
in conjecturing, proving and deductive reasoning in the 
classroom.

The first premise of the model is underpinned by a peda-
gogical assumption so commonly held as to have garnered 
support from students themselves (Zhou and Gou 2016). The 
second premise follows immediately, and can be expanded 
as “students should participate in the classical practices of 
mathematicians approaching to the way mathematicians 
do it” (Fernández-León et al. 2020, p. 1). These ideas are 
not limited to mathematics education. In many countries, 
students are expected to learn science by practising scien-
tific method (Bauer 1994; Williams 2018), for example. In 
essence the premise is, in order to learn X, students should 
do X by emulating how professionals do X. From here there 
remain two further details to work out: what is X? and who 
are the professionals? Determining the appropriate X’s for 
mathematics requires some philosophical reflection on the 
nature of mathematics. Judging from statements in policy 
and curriculum documents from around the world (e.g., 
Queensland Curriculum and Assessment Authority 2019), 
the field has achieved the following consensus: mathematics 
is a science of patterns (Steen 2017) and it is essentially a 
human activity (Hersh 1997) that is as much a way of sanc-
tioning and organizing knowledge as it is a body of knowl-
edge or collection of skills. In keeping with these views, 
educators often argue that students should learn to conjec-
ture, problem solve, and prove. Indeed, Schoenfeld (2016, 
p. xii) recently prefaced a volume on teaching mathematics 
to elementary school students by stating that, “If problem 
solving is the ‘heart of mathematics’, then proof is its soul”.

The fourth premise about the core practices constituting 
doing mathematics that students should emulate rests upon 
assumptions about who are the correct disciplinarians, that is 
premise #3. Often, the “professional mathematicians” are taken 
to be pure mathematicians teaching at research universities. 
We infer this from the kinds of skills that are suggested for 
students to learn (deduction and proof) (see Davis 2014), the 
mathematicians who are commonly cited such as George Polya 
and William Thurston both of whom endorse pure mathemati-
cal goals, and from the samples of experts whose opinions are 
typically sought by mathematics educators conducting research 
on what mathematics should be taught (e.g., Harel 2008) or 
professional mathematicians’ practice (e.g., Fernández-León 
et al. 2020; Misfeldt and Johansen 2015; Smith and Hungwe 
1998). For example, educators argue that in order to be suc-
cessful problem solvers and provers, students should learn to 
reason deductively and be convinced by deductive arguments, 
as research mathematicians do and are (Harel 2008); that stu-
dents should learn to work from givens to goals, even when 
the goal is not immediately apparent (Goldin and McClintock 
1984); and develop the syntactic–analytic skills (i.e., render 

propositions into symbols and operate logically on them) that 
will allow them to communicate their ideas to a critical audi-
ence (Zazkis et al. 2016). In addition, the tasks investigated 
with mathematicians usually involve problem solving (e.g., a 
difficult geometry problem, Schoenfeld 1992; fraction order 
and equivalence, Smith and Hungwe 1998) or proof (e.g., 
Weber 2008) in pure mathematics. Implicitly or explicitly, these 
core practices are derived from research studies with samples 
constituted by university-based, pure mathematicians.

The aim of our paper is to critically question this logic 
model, as others have done for parts of the model previously 
(e.g., Lesh and Zawojewski 2007), in order to suggest which 
aspects of mathematicians’ practice could be salutary for 
students in schools and university and which are not. While 
we believe there are grounds to question Premises #1 and 
#2, we specifically seek to cast doubt on, and argue against, 
Premise #3. Even if we accept that adoption of experts’ prac-
tice is the appropriate pedagogical approach for students to 
develop skills within the discipline, it does not follow that 
research pure mathematicians’ practices are the only ones 
or even the correct ones to emulate. We build our argument 
by considering two common goals of education in general 
that can be applied to mathematics education specifically: 
pragmatism, and vocationalism.

Pragmatism in the context of educational goals encom-
passes Dewey’s notion of “civic efficiency or good citizen-
ship” (1916, p. 140) fostering a capacity for good judgment 
as an effective member of society. Vocationalism is a closely 
related but utilitarian goal incorporating preparation for the 
world of work as well as managing economic resources effi-
ciently within a democratic society (Gonon 2009). In short, 
education is undertaken in pursuit of an occupation.

