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Abstract
This paper introduces two central questions (1) what are available methodologies for making claims about mathematical 
practice and (2) when and how do claims about mathematical practice influence mathematics instruction. To motivate these 
questions, we critically analyze the relationship between research into mathematicians’ practice and the design of mathemat-
ics instruction in three ways. First, we describe three influential research programs in mathematics education and illustrate 
how each research program uses claims about mathematical practice to inform their instructional goals. Second, by examin-
ing these important works, we highlight intrinsic difficulties in investigating mathematical practice. Our conclusion is that 
every research methodology for investigating mathematical practice is fundamentally limited and we require triangulation 
from multiple methods and theoretical lenses to fully understand mathematical practice. Third, we highlight reasons for why 
mathematical practice sometimes should not inform mathematics instruction. We conclude this paper by discussing how the 
articles in this special issue address our two central questions.
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1 Introduction

Many mathematics educators believe that mathematicians’ 
practice should inform the way that mathematics is taught 
to students. In particular, many mathematics educators 
maintain that classrooms should be organized so students 
participate in similar activities and engage in similar inter-
actions to those that mathematicians do (e.g., Ball & Bass, 
2000; Lampert, 1990; Harel & Sowder, 2007; Schoenfeld, 
1992; Sfard, 1998; Weber, Inglis, & Mejía-Ramos, 2014; 
see Skovsmose, 2020, for a dissenting viewpoint). As such, 
some mathematics educators believe that understanding how 
mathematicians engage in mathematical practice has impli-
cations for how mathematics classrooms should be organ-
ized, and thus they believe that research into mathemati-
cians’ practice is relevant for mathematics education. For 
a more comprehensive discussion, see Schoenfeld (1992).

Because some mathematics educators perceive a link 
between mathematicians’ practice and mathematics instruc-
tion, research into how mathematicians practice their disci-
pline exists as a legitimate branch of mathematics educa-
tion research, at least to the extent that articles investigating 
mathematical practice appear in leading mathematics 
education journals. In the last two decades, the journal 
Educational Studies in Mathematics has published inquir-
ies into how mathematicians solve problems (Carlson & 
Bloom, 2005), learn new mathematics (Wilkerson-Jerde 
& Wilensky, 2011), generate proofs (Kidron & Dreyfus, 
2014), read proofs (Mejia-Ramos & Weber, 2014; Weber & 
Mejia-Ramos, 2011), choose research questions (Misfeldt 
& Johansen, 2015), use examples (Alcock & Inglis, 2008), 
and evaluate conjectures (Inglis, Mejia-Ramos, & Simpson, 
2007). Similarly, the Journal for Research in Mathematics 
Education has published articles on mathematicians’ writ-
ing (Burton & Morgan, 2000), how mathematicians check 
proofs for correctness (Inglis & Alcock, 2012; Weber, 
2008), whether mathematicians skim proofs before read-
ing them closely (Inglis & Alcock, 2013; Weber & Mejia-
Ramos, 2013), and how mathematicians conceptualize proof 
(Czocher & Weber, 2020). Other researchers have written 
influential articles with pedagogical implications based on 
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philosophers’ analyses and the reflections of professional 
mathematicians (e.g., deVilliers, 1990; Hanna, 1990; Hanna 
& Mason, 2014).

If mathematical practice should indeed influence how 
mathematics is taught, this raises two fundamental ques-
tions: (a) how should mathematics educators generate and 
verify claims about mathematical practice and (b) how and 
when should claims about mathematical practice inform 
instruction? Regarding the first question, we have observed 
that mathematics educators often disagree on the nature of 
mathematical practice. For instance, consider the following 
divergent views with respect to mathematicians’ practices 
regarding the notion of mathematical proof. Harel and Sow-
der (1998) claimed that mathematicians gain psychological 
conviction in mathematical claims predominantly through 
proof while deVilliers (1990) believed that mathematicians 
are usually convinced a claim is true before seeking a proof. 
Selden and Selden (2003) asserted that mathematicians 
usually agreed on whether a particular argument is a proof 
while Dreyfus (2004) emphasized a lack of uniform stand-
ards. While some disagreement is inevitable in any field of 
inquiry, we are not aware of critical analyses of how these 
disagreements should be resolved in mathematics education 
research. In this paper, and in this special issue, we begin a 
conversation toward this end.

The second question reflects our skepticism about which 
professional mathematicians’ practices should be present in 
mathematics classrooms. As Staples, Bartlo, and Thanheiser 
(2012) have argued, the needs of the professional mathemati-
cal community and the needs of a classroom community 
often differ, implying some practices of the professional 
mathematical community might not be useful in mathemat-
ics classrooms. As Ball (1993) noted, some professional 
mathematical practices may not be worth emulating. In this 
special issue we closely examine how some professional 
mathematical practices can productively inform pedagogy 
and why other professional mathematical practices should 
not.

In this paper, we explore three different patterns of 
research using mathematical practice to inform mathemati-
cal pedagogy. Each uses accounts of how mathematicians 
accomplish particular goals to identify or justify goals for 
instruction. The first type forms models of how mathema-
ticians engage in mathematical tasks (e.g., how do math-
ematicians solve problems?) to inform instruction regarding 
how students engage in analogous mathematical tasks. The 
second type forms models of mathematicians’ epistemo-
logical beliefs (e.g., what is the relationship between proof 
and certainty to mathematicians?) to inform instruction 
on how students justify and use mathematical claims. The 
third type forms models about how mathematical commu-
nities develop concepts (e.g., how do mathematical com-
munities form definitions?) to inform instruction regarding 

concept-formation. We choose three representative and 
highly influential research programs to illustrate each type 
of research—Schoenfeld’s (1985, 1992) work on problem 
solving, Harel and Sowder’s (1998, 2007) work on proof 
schemes, and Lampert’s (1990, 1992) work on classroom 
design.

