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Abstract
Descriptions of mathematical thinking have an extended lineage. Sometimes accurate and sometimes not, sometimes mis-
interpreted and sometimes not, characterizations of mathematical thought processes have inspired and at times misled peo-
ple interested in designing or framing mathematics instruction. Challenges the field faces in conceptualizing mathematics 
instruction include: What can be warranted as legitimate mathematical practices? Which aspects of mathematical practices 
are relevant and appropriate for K-16 instruction? What kinds of support are necessary? What is viable at scale? This paper 
provides a description of relevant history from the Western literature, bringing readers up to the present. It then addresses 
two key issues related to contemporary curricula: the framing of the mathematical enterprise as being fundamentally inquiry-
oriented and the need for curricula and instruction to reflect such mathematical values; and the characteristics of mathemati-
cal classrooms that support students’ development as powerful mathematical thinkers. An emphasis is on problem solving, 
a major component of “thinking mathematically.” The paper concludes with a description of practices that are currently 
under-emphasized in instruction and that would profit from greater attention.

Keywords Mathematical practices · Goals for instruction · Robust learning environments · Teaching for robust 
understanding framework

1 Introduction

This paper explores historical and contemporary issues 
related to descriptions of the practices of professional 
mathematicians and their relevance for mathematics teach-
ing and learning. It begins with a selected review of work 
by major Western1 mathematicians and philosophers whose 
tacit or explicit characterizations of mathematical practices 
have had a significant impact on mathematics education. At 
the end of each section through Sect. 6, I point to the rel-
evance of each perspective and the issues it raises. A major 
focus is on problem solving, although the intended scope is 
broader – “thinking mathematically” includes problem pos-
ing, generalizing, and abstracting, for example. Sections 7 
and 8 frame an approach aimed at helping students become 
powerful mathematical thinkers.

My point of departure is a conversation with a math-
ematician who studied under the “Moore Method” (Cop-
pin, Mahavier, May & Parker 2009). In the Moore method’s 

purest form, students are presented with mathematical defi-
nitions and asked to prove theorems. The students are barred 
from reading mathematics books or using other resources; 
the idea is for them to develop the mathematics themselves.

Moore’s classes started as follows.

1. At the first meeting of the class Moore would define 
the basic terms and either challenge the class to dis-
cover the relations among them, or, depending on the 
subject, the level, and the students, explicitly state a 
theorem, or two, or three. Class dismissed. Next meet-
ing: “Mr Smith, please prove Theorem 1. Oh, you 
can’t? Very well, Mr Jones, you? No? Mr Robinson? 
No? Well, let’s skip Theorem 1 and come back to it 
later. How about Theorem 2, Mr Smith?”2 Someone 
almost always could do something. If not, class dis-
missed. (Halmos 1985, p. 255.)
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1 Traditions outside the Western literature are beyond the scope of 
what can be covered here.
2 I will note but not dwell on the maleness in Halmos’s descrip-
tion and the descriptions of Moore’s racism (see, e.g., https ://www.
math.buffa lo.edu/mad/speci al/RLMoo re-racis t-math.html and https ://
en.wikip edia.org/wiki/Rober t_Lee_Moore ).
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The next class began with the same questions. Students 
went to the board. If they did well, fine; if they erred, the class 
had to fix their mistakes. It soon became clear that – perhaps 
to avoid monologues by the strongest students – Moore called 
first on the students he perceived to be weakest. The result was 
an intensively intimidating atmosphere. The mathematician I 
spoke with thrived under that regime – but he also said that a 
number of very talented mathematics students withered under 
the pressure and decided to leave mathematics.

Herein lies the dilemma. The Moore method can be seen as 
a reductio ad absurdum of the proposition that specific math-
ematical practices such as proving should be at the core of 
mathematics instruction: students taught by Moore and his 
rigorous disciples got a 100% dose of such practices. Many of 
the students who swam in Moore’s sink-or-swim environment 
went on to be high-powered mathematicians. The contribu-
tions to mathematics of Moore’s 50 graduates and his 3840 
descendants are clear and the Moore method has a devoted 
following. But many students sank in the high-pressure envi-
ronment, and that is a great loss. One will never know what 
those people might have contributed to mathematics – and 
equally important, what damage was done to them personally.

This introductory story highlights the fact that values 
are central to considering which practices, to what degree, 
are appropriate for students. Key questions are: what are 
the “right” mathematical practices for students to learn, at 
what ages, in what ways; and what else needs to be part of 
the mix? In Sects. 7.2 and 8 I will address those questions 
directly.

Before continuing with a historical tour I note that math-
ematics education coalesced as a discipline in the 1960s 
(although mathematicians have long felt free to opine on 
educational issues). The first ICME was held in 1969, the 
journal ZDM Mathematics Education was first published (as 
Zentralblatt für Didaktik der Mathematik) in 1969 (Kaiser 
2017), and Volume 1 of Educational Studies in Mathematics 
appeared in 1968. The Journal for Research in Mathematics 
Education was birthed in 1970, but it was a long and dif-
ficult birth (Johnson, Romberg & Scandura 1994). Prior to 
that, there were of course, mathematics educators: Fawcett 
(1938) is a classic example. But, writing on mathematics 
thinking, teaching, and curricula was largely the province of 
mathematicians and philosophers. Most work until the past 
half century focused on the nature of mathematical thought, 
with scant consideration given to the impact of mathematics 
learning on individuals.

2  The Meno dialog

The first recorded “Socratic lesson” in mathematics occurs 
in the Meno Dialogue (Plato, 2005). Against a larger phil-
osophical backdrop – Socrates and Meno wrestle with 

definitions of virtue and the nature of knowledge and 
knowing – Socrates endeavors to demonstrate to Meno that 
humans, who have eternal and all-knowledgeable souls 
that transmigrate into their bodies at birth, can be induced 
to “recollect” their knowledge through careful questioning.