We will cast doubt on Premise #3 by first arguing that 
using research-active pure mathematicians’ practices 
(Premise #4) as the basis for statements about what should 
be done in mathematics education does not necessarily fully 
meet the goals of mathematics education for most students. 
We will then argue that a modelling or applications-based 
approach bedded in practices of applied mathematics can 
easily meet pragmatism and vocationalism goals. We con-
clude that our classrooms perhaps should be emulating the 
ways that applied mathematicians, statisticians, or inter-dis-
ciplinarians from scientific, social, and allied health fields, 
to name a few, use and know mathematics in addition to 
some of the ways that pure mathematicians use and think 
about mathematics.

2  Goals of mathematics education

Our aim in this section is to cast doubt on the ability of an 
educational paradigm, where teaching creates opportuni-
ties for students to emulate the practices of research-active 
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pure mathematicians, to meet the various perceived goals of 
mathematics education. We consider the two goals identi-
fied above.

2.1  Pragmatism

One goal of mathematics education is educating the citi-
zenry to be competent decision-makers. In this view, stu-
dents learn mathematics to help them reason in order to 
make good decisions or to promote social justice (Dewey 
1916). Pragmatism derives from Dewey’s views that teach-
ing children to live in their current environment is society’s 
great responsibility. Pragmatism means “thinking of or deal-
ing with problems in a practical way, rather than by using 
theory or abstract principles” (Collinsdictionary.com). The 
interests and needs of those being educated are to be fore-
most in developing their civic consciousness in preparing 
them for being critical members of society. Most problems 
that students encounter in their environments, whether the 
real-life problems generated within their communities (e.g., 
flooding of their school and local community, Quiroz et al. 
2015) or the problems found in STEM classrooms (e.g., 
recreating custom colour paint, Carreira and Baioa 2018) 
do not benefit solely from purely deductive arguments that 
produce logical consequences from explicit premises. War-
rants of deductive reasoning alone cannot resolve authentic, 
real-world problems completely; analysis of problems with 
real-world origins benefit from reasoning that may be obser-
vation-, evidence-, policy-, or especially values-based (e.g., 
English and Watson 2018). Even if real life and curricular 
problems did benefit from deductive reasoning, and even if 
deductive reasoning was successfully applied to mathemati-
cal problem solving in a mathematics classroom, there is 
ample evidence that reasoning does not automatically trans-
fer to make those skills available for use in other domains 
(Carraher and Schliemann 2002; Inglis and Attridge 2017).

2.2  Vocationalism

The second purpose we consider is perhaps the most familiar 
contemporary claim in support of teaching mathematics at 
all: that mathematical knowledge is necessary and desirable 
for preparation for an occupation (Gravemeijer 2013). The 
argument derives from the view that a goal of education is to 
meet societal need and, especially, economic demand. Many 
research papers, policy papers, and grant proposals appeal 
to this purpose when they invoke the “STEM pipeline” (see 
Freeman et al. (2014), for an example of this positioning). 
Within this purpose lies the greatest distance between the 
desired outcome (career preparation) and the purported 
means of achieving it (teaching students to reason like pure 
mathematicians). We begin with a crude overview of soci-
etal need and economic demand in terms of bachelor degrees 

awarded (2016, USA from datausa.io) and workforce size in 
the USA for a variety of fields.

Table  1 shows that economic demand for educating 
mathematicians is least of the mathematics-dependent 
disciplines. It is therefore appropriate to question why the 
occupational training for 4.23% of the population with the 
highest mathematics requirements in post-secondary educa-
tion should dominate the K-12 educational paradigm (not 
even 4.23% of the college-bound population, let alone the 
general population!). Thus, we should question what math-
ematical knowledge should be taught and how it should be 
known in order to benefit students who pursue careers in 
these other disciplines. In many fields, such as political sci-
ence, psychology, economics, allied health, sociology, and 
anthropology, amongst others, there has been a sizable shift 
in the undergraduate curriculum away from the traditional 
calculus sequence and towards requirements for statistics, 
probability, and simulations. We take examples from recent 
educational scholarship conceptualizing mathematical needs 
of three disciplines and the general workplace.

Biology is one of the fastest growing STEM fields. Steen 
(2005) enthused that “after a century’s struggle, math-
ematics has become the language of biology” (p. 22) and 
explained that biology is no longer a safe haven for the 
mathematics-averse. Wilson Sayres et al. (2018) surveyed 
1260 biology faculty who stressed the importance of mod-
elling biological systems which is facilitated by technical 
and algorithmic advances. However, they also noted that 
mathematics education lags behind meeting the needs of 
contemporary biologists. The field increasingly uses large 
data sets and requires skills in statistics and computer sci-
ence with a focus on quantitative reasoning, modelling, and 
simulating complex systems (Feser et al. 2013). Biologists, 
then do not have a great need for the content knowledge 
typically emphasised in mathematics major coursework, like 
deductive proof. Biology is not unique in this respect.