Although the work is dated, other scholars continue to 
pursue research with similar goals using similar methods 
to the authors we cite, so the issues raise remain pertinent 
to the field today. For instance, just as Schoenfeld (1985) 
used task-based interviews with mathematicians to under-
stand how mathematicians solve problems, more recently 
Lockwood, Ellis, and Lynch (2016), Karunakaran (2018), 
Knuth, Zaslavsky, & Ellis (2019), and Samkoff et al. (2012) 
used task-based interviews with mathematicians to under-
stand how mathematicians construct proofs. The issues we 
raise with regard to Schoenfeld’s work are just as pertinent 
to these studies as well. Similarly, like Harel and Sowder 
(1998, 2007), researchers continue to make assertions about 
the nature of proof and its relationship to conviction and 
use these assertions to draw pedagogical consequences (e.g., 
Cirillo, Kosko, Newton, Staples, & Weber, 2015; Czocher 
& Weber, 2020). We illustrate how Lampert (1990, 1992) 
drew upon the philosopher Lakatos (1976) account of math-
ematical practice to design classroom instruction. Scholars 
continue to use Lakatos (e.g., Komatsu et al., 2017; Larsen 
& Zandieh, 2008) and other philosophers (Hanna & Larvor, 
2020) for this purpose.

In this paper, we will carefully scrutinize the argumen-
tation schemes that Schoenfeld, Harel and Sowder, and 
Lampert used to warrant claims about mathematical prac-
tice and use these claims to make pedagogical recommen-
dations. To avoid misinterpretation, we will neither endorse 
nor refute the findings from the research we survey or the 
theoretical assumptions that undergird this research, which 
in some cases are still being debated today by mathemat-
ics educators. Instead, our purpose is to use this research 
to articulate and contextualize difficulties common to many 
mathematics educators who want to make valid claims about 
mathematical practice. Finally, we discuss how the papers 
in this special issue, The role of mathematicians’ practice in 
mathematics education research, address these issues.

2  From mathematical practice to pedagogy: 
the case of mathematical competencies

2.1  Schoenfeld’s problem‑solving research program

One goal of mathematics instruction is to prepare students 
to successfully complete mathematical tasks, such as solv-
ing mathematical problems, posing conjectures, or proving 
theorems. To prepare students to complete these tasks, many 
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mathematics educators desire to have a firm understanding 
of precisely how these tasks should be completed. One way 
that mathematics educators have developed an understand-
ing of how to successfully complete a task is to observe 
mathematicians completing the task and identify the compe-
tencies that mathematicians have (e.g., strategies, metacog-
nition) that allow them to be successful on these tasks. Once 
these competencies have been identified, helping students 
develop these competencies can become an explicit goal of 
instruction.

Perhaps the most successful instance of this type of 
research is Schoenfeld’s work in mathematical problem solv-
ing. In Mathematical Problem Solving, Schoenfeld (1985) 
set the stage for the book by wondering how mathemati-
cians’ experience allows them to solve mathematical prob-
lems better than students, comparing his work to biomedical 
research on senility:

“What causes senility? Of course senility occurs with 
aging, but saying so really begs the question. The 
implied and more precise question is, Can we explain 
the underlying biological and chemical processes that 
comprise the phenomenon known as senility. Clarify-
ing this question, elaborating on it, and exploring it 
lead one into deep questions of medical science. In a 
similar vein, we can formulate questions about [math-
ematicians’] experience with greater precision. When 
the faculty members sit down to work on the problems, 
there are fewer resources immediately accessible to 
them than to students. Yet the faculty manage, some-
how, to see what makes the problem tick, to come up 
with a variety of plausible directions for exploration 
where the students do not, and so on—all with some 
sense of purposefulness and efficiency. To specify the 
nature of these skills and to elaborate the means by 
which they are achieved is to begin to provide a real 
explanation of what the faculty’s experience means” 
(p. 3–4).

Schoenfeld added that although research into the nature 
of mathematicians’ problem solving was pure research, the 
result of the research had pedagogical implications:

“The book is devoted to the exploration of mathemati-
cal processes, mathematical strategies, and tacit math-
ematical understandings that constitute mathematical 
thinking. The focus here is primarily on research, 
although there is a strong ‘applied’ component to 
the work as well. Much of the work is inspired, and 
informed by, classroom applications” (p. 4–5).

This rationale is why Schoenfeld’s pioneering work 
studying mathematicians has proven enormously influen-
tial in mathematics education. To Schoenfeld, how math-
ematicians think can, should, and does inform mathematics 

instruction (Schoenfeld, 1992). There is a final premise that 
undergirds Schoenfeld’s work on this subject—namely that 
there is some uniformity in the way that mathematicians 
solve mathematical problems. In the passage above, it makes 
sense to speak of “mathematical thinking” of a unitary con-
struct that can be decomposed into processes, strategies, and 
understandings. Schoenfeld (1985) explicitly makes this pre-
sumption clear when describing problem solving strategies 
and heuristics:

“While the development of strategies… is idiosyn-
cratic, it is also somewhat uniform. That is, there is a 
substantial degree of homogeneity in ways that expert 
problem-solvers approach new problems. (This is not 
terribly surprising, in that a relatively small num-
ber of techniques will allow one to be successful in 
mathematics. In a sense, one can say that successful 
problem-solvers were trained by the discipline). That is 
not to say that two experts will approach the same new 
problems in precisely the same ways. Rather the argu-
ment is that, if two experts grapple with an extended 
series of problems, there will be substantial overlap in 
the problem solving strategies that they try” (p. 71).