Even in classical applied fields like physics or engineering, 
scholars argue that the disciplinary practices of research-active 
pure mathematicians may not be the ones to emulate (see, e.g., 
Haines 2011). For example, van der Wal et al. (2017) reported 

Table 1  Societal need and economic demand in terms of bachelor 
degrees awarded and workforce size

Discipline 2016 Degrees Average wage Work-
force size 
(M)

Biology 150,020 $103,208 2.63
Mathematics 28,073 $95,155 0.72
Physical Sciences 51,276 $106,668 1.08
Engineering 180,651 $109,324 4.3
Allied Health 121,752 $74,141 4.1
Social Sciences 194,755 $93,738 3.68
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that practising engineers agreed that mathematics should be 
“taught in context to enhance student motivation” (p. S98). 
They also characterized the mathematics used by practising 
engineers as technomathematical literacies (Noss and Hoyles 
2010) such as developing a sense of number and error, data 
literacy, and technical software skills. Gainsburg (2007) noted 
that the justification practices of engineers diverge substan-
tially from those of school mathematics,

In school mathematics, starting assumptions (the 
givens of the problem and mathematical axioms and 
postulates) are accepted as true—the student need not 
establish their accuracy—and the real challenge is to 
construct a chain of logic linking them to the desired 
end statement. For engineers, many of the starting 
assumptions—simplifications of the design and envi-
ronmental conditions—were not established, and iden-
tifying appropriate ones and justifying their accuracy 
were typically the main challenges. Once the assump-
tions were set, proving that the design was structurally 
sound was usually mathematically trivial. (p. 485)

Elsewhere, scholars have argued that applying or consuming 
mathematics is of greater importance than capacity to create 
it (e.g., Douglas and Attewell 2017). Collins (2007) reported 
that, even for physicists for whom consumption of mathemat-
ics is extremely important, 85% of the practising physicists he 
surveyed reported reading mathematical results only up to a 
level of stepping through a proof without trying to reproduce 
it, that is, “they could get by with not much more mathematical 
ability than the most mathematically weak of their colleagues” 
(p. 681). Further, he stated provocatively that, although some 
physicists are highly accomplished mathematicians,

a high level of mathematics is not used much of the 
time by most physicists and none of the time by a few 
physicists opens the way to a new understanding of 
what it means to be a physicist. Existing undergraduate 
educational programs imply that to be a physicist is to 
be a mathematician. (p. 684)

Greca and Moreira (2001) also argued that comprehension 
of a physics topic is tantamount to predicting phenomena 
without reference to mathematical formalism. Niss (2012), 
citing Redish (2005)’s argument that solving physics prob-
lems requires something other than what students learn in 
mathematics, claims that mathematicians and physicists 
interpret and use equations differently as physicists “combine 
conceptual physics and mathematical symbolism” (p. 12).

Finally, in the workplace, Douglas and Attewell (2017) 
found that only a small proportion of workers use school or 
higher mathematics to carry out their work. Only 2.6 mil-
lion employees of 123 million in the USA workforce (2%) 
reported their jobs needed mathematical skills at or above 
the level of calculating the square footage of a house. Wake 

(2014) identified specific ways of connecting and using 
mathematical ideas without appealing to formalism such 
as producing and using measures or examining the “math-
ematical structure of measures that are productions of oth-
ers” (p. 287), echoing Thompson’s (2011) discussion about 
the centrality of quantification and quantitative reasoning to 
knowing mathematics in a usable way. These skills identified 
as crucial to technical disciplines, such as number sense or 
conducting dimensional analysis, are often seen as separate 
skills from conjecturing, proving and deductive reasoning 
but often feature in the practices of professional modellers 
(Drakes 2012). This is not to say that developing competen-
cies in proving or deductive reasoning are incompatible with 
disciplinary practices and needs, but we have, as yet, very 
little evidence to suggest that the former results in the latter.