The same assumption about homogeneity is made by 
Schoenfeld in his investigations of metacognition, beliefs, 
and practices; he elaborated on the point further in Schoe-
nfeld (1992). The point about homogeneity is important. If 
different mathematicians approach the same mathematical 
problems in radically different ways, it will be unclear which 
approaches students should be taught to use and whether 
there is an imperative to introduce any particular one into 
the classroom.

In Mathematical Problem Solving, through a detailed 
analysis of mathematicians’ verbal protocols while solving 
problems, Schoenfeld (1985) identified a number of com-
petencies that mathematicians used to successfully solve 
problems. For instance, when solving problems, Schoenfeld 
discussed metacognitive actions such as planning, monitor-
ing, and evaluating progress that mathematicians exhibited 
but students did not. He then set as an instructional goal for 
students to exhibit the same metacognitive actions in their 
problem solving attempts (for more detail, see Schoenfeld, 
1987). In our interpretation, Schoenfeld is advancing the 
following argument:

 (i) mathematicians take specific metacognitive actions 
(e.g., planning) in problem solving;

 (ii) these metacognitive actions contribute to mathemati-
cians’ success in problem solving;

 (iii) with training, students are capable of engaging in 
similar productive metacognitive behaviors;

 (iv) therefore, students should be encouraged to take sim-
ilar metacognitive actions when they solve problems.
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2.2  Are the descriptions of mathematical practice 
accurate?

Schoenfeld’s research program was fruitful. His attempts 
to lead students to improve their metacognition was suc-
cessful and led to an improvement in their problem-solving 
performance (Schoenfeld, 1985, 1987). In the remainder 
of this section, we use Schoenfeld’s research program to 
highlight inherent difficulties in identifying mathematicians’ 
behaviors and the complicated links between mathemati-
cal behavior and instruction. Do mathematicians engage in 
the metacognitive behaviors that Schoenfeld identified? A 
study by DeFranco (1996) suggests that the answer might 
be no—or at least that the answer is not so straightforward. 
DeFranco (1996) compared the problem solving behavior 
of two groups of eight mathematicians, which we will refer 
to as internationally recognized mathematicians and ordi-
nary mathematicians. As our titles suggest, the first group 
of mathematicians was extremely successful. The second 
group of mathematicians was less successful, but nonethe-
less each ordinary mathematician earned a Ph.D in mathe-
matics and published papers in mathematics journals. A key 
finding from DeFranco’s (1996) study was that the “ordinary 
mathematicians” were not observed engaging in the meta-
cognitive behaviors that Schoenfeld (1985) had identified as 
characteristic of mathematical thinking.

One way to resolve the discrepancy between Schoenfeld’s 
(1985) finding and DeFranco’s (1996) finding is to say Sch-
oenfeld was not actually studying mathematical practice 
but “mathematical thinking”, where mathematical thinking 
does not mean the thinking of professional mathematicians 
but “the thinking of expert problem solvers.” Schoenfeld’s 
focus on professional mathematicians could be viewed as 
merely a methodological heuristic to identify subjects who 
would likely be expert mathematical problem solvers. The 
fact that Schoenfeld’s students’ problem-solving improved 
when they learned metacognitive strategies vindicates Sch-
oenfeld’s decision. Therefore, what DeFranco’s work reveals 
is the counterintuitive finding that many professional math-
ematicians do not engage in “mathematical thinking,” when 
so-defined. Such an account is internally coherent, but it still 
raises two questions for mathematics educators who choose 
to study mathematical practice.

First, when mathematics educators say that “mathemati-
cians” engage in a certain practice, to whom exactly are 
they referring? If DeFranco’s (1996) “ordinary mathema-
ticians”—with their Ph.D’s and publications—are not full 
members of the mathematical community, then the number 
of bona fide mathematicians is very small indeed. We refer 
to this issue as the mathematical community identification 
problem. We note that when mathematics educators speak 
of the professional mathematical community, what they 
often refer to research-active, pure mathematicians. Further, 

mathematicians in these studies are often sampled from elite 
universities, usually from North American and European 
universities. We question whether the mathematical com-
munity should be limited to this narrow population (espe-
cially when studying this community’s practices to identify 
generalizable tools for the classroom).

If we do say that DeFranco’s “ordinary mathematicians” 
are members of the mathematical community, then we must 
resolve the discrepancy between his findings and Schoenfeld 
in a different way. We must call Schoenfeld’s homogeneity 
assumption into question, which we shall call the heteroge-
neity problem. Other scholars have challenged the claim that 
mathematicians engage in mathematical practice in similar 
ways. Notably, based on her interviews with 70 mathemati-
cians, Burton (2004) identified stark differences in the ways 
that mathematicians solved problems. For instance, many 
mathematicians would regularly invoke visual reasoning to 
solve problems while other mathematicians would rarely do 
so. If mathematical practice is heterogenous as Burton and 
other scholars (e.g., Weber, Inglis, & Mejía-Ramos, 2014) 
have claimed, then this implies that researchers should 
examine a large number of mathematicians to make gen-
eralizable claims about mathematical practice1 (although 
small-scale studies can offer existence proofs that at least 
some mathematicians engage in a certain type of behavior).