2.3  Summary

Research-active, pure mathematicians regularly engage in prac-
tices like proving, logical and deductive reasoning, and problem 
solving using syntactic–analytic skills to solve problems. As we 
have argued, adopting these specific ways of understanding and 
using mathematics does not automatically lead to achieving the 
goals of mathematics education. In contrast, and for some pur-
poses, emulating them may lead away from the corresponding 
educational goals. When we consider problems with real world 
origins, we find that the ways that mathematics is understood 
and used can be quite different. The goal in these problems is 
to gain insight or make predictions about phenomena in the 
world. There is good reason for our educational goals to value 
empirical insight over deductive rigour.

3  Mathematical modelling and applications

As many others have done previously (e.g., Villa-Ochia 
and Berrío 2015), we propose mathematical modelling as 
the key that will allow us to meet many espoused goals 
of mathematics education. Several mathematics curricu-
lar statements (e.g., Argentina, Villareal et al. 2018, Brit-
ish Columbia Ministry of Education, 2020) continue to 
support the capability to solve problems arising in work-
places, everyday life and society as a major goal of math-
ematics education. In Ireland, for example, the purpose of 
a mathematics education in the reform oriented national 
curriculum is to enable students to “actively participate 
in their communities and society” (NCCA 2017, p. 3). 
The Singapore Mathematics Framework, for primary to 
pre-university, has emphasised a core focus on problem 
solving and more recently applications and modelling as 
one of the three processes supporting this (e.g., Ministry 
of Education, Singapore 2012). So, what are mathematical 
modelling and mathematical applications?
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3.1  What are mathematical modelling 
and applications?

“An application of mathematics occurs every time math-
ematics is applied, for some purpose, to deal with some 
domain of the extra-mathematical world” (Niss et al. 2007, 
p. 3). Modelling is the process of constructing mathemati-
cal model(s) through structuring some extra-mathematical 
domain, using suitable mathematics to work mathemati-
cally to describe a situation within the extra-mathemati-
cal domain, or to provide answers to questions about that 
situation. This is done through interpreting and evaluat-
ing conclusions about the situation based on results from 
mathematical working. First, or even, later models might 
not provide desirable outcomes so the whole process is 
iterative allowing for both refinement and further extended 
exploration of the beginning situation.

Often, the process renders an ill-defined real-world prob-
lem as a well-defined mathematical problem that can be 
solved using available mathematical techniques. The solu-
tion must then be verified mathematically but also validated 
against real-world constraints. Since the real-world con-
straints are often competing values and priorities held by 
the modeller or the client, or society at large (Pollak 1997), 
validation often requires judgments that extend beyond the 
realm of pure mathematics (Gainsburg 2006, p. 31).

Today, many professionals engage in mathematical model-
ling in academia and in industry (Haines 2011). They engage 
in practices that allow them to assess risk to banks or assets, 
understand human-resource dynamics, to predict weather 
or climate, or plan rush hour traffic patterns, to name a few 
(Frejd and Bergsten 2018). We agree with Lesh and Zawo-
jewski (2007) that beyond the academic requirements for entry 
into careers, students have a need to understand, describe, and 
explain the social and economic systems in which they oper-
ate. Teaching designed to meet these goals would emphasize 
practices like using mathematics to create, construct, refine, 
adapt, describe, explain, manipulate, predict, simulate, and 
design in service of a client’s (or one’s own) needs (Frejd and 
Bergsten 2016; Lesh and Zawojewski 2007). Clients need 
models adequate for specific purposes, which often means 
using mathematical principles and representations to solve 
ill-defined problems constrained by values or priorities, rather 
than seeking “correct” answers that could be logically justified.

3.2  What could students learn 
through mathematical modelling?

Four of the practices that are inherent in the practices of 
professional modellers as identified in several studies of 
their practices and are suitable in regular classrooms are: 
(1) making meaning for decision making in the situational 
context and mathematical representations of this context 

(Drakes 2012; Frejd and Bergsten 2018), (2) anticipating/
mathematical foresight (Maciejewski and Barton 2016), 
(3) argumentation based on judgments beyond the realms 
of mathematics (Ekol 2011; Pollak 1997; Spandaw 2011), 
and (4) validating or justifying (Drakes 2012; Frejd and 
Bergsten 2018). In this sub-section, we will (1) argue that 
mathematics education based in such practices associated 
with mathematical modelling is within the capabilities of 
students, and teachers, in regular classrooms, and (2) illus-
trate these practices with empirical examples.