Moving from Schoenfeld’s claims to more general con-
siderations, we observe two general issues that arise when 
scholars want to research how mathematicians complete 
tasks in their own mathematical practice (e.g., Carlson & 
Bloom, 2005; Inglis & Alcock, 2012; Kidron & Dreyfus, 
2014; Misfeldt & Johansen, 2015; Weber, 2008; Weber & 
Mejia-Ramos, 2011). There is the advanced content prob-
lem—when mathematicians conduct research, they typically 
investigate advanced concepts that would take a mathematics 
educator several years of advanced study to comprehend. 
This makes it inherently difficult for a mathematics educa-
tor to analyze or report on what it is that mathematicians 
actually do. There is the time scale problem—it may take 
a mathematician days, weeks, or even years to perform an 
authentic mathematical task such as proving a theorem or 
refereeing a paper, which poses great impediments to study-
ing these practices (not to mention extending them to the 
classroom). These problems threaten the validity of task-
based interviews (such as those used by Carlson & Bloom, 
2005; DeFranco, 1996; and Weber, 2008). One paper in this 

1 In our experience, researchers who have studied a small number 
of mathematicians are careful to qualify their claims as hypotheses 
or existence proofs, and perhaps say that more research with a larger 
number of mathematicians needs to be conducted before making 
a general claim. However, this poses challenges for those who want 
to use the tentative or modest findings from smaller-scale studies to 
make instructional recommendations.
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special issue (Mejia-Ramos & Weber, this issue) explores 
task-based interviews in depth. In task-based interviews, 
mathematicians are rarely working on truly authentic tasks, 
but rather laboratory tasks on relatively simple mathemati-
cal material that could be completed in a short time period. 
Any observed behaviors on these tasks could be due to the 
artificiality of the tasks and the laboratory environment and 
not indicative of mathematical practice. For instance, per-
haps the mathematicians in Schoenfeld’s studies constantly 
monitored their progress because they knew that a simple 
solution to the task existed and they were only given 20 min 
to find it. Lester and Kehle (2003) summarized the problem 
of using artificial tasks as follows:

“One can certainly give expert mathematicians text-
book problems to solve, and compare their strategies 
and mental representations to those of novices. But 
expert mathematicians do not solve textbook problems 
for a living. Our point is that even if cognitive sci-
entists have studied the right people, they may have 
studied them doing the wrong tasks” (p. 504).

Finally, there is the accuracy problem. Put simply, the 
cognitive psychology literature documents that the ways 
in which mathematicians describe their activities may 
not accurately reflect what they actually do (see Inglis & 
Alcock, 2012, for further discussion). However, some math-
ematics educators who seek to understand how mathemati-
cians accomplish tasks do so by asking mathematicians to 
describe how they complete these tasks in open-ended inter-
views (e.g., Misfeldt & Johansen, 2015; Weber & Mejia-
Ramos, 2011) or by referring to the written reflections of 
famous mathematicians (see Schoenfeld, 1992, on the influ-
ence of George Polya’s writings in mathematics education). 
The accuracy problem challenges the validity of drawing 
inferences in these manners.

2.3  Are these practices appropriate goals 
for mathematical classrooms?

For the sake of argument, suppose we managed to identify 
competencies that enable mathematicians to succeed at cer-
tain tasks. For instance, suppose we know that mathemati-
cians have the metacognitive competence to monitor their 
work while solving challenging high school problems. Sch-
oenfeld (1985) highlighted a critical problem on forming 
pedagogical decisions based on this insight, which we will 
refer to as the resources problem. The successful implemen-
tation of a desirable mathematical behavior often requires 
a vast array of background knowledge and competencies—
knowledge and competencies that mathematicians may have 
and students may lack. For instance, when mathematicians 
anticipate whether a problem solving plan is likely to be 
successful or evaluate whether they are making progress 

on a problem, these metacognitive self-prompts are help-
ful because mathematicians have the capacity to provide 
accurate answers to these questions; this capacity is often 
based on experience and intuition that students may not 
share. (For a detailed argument about how much background 
knowledge and metacognitive competence are required to 
successfully employ problem-solving heuristics, see Sch-
oenfeld, 1985, chapter 3). The resources problem does not 
mean that insights into mathematical expertise are irrelevant 
for pedagogy, but efforts to leverage the relationship between 
mathematical practice and pedagogy should account for this 
discrepancy.

3  From mathematical practice to pedagogy: 
the case of epistemology

3.1  Harel and Sowder’s proof schemes research 
program

A second goal that some mathematics educators have is to 
teach students epistemology: students should learn about 
epistemology in mathematical practice and behave in a 
manner consistent with that epistemology. Perhaps the most 
influential research program designed to teach epistemol-
ogy in mathematics is Harel and Sowder’s proof schemes 
research program. Harel and Sowder’s work on proof 
schemes is rich and nuanced and we cannot do justice to it 
in this limited space; we encourage the reader to read Harel 
and Sowder’s classic works on this topic (e.g., Harel & Sow-
der, 1998, 2007). However, a simplified view of their theory 
is this: an individual’s proof scheme is the mental scheme 
that she uses to seek and obtain psychological certainty in 
mathematical statements. Professional mathematicians pos-
sess analytic proof schemes, meaning that they seek and 
obtain psychological certainty in mathematical statements 
via logical deduction. Harel and Sowder (2007) formulated 
their goal for instruction as follows:

“[T]he goal of instruction must be unambiguous—
namely, to gradually refine current students’ proof 
schemes toward the proof schemes shared and prac-
ticed by mathematicians today. This claim is based on 
the premise that such a shared proof scheme exists and 
is part of the grounds for scientific advances in math-
ematics” (p. 809).

As the quotation above clearly illustrates, Harel and 
Sowder (2007) want students to seek and obtain psycho-
logical certainty in a manner similar to how mathemati-
cians seek psychological certainty. By framing the goal of 
proof instruction in this way, Harel and Sowder privileged 
the epistemological role of proof in mathematics, desiring 
that students to develop the same epistemological standards 
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for conviction and certainty that mathematicians hold. We 
believe Harel and Sowder (1998, 2007) are advancing the 
following argument:

 (i) mathematicians hold analytic proof schemes in which 
they obtain psychological certainty in mathematical 
statements via proof;

 (ii) this aspect of mathematical practice contributes to 
the scientific success of mathematics;

 (iii) with training, students can be led to develop analytic 
proof schemes;

 (iv) therefore, it is a suitable goal of instruction that stu-
dents develop the analytic proof schemes that math-
ematicians hold.