3.2.1  Student and teacher capabilities in regular 
classrooms

English (2003) noted that young learners in elementary 
and middle school years, given appropriate modelling 
tasks, are capable of engaging in mathematical processes 
such as describing, analysing, coordinating, explaining, 
constructing, critical reasoning, argumentation, and gen-
erating a generalizable model, during mathematization of 
objects, relations, patterns, and rules. These are the same 
practices mentioned above by Frejd and Bergsten (2016) 
and Lesh and Zawojewski (2007). In a study by Brown and 
Stillman (2017), 25 Year 6 students (12 years old) being 
introduced to modelling to develop a modelling conception 
of mathematics (Houston et al. 2010) began to develop 
a conception of mathematical modelling not only as a 
way of handling problems, particularly real-world ones, 
but also as a broader conception of mathematics being 
a way to think about life. Recently, Fulton et al. (2019) 
have reported similar mathematical engagement with stu-
dents as young as 6 years old in different modelling tasks. 
Fulton et al. found that teachers were able to design and 
implement modelling tasks, in the regular classroom, that 
promoted opportunities for all students to solve problems 
that mattered to them.

3.2.2  Addressing four key practices promoted 
by mathematical modelling

In the following we illustrate with paradigmatic examples,1 
the four practices from the modelling of professional mod-
ellers that we identified as being of potential benefit to a 
mathematical classroom. In describing these practices we 
are moving beyond the notion of trying to directly teach 
what experts do or prescribing lists of their modelling 

1 Practices are illustrated by episodes from classroom video clips, 
teacher observation records and group posters from two groups of 
Year 5/6 students. Names are pseudonyms. The episodes were col-
lected in the TALR project.
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behaviours as processes that modellers in schooling or 
university must learn. We want to capture the essence 
of what the doing, seeing and making judgments in pro-
fessional modellers’ work entails which can be mined to 
pursue educational goals in mathematics classrooms. The 
four practices will be illustrated by points from studies of 
professional modellers’ practices followed by a classroom 
episode that will be analysed and related to professional 
practice. The last two practices will be exemplified within 
the same classroom episode as in reality most of these 
practices interrelate.

Making meaning. In Drakes’ study (2012) of 14 profes-
sional modellers’ practices, the experts reported they usually 
started from the perspective they were ignorant of the problem 
situation they were modelling so the majority identified try-
ing to understand the problem before starting as their initial 
action. For them, making meaning of the situational context 
from which the problem is posed could be through exploration, 
researching literature, gathering data, discussion or simplifica-
tion. These modellers claimed to use most often the heuristic, 
draw a picture, to clarify understanding of the situation and to 
represent what the words being used by the problem poser and 
those the modeller was collaborating with, meant.

Our first example involves a group of three Year 5/6 stu-
dents trying to make meaning of the Hay Bale Stacking Task 
(see top of Fig. 1) through discussion. At one point they 
begin discussing whether a triangular haystack, say 5-high, 
is the same height as five times one hay bale or if when the 
cylindrical bales intertwine into those below the result is 
a different height. Simone had simplified the problem to a 
2-high stack to explore this further. Figure 1a–f shows the 
transcript of a video clip of their exchange and diagrams 
involving rough sketches of bales as approximate circles 
and freehand drawn lines representing the alternative situa-
tions. However, the inaccuracies in these diagrams allowed 
both the claimant of equal height, Jen, and the challenger, 
Simone, to support their cases, albeit without a resolution. It 
was only when the more conventional diagrammatic repre-
sentation of straight lines and circles of equal radii through-
out (Fig. 1 g, h) was used that a resolution ensued. Simone 
was able to convey the meaning he wanted visually in order 
to justify his challenge, persuade his two collaborators and 
confirm what he was seeing mathematically.

This is an example of young students making mathemati-
cal meaning from, and imbuing meaning into, a particular 
situation using firstly, inadequate representations to gain a 
resolution of differing claims based on nothing other than 
the loudest voice. The final warrants for decision making are 
not based on purely logical/deductive reasoning but on more 
conventional mathematical representations. The argument for 
this final resolution involves both mathematical representa-
tions that bring accuracy to the modelling of the situation 
and real-world experience that allows Simone to bring in the 

more realistic model of the situation involving representation 
of the haystack as including intertwining of bales rather than 
the more simplistic model of separate layers of annuli. In 
essence, the use of the draw a picture heuristic has provided 
the students with a means to go beyond their current ways of 
thinking and communicating about the problem so all can see 
it more mathematically (Lesh and Zawojewski 2007), albeit, 
geometrically. The basis of their conviction is visual, oft 
invoked as “a hindrance to progress in proofs” (Dove 2002).