This focus on epistemology has been beneficial for math-
ematics education, leading to robust understandings of how 
students and teachers view proof and the design of effective 
instruction for teaching proof.

3.2  Are the descriptions about mathematical 
practice accurate?

Let us critically analyze this chain of argument. First, are 
Harel and Sowder’s claims about mathematical practice 
accurate? Specifically, do mathematicians seek and obtain 
psychological certainty in mathematical assertions perhaps 
exclusively via proof? In reading Harel and Sowder’s (1998, 
2007) works, we find a detailed historical analysis of math-
ematicians’ ontology, epistemology, and proving practices, 
establishing the importance of proof in verifying mathemati-
cal claims. However, we do not find direct support for their 
claim that mathematicians gained psychological certainty 
from the proofs that they produced. Other scholars argued 
that mathematicians should not and do not obtain psycho-
logical certainty from proofs (see Weber, Inglis, & Mejia-
Ramos, 2014, for a review of some of these scholars). This 
raises an interesting question about which claims about 
mathematical practice require justification by mathematics 
educators. It would seem that carefully justifying obvious 
claims, such as “many journal articles in mathematics con-
tain proofs,” would be a waste of time. The idea that proof 
provides certainty in mathematical statements might seem 
equally obvious to some scholars.

For the remainder of this section, let us grant the premise 
that mathematicians prove to obtain psychological certainty 
and that they usually obtain certainty from the proofs that 
they produce. We can see two issues raised in the previ-
ous section are again relevant here. First, the mathemati-
cal community identification problem is important here. It 
is probably true that most pure mathematicians engage in 
proving in their research. However, many applied mathema-
ticians and statisticians justify their claims with empirical 

evidence (e.g., Monte Carlo tests). Why are we privileg-
ing the schemes of pure mathematicians over the schemes 
of applied mathematicians and statisticians? Second, the 
heterogeneity problem is arguably relevant here. Harel and 
Sowder (1998, 2007) state it as a premise that a “shared 
proof scheme exists” amongst the community of mathemati-
cians. Yet many mathematics educators (e.g., Dreyfus, 2004) 
vigorously contest this premise.

3.3  Are these practices appropriate goals 
for mathematical classrooms?

For the sake of argument, let us suppose that Harel and Sow-
der’s (1998, 2007) claims about mathematical practice are 
accurate. That is, let us suppose that most mathematicians 
seek and obtain psychological certainty in mathematical 
claims exclusively via logical deduction. Should we expect 
students to seek psychological certainty in the same way? 
The resources problem suggests the answer might be no. 
Mathematicians, who have spent years honing their abil-
ity to detect errors in proof, may be warranted in gaining 
certainty from a proof after affirming that the proof is cor-
rect. Students who lack the mathematicians’ experience may 
be right to doubt their ability to validate a purported proof 
(Weber, Lew, & Mejía-Ramos, 2020). Indeed, numerous 
studies document that when students are asked to determine 
if a given proof is correct, their performance is quite poor 
(e.g., Selden & Selden, 2003). Consequently, students are 
perhaps justified in not gaining certainty from the proofs 
that they read.

4  From mathematics to pedagogy: the case 
of authentic mathematical activity

4.1  Lampert‑inspired classrooms promoting 
a Lakatosian view of mathematics

In the 1990s, many mathematics educators shifted away 
from viewing mathematical learning as the acquisition of 
competencies and desirable epistemological beliefs and 
toward participation in authentic mathematical activity (e.g., 
Lampert, 1990; Schoenfeld, 1992; Sfard, 1998). The criti-
cal shift involved not having students engage in mathemati-
cal activity to achieve other cognitive goals (e.g., engaging 
students in defining so they will understand the resulting 
definition better), but rather viewing the participation in 
the activity as an end in itself (Sfard, 1998). This research 
paradigm led to an interest in the nature of professional 
mathematical communities and their collective activities. 
If the goal of instruction is to engage students in authentic 
mathematical activity, then one must have some knowledge 
of what authentic mathematical activities are. This is often 
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defined as what professional mathematical communities do 
(“authentic” in this case meaning true to the discipline more 
than true to the student, though the term is in many cases 
used to bridge the two senses).

Consider the title of Lampert’s (1990) famous article, 
When the problem is not the question and the solution is 
not the answer: Mathematical knowing and teaching. Our 
interpretation of the suggestive title is that Lampert is recon-
ceptualizing school mathematical activity less in terms of 
obtaining correct solutions to problems and more in terms 
of engaging students in authentic mathematical activity. 
Such activities should lead students to know mathematics 
in a more discipline appropriate way. Lampert’s aim was 
to design fifth-grade classrooms where students would par-
ticipate in two interrelated activities. First, students should 
engage in “conscious guessing” (i.e., forming reasoned con-
jectures) that evinced the virtues of courage and modesty. 
The second was to have students engage in a “zig zag” pro-
cess in which they formed conjectures and then used refuta-
tions of these conjectures to challenge faulty assumptions. 
Lampert justified her first instructional aim as follows:

“Why does this teacher think it is appropriate to 
encourage conscious guessing and the human virtues 
of courage and modesty? The answer is to be found in 
Lakatos’ analysis of what it means to know mathemat-
ics and his ideas about how new knowledge develops 
in the discipline” (p. 30).