Anticipating Maciejewski and Barton (2016) have con-
firmed a conceptualisation of what they term mathemati-
cal foresight by interviews with five mathematicians both 
pure and applied. Mathematicians engage in a process when 
faced with a novel mathematical situation that allows them 
to foresee a path to resolution. “Mathematical foresight is 
a preliminary, global view of the resolution destination and 
trajectory and may aid in making strategic decisions along 
the way” (p. 27). The mathematicians agreed they regularly 
engaged in this practice and it contributed to their anticipa-
tion of how to proceed. There is an analogue in mathemati-
cal modelling which Niss (2010) has labelled implemented 
anticipation. Such anticipating can be evident throughout 
the modelling process. This practice involves repeated fore-
seeing and feedback onto subsequent actions (Stillman et al. 
2015). We illustrate it with respect to reaching an interim 
goal in modelling.

In this next episode from the Hay Bale Stacking Task 
(Fig. 1), another group foresees an approach to estimate the 
height of the stack of hay bales which they wrote on their 
poster in different coloured pens (so each writer was known) 
and then implemented for a 5-high stack and adapted for a 
7-high stack. In the following they are foreseeing the path.

Katie: We have to figure out the height of 1 bale. 
[anticipating height of bale will be helpful]
Alia: If we figure out the size of 1, what can we do? 
What can we do to figure out the height of 5? [collec-
tive questioning] If we find out how to measure the 
height of 1 bail (sic) [interim goal], we can multiply 
that by 5. [plan to reach goal.]
Katie: Maybe the height of 1 bale is the same height 
as the person. [anticipating how height of bale can be 
estimated]
Alia: How tall is the person? [collective questioning]
Maria: The person is maybe taller than the bale stand-
ing up. [anticipating how to estimate person’s height]
Katie: The person’s body is about the same size as 
the bale. [identifying relationship between situational 
features]
Maria: The person in the picture is not as tall as 
[teacher]. [identifying relationship between situational 
features] We could ask [teacher] to stand next to the 
door to measure.
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Voicing one step in their approach triggered the foresee-
ing of the need for a subsequent one, setting in train a set 
of thoughts, and their articulation and recording, with one 

step pre-empting the need for another until an anticipated 
path to the interim goal was reached. These voicings and 
recordings occurred in a seemingly haphazard fashion as 

Fig. 1  The Hay Bale Stacking Task episode. (Task adapted from Bale of Straw Borromeo Ferri 2007)
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thoughts were articulated and written down immediately in 
whatever space was available on the first poster sheet. The 
actual beginning and end points and the projected probable 
actions that connected them had to be held in the modellers’ 
minds so they could feedback their foreseen actions onto 
current actions as they happened. The actual implementation 
of these anticipated steps requires the carrying through of 
corresponding decisions and actions to bring those antici-
pated forthcoming moves into fruition (Stillman et al. 2015). 
This occurs dynamically, in the moment, and might not lead 
to successful implemented anticipation of the foreseen path. 
There was no carefully written step by step recorded plan in 
the Polya (1945) sense a priori. The actual recorded plan on 
their second poster sheet was an a posteriori record of what 
they did recorded after the modelling was completed, with 
their mis-steps along the way omitted.

Validating and argumentation. Validation in the sense of 
verifying that the model constructed or adapted was mathe-
matically correct and acceptable for answering the questions 
posed within the real world situation being modelled was an 
integral practice in all the studies of professional modellers’ 
practices that we reviewed. The actual techniques used to do 
so differed depending on the type of modelling being under-
taken and the interests and purposes of those commissioning 
the modelling. Rather than checking they were pursuing “the 
correct solution”, modellers in Drakes’ study (2012) high-
lighted that there was no such thing as “the correct model” 
but instead the model(s) they were constructing or adapting 
needed to be consistent and make sense especially if no data 
were available for verification purposes and the model could 
not be used to generate predictions or experimental output. 
For argumentation, as Gainsburg found in her ethnographic 
study of structural engineers, “mathematical justification 
alone is insufficient for accepting a model or method or 
result” (2006, p. 31) in many instances.