Lampert went on to summarize some themes of Lakatos’ 
(1976) well-known text Proofs and Refutations, in which 
Lakatos presented a fictitious dialogue between teacher and 
students as they develop Euler’s conjecture, “following a 
‘zig zag’ path starting from conjectures and moving to the 
examination of premises through the use of counterexamples 
and ‘refutations’” (Lampert, 1990, p. 29). Lakatos appended 
the virtues of courage and modesty to this process of con-
scious guessing because one’s proofs and even one’s axi-
oms are up for re-examination and may always be revised 
or overturned. Lampert stated “it is this vulnerability to re-
examination that allows mathematics to grow and develop” 
(p. 30). Consequently, the virtues of courage and modesty 
should be exhibited not primarily to build the moral charac-
ter of the students, but because expressions of these moral 
virtues are conducive to mathematical growth.2

Lampert observed that school mathematics typically did 
not feature the mathematics that Lakatos described; class-
rooms typically did not permit space for conscious guessing 

or ‘zig zag’ paths in which students were permitted to ques-
tion prior assumptions. After lamenting the disjunction 
between school mathematics and Lakatos mathematics, 
Lampert wondered if the disjunction was necessary. The 
purpose of her paper was “to examine whether it might be 
possible to bring the practice of knowing mathematics in the 
school closer to what it means to know mathematics within 
the discipline” (p. 30), by producing “lessons in which pub-
lic school students would exhibit—in the classroom—the 
qualities of mind that Lakatos … associated with doing 
mathematics” (p. 33).

Our interpretation of Lampert’s argumentation can be 
summarized as follows:

(i) knowing mathematics in the discipline involves the pro-
cess of conscious guessing and the ‘zig zag’ pattern of 
reasoning as described above;

(ii) this account of mathematical practice is justified by 
Lakatos’ (1976) philosophical-historical analysis;

(iii) the ‘zig zag’ contributes to the success of the discipline 
of mathematics;

(iv) in the right mathematical classroom environments, 
students can meaningfully engage in and appreciate 
the ‘zig zag’ in a matter that is both reflective of pro-
fessional mathematicians’ activity and appropriate for 
school age children;

(v) therefore, it would be desirable to create mathematical 
classrooms in which students engage in some form of 
conscious guessing and following a path similar to the 
‘zig zag’ path that Lakatos described.

4.2  Are the descriptions about mathematical 
practice accurate?

Bruner (1960) called for “a continuity between what a 
scholar does on the forefront of his discipline and what a 
child does in approaching it for the first time” (p. 27–28). 
Lampert’s article was an important response to that call, 
which in turn led to an increased focus amongst mathemat-
ics education researchers and practitioners on mathematical 
practices. Below, we use Lampert’s (1990) article to high-
light challenges inherent in any attempt to meet Bruner’s 
challenge of having students engage in authentic mathe-
matical activity, some of which were discussed by Lampert 
(1992) herself in a subsequent article.

Returning to the two recurrent questions of our article: 
Did Lampert (and Lakatos) accurately describe mathemati-
cal practice3? Mathematicians certainly make reasoned 

2 Lampert also buttressed her claims about mathematical practice 
with quotations from George Pólya. However, these claims only sup-
port the virtues of conscious guessing. Our concern in this section 
will be on whether the ‘zig zag’ pattern described by Lakatos (1976) 
constitutes an accurate portrayal of mathematical practice.

3 Although Lakatos’ (1976) volume only discussed two case stud-
ies, he claimed that he was describing a “very general heuristic pat-
tern” in the discovery of mathematical ideas (p. 127). However, as 
Larvor (1998) emphasized, Lakatos claimed his account does not 
apply to all of mathematics. This raises an interesting version of the 
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conjectures, but do they regularly use these conjectures to 
overturn definitions, axioms, and other assumptions? Are 
proofs frequently refuted and amended? Selden and Selden 
(2003), two former mathematicians turned mathematics 
educators, claimed that this is not often the case in con-
temporary mathematics. The difference, according to Selden 
and Selden, was that Lakatos’ analysis of eighteenth cen-
tury mathematics occurred when definitions were synthetic 
(i.e., descriptive definitions, like dictionary definitions). 
Contemporary mathematics uses analytic definitions (i.e., 
precise, unambiguous, and stipulative definitions, reducible 
to foundational terms), so Selden and Selden claimed that 
the ‘zig zag’ phenomenon that Lakatos highlighted seldom 
occurs today:

“Today’s use of analytic definitions renders validations 
(and proofs and theorems) very reliable, whereas ear-
lier uses of synthetic definitions left them problematic 
… Proofs and Refutations provides a fairly accurate 
description of the way that some mathematics devel-
oped historically. It illustrates how definitions and 
results can co-evolve, but the compression of time 
involved in its historical narration, together with its 
synthetic treatment of definitions, may suggest that 
validations, proofs, and theorems are far less reliable 
than they really are today” (p. 8).

We believe that Selden and Selden’s (2003) critique 
should be taken seriously. Indeed, many philosophers and 
historians have questioned whether Lakatos’ technique of 
“rational reconstruction” (i.e., taking literary license to 
transform historical mathematical episodes into fictional 
dialogue) provides an accurate account of history. The phi-
losophers Musgrave and Pigden (2016) wrote a survey on 
the work of Lakatos and summarized the criticisms of his 
historical work as follows:

“This device [of rational reconstruction], first necessi-
tated by the dialogue form, became a pervasive theme 
of Lakatos’ writings. It was to attract much criticism, 
most of it centered around the question of whether 
rationally reconstructed history was real history at all. 
At one point in Proofs and Refutations a character in 
the dialogue makes a historical claim, which according 
to the relevant footnote, is false […] Horrified critics 
protested that rationally constructed history is a cari-

cature of real history, not actual real history at all but 
rather ‘philosophy fabricating examples.’”

Our point in bringing up these criticisms is not to say that 
Lakatos’ portrayal of mathematical practice is inaccurate. 
Rather, we highlight that many mathematics educators, phi-
losophers, and historians have questioned the validity and 
relevance of Lakatos’ work. These criticisms were neither 
acknowledged by Lampert (1990) nor by the other math-
ematics education studies using Lakatos cited earlier in this 
paper. Mathematics educators often accept Lakatos’ conclu-
sions as a reasonable account of mathematical practice.

To us, these criticisms highlight a significant challenge 
with the ways that mathematics educators justify claims 
about mathematical practice. We refer to this problem as 
the interdisciplinary problem. To form and justify claims 
about mathematical practice, mathematics educators fre-
quently appeal to scholarship from other disciplines, such 
as philosophy, history, and sociology. Schoenfeld (1985) 
approved of the interdisciplinary approach to understand-
ing of mathematical practice, but highlighted an inherent 
challenge within it:

“While this situation [reading work from diverse disci-
plines] is natural and healthy, there are ways in which 
it makes for difficulties. Papers within any disciplinary 
tradition are usually written under the assumption that 
readers will share the author’s paradigms, assumptions, 
and language. Readers from outside the discipline can 
find it hard to penetrate the barrier of assumptions and 
language, to uncover relevant results, and to see con-
nections that might otherwise be seen” (p. 5–6).

We agree with Schoenfeld about mathematics educators’ 
difficulties interpreting the meaning of the work from other 
disciplines from which they draw upon. We highlight a fur-
ther point: Mathematics educators will also have difficulty 
analyzing the validity or correctness of this work and con-
textualizing it as one viewpoint within an ongoing discourse. 
This danger of misinterpretation is not simply hypothetical. 
In a review of a mathematics education volume that drew 
heavily upon classical philosophers, Larvor (2019), a phi-
losopher conversant in mathematics educational research, 
remarked that standard philosophical practices for citing the 
views of classical philosophers were not practiced and he 
questioned whether the attribution of positions to classical 
philosophers was accurate. [e.g., “I suspect that Kant has 
been tagged with a view that did not even exist in his day” 
(p. 321)]. However, Larvor conceded that, “perhaps this does 
not matter for the purposes of research into mathematics 
education, because the gesture in the direction of canonical 
philosophers is simply for orientation and throat-clearing” 
(p. 321). If we hope to use philosophical work not just for 

Footnote 3 (continued)
“heterogeneity problem” for historical analyses—there may be sharp 
deviations in the ways that mathematical ides develop historically. 
Similarly, Lampert (1990, 1992) does not insist that all classrooms 
employ Lakatos’ ‘zig zag’, only that it might be desirable for some 
classrooms to do so.
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throat-clearing but to inform instruction, it is important to 
do this philosophical work justice.

Philosophers, through their training and their familiarity 
with the broader philosophical landscape, will be in a good 
position to know which of Lakatos’ insights are accepted, 
which insights are controversial, and which insights are 
regarded as refuted. Many mathematics educators will 
lack the background to make such judgments. Of course, 
it is possible for mathematics educators to make such judg-
ments accurately—say, by conducting an extensive review 
of the philosophical literature or collaborating with a phi-
losopher—but at a minimum, this adds a large burden for 
the mathematics education researcher who wishes to use 
insights from other disciplines to inform their understanding 
of mathematical practice.

4.3  Are these practices appropriate goals 
for mathematical classrooms?

For the sake of argument, let us suppose that Lakatos’ Proofs 
and Refutations accurately captures the nature of mathemati-
cal practice. This alone would not imply that such practices 
should be emulated in mathematics classrooms. Lampert 
desired that her classrooms practice Lakatos’ conscious 
guessing and zig zag patterns not just because this is what 
mathematicians do, but because these mathematical activi-
ties directly contributed to the success of mathematics as a 
discipline (which is similar to Harel and Sowder’s justifica-
tion for emphasizing deductive proofs schemes). However, 
it is still not clear that any practice that has contributed to 
the success of a science would be useful and appropriate to 
emulate in a classroom. Rather, Lampert used her profes-
sional judgment to select mathematical practices that were 
germane to mathematics education. While we may agree 
with her judgment, it raises the question of how we render 
such judgments. Ball (1993) nicely summarized the concern 
as follows:

“Constructing a classroom pedagogy on the discipline 
of mathematics would be in some ways inappropriate, 
even irresponsible … Certain aspects of the discipline 
would be unattractive to replicate in mathematics 
classrooms. For instance, the competitiveness among 
research mathematicians— competitiveness for indi-
vidual recognition, for resources, and for prestige— is 
hardly a desirable model for an elementary classroom. 
Neither is the aggressive, often disrespectful, style of 
argument on which much intradisciplinary controversy 
rests” (p. 377).

Ball’s commentary raises two concerns. The first is an 
ethical problem, where it may be unethical to encourage 
students to fight for credit or status, or to be aggressively 
disrespectful to their classmates when criticizing their work, 

even though the drive for credit and status may drive profes-
sional mathematicians to great accomplishments.

Ball’s second concern relates to the differences in epis-
temic goals between research communities and classrooms. 
According to Auslander (2008), many mathematicians will 
freely apply the published theorems of others without under-
standing why these theorems are true. If the result appears 
in print and the trusted experts in the field declare the result 
to be reliable, this is sufficient for many mathematicians to 
accept and use the results. Auslander (2008) claimed that 
this practice is an essential contributor to growth in math-
ematics. If a mathematician had to verify every published 
result for herself before she used it, this would slow her 
productivity to a halt. Weber (2018) argued that we would 
not want this practice to be normative in mathematical class-
rooms. Individual students should not accept a result because 
the authorities in the classroom (the teachers and the best 
students) understood and sanctioned the results. Ball (1993) 
made a similar point: In contrast to mathematicians, teachers 
“are charged with helping all students learn mathematics, in 
the same room at the same time… The best and seemingly 
most talented of the students must not be alone in develop-
ing mathematical understanding and insight” (p. 377). In 
short, mathematicians’ practices of distributing expertise 
throughout the community may be essential for the growth 
of the discipline, but undesirable in a classroom. We refer 
to this difficulty as the different community goals problem.