In a subsequent episode in the Hay Bale Stacking Task, 
Maria noted that the teacher’s height was ¾ of the height of 
the door in the open classroom space where her group was 
working, making his height almost 2 m by their estimation. 
He confirmed he was 196 cm tall (verification). To estimate 
the height of a bale, they used their estimate of the height 
of the person on the haystack. They noted the person was 
shorter than their teacher. Alia suggested this person was 
160 cm tall because he was a teen. The implication was he 
would be taller than the girls who were not teenagers; but 
Katie said her own height was around 140 or 150 cm and 
estimated the person’s height to be about 155 cm, which they 
all agreed was their final estimate for the height of one bale. 
The final result was the product of a series of adjustments 
in argumentation based on judgments that extended beyond 
the realm of pure mathematics into their prior experiences 
for justification.

4  Discussion

In this section, we discuss how (1) mathematical modelling 
and applications contribute to the learning of mathematical 
content and positive affect in mathematics classrooms, and 
(2) mathematics education based in the practices associated 
with mathematical modelling practices of professional mod-
ellers is able to address the mathematics education goals 
outlined previously.

4.1  Consequences for content and affect

In undergraduate coursework, learning of mathematics 
content (concepts, definitions, techniques) is enhanced by 
attending to modelling practices and connections to real-
world principles (Czocher 2017). The same holds in sec-
ondary and post-secondary levels more broadly (Han et al. 
2015) as well as in primary grades (English 2006; English 
and Watters 2004). Moreover, through modelling, students 
learn to create significant mathematical ideas that attend 
to structure, are shareable and reusable, and are effective 
prototypes for similar problems encountered in the future 
(Lesh et al. 2000). Through carefully designed modelling 
tasks, students learn to critique, justify, and generalize. Self-
efficacy positively predicts performance when solving mod-
elling problems (Sharma 2013), as it does in mathematics 
generally (Pietsch et al. 2003), but the association does not 
end there. Working on reality-based mathematics problems 
in the classroom and modelling tasks contribute to positive 
student affect, especially when paired with student-centred 
modes of teaching (Schukajlow et al. 2012). Likewise gains 
in self-efficacy have been recorded for students working on 
extended modelling problems in an extracurricular setting 
(Czocher et al. 2019).

4.2  Meeting the goals

In addition to individual gains in knowledge and affect, 
creating opportunities for learners to engage in modelling 
practices has the potential to meet educational goals for a 
greater proportion of students.

First, modelling and applications empower learners to 
use mathematical knowledge to support their decision mak-
ing as future citizens. An example comes from Gutstein’s 
(2003) classroom where over 2 years, students learned to 
read and write the world, thus developing “mathematical 
power” (p. 45). Gutstein (2003) concluded that the learn-
ers exhibited capacity to use mathematics to hold and 
defend critical viewpoints as well as to dissect society and 
understand inequality, a point made by several mathemat-
ics educational researchers investigating practices in their 
own classroom (e.g., Almeida and Silva 2015; Villa-Ochia 
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and Berrio 2015). This is exactly the pragmatist’s argument 
for the value of mathematics education. Clearly tasks must 
be designed to include issues and decisions that have ethi-
cal, moral, social or cultural aspects and these be taken into 
account during modelling to ensure or advance “the sustain-
ability of health, education and environmental well-being, 
and the reduction of poverty and disadvantage” (Niss et al. 
2007, pp. 17–18). There have been moves in this direction 
recently. Maass et al. (2019) have conducted an interdisci-
plinary international design research study in Europe which 
developed teaching and professional development materials 
connecting mathematics and science education to citizen-
ship education which include such modelling tasks. That 
professional modellers consider ethical aspects in their deci-
sion making was demonstrated in Frejd and Bergsten’s study 
(2016).

Second, from the vocationalism standpoint, if capacity 
for prediction, empirical insight and contextual decision-
making are what occupations desire then students should 
have modelling experiences that cultivate these. Learning 
to mathematically model problems found in the real world 
provides a means of gaining insight within a communal envi-
ronment about how the world works as modelling is done 
in teams both professionally (Drakes 2012) and in educa-
tion (Stillman et al. 2015). It also develops a broader con-
ception of mathematics as being a way to think about life 
(Houston et al. 2010). Deriving, adapting and interpreting 
mathematical models of phenomena subject to stakeholders’ 
constraints allow prediction of future outcomes in single sit-
uations and also simulation of outcomes across many, poten-
tially variable, situations. For example, graphs can provide 
insight into (and eventually upper bounds for) how quickly 
rumours can spread in a social network (Doerr et al. 2012). 
In fact, different kinds of graphs operating under different 
assumptions about how effectively the nodes exchange infor-
mation will yield different results. A good model can capture 
many possibilities at once leading to further insights about 
how seemingly disparate situations might be closely related 
in terms of the natural laws governing the underlying phe-
nomena. Thus, mathematical models also have the power to 
provide insight into phenomena (Bliss et al. 2016), offering 
explanations for why a phenomenon unfolds the way it does.