5  Discussion

We have written this paper to make three contributions:

 (i) we have illustrated that mathematics educators fre-
quently use claims about mathematical practice to 
inform mathematics pedagogy;

 (ii) we have identified several reasons why it is intrinsi-
cally difficult to make accurate claims about math-
ematical practice;

 (iii) we have shown why the relationship between mathe-
matical practice and pedagogy is not straightforward. 
Classroom communities should not engage in a given 
activity solely because professional mathematical 
communities do.

With regard to (i), we have described three different, 
highly-influential research programs in which leading schol-
ars invoked claims about mathematical practice to warrant 
their pedagogical decisions.

With regard to (ii), we have identified a number of prob-
lems with making claims about mathematical practice. We 
summarize these claims below:
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• The mathematical community identification problem 
Accounts of mathematical practice will depend upon 
choices about who is and is not a mathematician (e.g., 
pure, applied, or experimental mathematicians). The 
truth-value of some claims about mathematical practice 
will therefore be ambiguous, as they will depend on who 
counts as a mathematician.

• The heterogeneity problem Any reasonably large math-
ematical community will likely be heterogeneous in at 
least some of their practices, making general claims 
about how mathematicians approach a task problematic.

• The advanced mathematical content problem Mathema-
ticians typically study mathematical content that math-
ematics educators lack the background to comprehend, 
making it difficult for mathematics educators to investi-
gate and interpret genuine mathematical practice;

• The time-scale problem Authentic mathematical activi-
ties can take months or years to complete, making it 
difficult for mathematics educators to investigate such 
activities;

• The accuracy problem Mathematicians may have dis-
torted views about how they engage in mathematics, 
making their reflections on their participation in math-
ematical activities untrustworthy;

• The interdisciplinary problem Drawing on historical or 
philosophical literatures that provide accounts of math-
ematical practices requires being aware enough of those 
bodies of scholarship to know when particular (even 
famous) claims have been deeply challenged or even 
refuted.

As a consequence of these difficulties, we maintain that 
every known methodology for investigating mathemati-
cal practice is problematic in some way. Task-based inter-
views are vulnerable to the advanced mathematical content 
problem and the time-scale problem. Mathematics educa-
tors who conduct task-based interviews are not observing 
mathematicians complete authentic tasks, but rather labora-
tory tasks designed to approximate mathematical practice. 
Any observed behavior could plausibly be an artifact of the 
design of the task or the laboratory setting. Quoting the 
reflections of famous mathematicians is especially sensi-
tive to the heterogeneity and accuracy problems: what the 
quoted mathematician describes might not be reflective of 
the practices of the broader mathematical community, or 
even her own practices. Open-ended interviews are subject 
to the same threats to validity.

We believe triangulation and interdisciplinary collabora-
tion are necessary to paint an accurate picture of mathema-
ticians’ practice. Mathematics educators can use multiple 
methodologies from different research traditions to gain a 
better understanding of mathematical practice. However, 
this raises the interdisciplinary problem according to which 

some mathematics educators may understandably lack the 
background to interpret or evaluate the results or apply the 
methods from other disciplines.

The first set of papers in this special issue was written to 
address these issues. We invited these papers from discipli-
nary or methodological experts in philosophy (Hamami & 
Morris, 2020), history (Barany, 2020), task-based interviews 
(Mejía-Ramos & Weber, 2020), experimental methods (Ing-
lis & Aberdein, 2020), and crowdsourcing (Pease, Martin, 
Tanswell, & Aberdein, 2020). They were asked to:

1. provide a useful primer on their disciplines and methods,
2. describe the questions about mathematical practice that 

their approach can answer while highlighting limitations 
in their approach, and

3. provide specific examples of how research in their 
domain has informed our understanding about math-
ematical practice.

In a final paper, Hanna and Larvor explore the affordances 
and limitations of relying on the writings of famous math-
ematicians for understanding mathematical practice. While 
“quoting mathematicians” is not an explicit methodology 
per se, this is a common means that mathematics educators 
use to warrant claims about mathematical practice and we 
believe that mathematics educators will benefit from this 
critical analysis thereof.

Regarding (iii), we identified a number of reasons why it 
might be challenging or even inappropriate to import profes-
sional mathematicians’ practices to the mathematics class-
room. Below we summarize the issues that we identified:

• The resources problem Students may not have the knowl-
edge, experience, or ability to engage in the activities that 
are productive for mathematicians;

• The ethical problem Some practices of the mathematical 
community that contribute to the growth of the discipline 
may be ethically problematic to replicate in classrooms.

• The different community goals problem Activities or 
practices that may be useful for the growth of mathe-
matical knowledge within the professional discipline may 
be inappropriate or detrimental for promoting student 
growth in the classroom.

We remain confident that, at least to some extent, math-
ematical practice can and should inform mathematics peda-
gogy. However, the issues above highlight that the relation-
ship between what mathematicians do and the classroom 
require care and attention. In the second part of this special 
issue, authors have analyzed these themes further. The first 
three articles in this part of the issue explore how math-
ematical practices can inform pedagogy. They look at math-
ematical practice’s roles in instructional situations (Herbst & 
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Chazan, 2020), consider when mathematical practices can 
be viable and scalable in mathematics classrooms (Schoe-
nfeld 2020), and explore how mathematical epistemology 
can be taught (Dawkins, 2020). The remaining three arti-
cles raise concerns about why some mathematical practices 
might be the wrong practices to base instruction upon. They 
focus on which mathematical practices are ethical (Tanswell 
& Rittberg, 2020) and equitable (Skovsmose, 2020) and 
whether pure mathematicians’ practices reflect the math-
ematics that is done by most individuals (Stillman, Brown, 
& Czocher, 2020). The authors of these three papers dif-
fer in their stances on how mathematics educators should 
regard mathematicians’ practice, but they all raise concern 
that any mathematics educator should consider when justi-
fying instructional choices around mathematical practice.
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