Providing educational opportunities for learners to 
engage them in modelling practices valued by STEM dis-
ciplines or professional modellers satisfies pragmatism and 
vocationalism goals. Together, these opportunities contrib-
ute to another advantage: the epistemological stance that 
results—even those arising from mathematical analyses—
are not certain or infallible. Since “our model is not the full 
truth, it is only justified, if certain conditions are fulfilled, 
if our parameters are reliable; if we forget that, we become 
responsible for errors in the simulation of finance models, 
of ash clouds, of evacuation plans” (Neunzert 2013, p. 59) 

so modellers must be ever vigilant. In contrast mathematical 
results obtained deductively are regarded as secure. If young 
students learn through proving and mathematical problem 
solving that mathematical results are certain and infallible,2 
and that deductive reasoning is the only reasoning that is 
valued, then either there is no possibility for revision, or 
these other forms of reasoning necessary to apply mathemat-
ics are less valued. Or, perhaps because the disciplines and 
‘real life’ value evidence-based or values-based reasoning, 
deductive reasoning (at least for students who do not major 
in mathematics) must be reframed so that students recog-
nise its application in the logic of everyday and scientific 
argumentation.

5  Concluding remarks

Our aim was to critically question a logic model underpin-
ning the notion that teaching and learning, regardless of 
level, should be based on the practices of pure mathemati-
cians, in order to suggest which aspects of mathematicians’ 
practice could be salutary for students in schools and uni-
versity and which are not. Our analysis suggests that the 
broader educational goals of good citizenship (pragmatism) 
and occupational preparation (vocationalism) may be more 
effectively formulated in terms of practices of professional 
modellers such as making meaning for decision making in 
the situational context and its mathematical representation, 
anticipating, argumentation based on judgments beyond 
mathematics, and validating or justifying. In suggesting 
this we do not mean to set up a false dichotomy between the 
kinds of practices employed by research-active pure math-
ematicians and professional modellers. Mathematics is of 
course necessary for mathematical modelling. Thus we have 
suggested that the notion of mathematicians’ practice needs 
to be broadened to include the essence of what the doing, 
seeing and making judgments in professional modellers’ 
work entails for the professional practices of mathemati-
cians that students could emulate in learning mathematics 
and meeting educational goals.

Though there is overlap between the practices of profes-
sional modellers and mathematical problem solving prac-
tices, there are differences in what are acceptable standards 
of conviction and the uses to which aspects of those practices 
are put. There is overlap in justifying, for example. Model-
lers must justify their model by validating it against real-
world constraints, using evidence in the form of empirical 

2 Even some mathematicians and mathematics philosophers doubt 
the claim that proving a theorem makes the result certain or infalli-
ble–Czocher and Weber (2020) elaborate on this position in the con-
text of defining proof.
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data, through verifying their mathematical analysis, by 
checking the theoretical consistency, or matching outcomes 
to stakeholders’ (perhaps incompatible) constraints. These 
tools allow them to establish the limitations of their model, 
setting and communicating its scope or domain of validity. 
Though the warrants for justification in modelling may at 
times differ from those in proving, they are equally impor-
tant to disciplinarians and applied mathematicians in aca-
demia as they are to their counterparts in industry (Drakes 
2012; Frejd and Bergsten 2016).

It is clear to us, and to most who advocate for model-
ling in the classroom, that models are necessarily dependent 
upon the mathematical knowledge and representational flu-
ency of the modeller. As mentioned above, English (2003) 
noted that all young learners, given appropriate modelling 
tasks, can engage in the important mathematical processes 
that underlie the mathematical practices we advocate. Fur-
thermore, in doing so, they “develop important mathematical 
ideas and processes that would be largely untapped in more 
traditional classroom activities” (p. 13). In the ideal class-
room, we see a symbiotic relationship between mathematics, 
the situations it can be mapped to, and the kinds of reason-
ing that bind the two, advancing mathematical thinking and 
educational goals.
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