Socrates asks Meno to select one of his slaves for 
the demonstration. The slave has minimal mathematical 
knowledge, limited to basic arithmetic and, for example, 
the understanding that a square that a square with sides of 
length 2 has area 2 × 2. Consider the 2 × 2 square in the 
upper left-hand corner of Fig. 1.

At Socrates’ urging, the slave guesses that doubling the 
side of that square, which will produce Fig. 1, will dou-
ble its area. With a series of extremely leading questions, 
Socrates gets the slave boy to acknowledge that the area of 
the “doubled” square is four times the area of the original 
square, not twice. He then argues, to Meno, that he has not 
taught the slave anything, but that the slave “will know it 
all without having been taught, only questioned, by finding 
knowledge within himself.”

The Meno dialogue has served as the inspiration for 
“Socratic teaching” (and, see below, “inquiry based learn-
ing,” “problem based learning,” etc.). See https ://www.
socra ticme thod.net/. It has been interpreted in a wide vari-
ety of ways – see, e.g., https ://en.wikip edia.org/wiki/Socra 
tic_metho d; https ://www.criti calth inkin g.org/pages /socra 
tic-teach ing/606; https ://www.thoug htco.com/what-is-the-
socra tic-metho d-21548 75).

As I read the Meno, the dialog is a sham. The slave may 
or may not have learned something from the exchange, 
but there is no evidence, given Socrates’ leading ques-
tions, that the slave “knew” the results beforehand. I could 
easily create a similar dialog with a student. I might ask 
the student to focus on the sums of 1, 1 + 3, 1 + 3 + 5, 
1 + 3 + 5 + 7, and 1 + 3 + 5 + 7 + 9, asking if each one can 
be represented as the square of a whole number. Yes, they 
would say: the sums are 1, 4, 9, 16, 25, and that those sums 
are  12,  22,  32,42,  52. And what does that show? Not that the 

Fig. 1  The mathematical object discussed by Socrates and Meno’s 
slave
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student “knew” that the sum of the first n odd numbers is 
n2, but, rather, that I am a clever manipulator.3

This raises the question of questioning practices. Ques-
tions that lead students down a predetermined path are 
essentially closed, despite the appearance of being open. 
Yet, questions that lead students to conjecture, to pose prob-
lems, and to look for abstractions and generalizations can 
lead students into central mathematical practices. I expand 
on these thoughts in the concluding discussion.

3  Descartes

Descartes’ contributions to philosophy, mathematics, and 
physics were monumental. Cartesian coordinates are named 
for Descartes’ role in producing them. In fact, Cartesian 
coordinates were a small part of Descartes’ (1954) grand 
plan, outlined in his draft Rules for the direction of the mind. 
The work was found posthumously; it was probably aban-
doned as Descartes found it impossible to complete.

Descartes’ plan was for the Rules to have three books, 
each containing twelve rules. The thirty-six rules, altogether, 
would allow humans to solve all problems. The first book 
was completed, at least in draft. The outlines of nine rules 
were drafted for book 2; no trace of book 3 exists. To over-
simplify, the first book was about what would, today, be 
called productive habits of mind – for example,

Rule V
The whole method consists entirely in the ordering and 
arranging of the objects on which we must concentrate 
our mind’s eye if we are to discover some truth. We 
shall be following this method exactly if we first reduce 
complicated and obscure propositions step by step to 
simpler ones, and then, starting with the intuition of 
the simplest ones of all, try to ascend through the same 
steps to knowledge of all the rest.
(https ://en.wikis ource .org/wiki/Rules _for_the_Direc 
tion_of_the_Mind)

The grand plan was to produce methods to solve all sim-
ple mathematical problems in Book 1, reduce complex math-
ematical problems to families of simple problems in Book 2, 
enabling their via the methods in Book 1; and in Book 3 to 
find ways to represent all problems mathematically, at which 
point they could be solved by the methods in Books 2 and 
1 respectively. Ambitious? Yes! Successful? As noted, the 
work was never completed. But, consider Cartesian coordi-
nates as an example. They enable geometric objects to be 
represented in algebraic terms, and vice-versa – a powerful 
instantiation of Descartes’ grand plan.

Of particular interest because they foreshadow Pólya and 
the theme of this issue are Descartes’ ideas about power-
ful mathematical practices. Consider, for example, Rules 
XV–XVI, which would be labeled heuristic strategies in 
today’s language:

Rule XV
It is generally helpful if we draw these figures and dis-
play them before our external senses. In this way it will 
be easier for us to keep our mind alert.

Rule XVI
As for things which do not require the immediate atten-
tion of the mind, however necessary they may be for 
the conclusion, it is better to represent them by very 
concise symbols rather than by complete figures. It will 
thus be impossible for our memory to go wrong, and 
our mind will not be distracted by having to retain 
these while it is taken up with deducing other matters.

Descartes’ overall plan was expansive, concerned very 
much with being an effective mathematical thinker. As such, 
he was concerned with productive mathematical practices, 
and with what we would today call productive habits of mind 
(cf. Cuoco et al., 1996). Current work, of course, builds on 
these interesting philosophical ideas with empirical findings.

4  Wallas, Hadamard, Poincaré, Duncker 
and Wertheimer – the gestaltists

The mathematician in me resonates when I read Wertheimer 
(1945/59), Duncker (1945), Hadamard (1945), and Poincaré 
(1913). More than the authors of most contemporary cur-
ricula, they focused on important mathematical insights and 
ideas.

Perhaps the most famous example from the Gestaltists 
is Wertheimer’s (1945/59) discussion of the “parallelogram 
problem.” Wertheimer had visited a class in which students 
had learned to reproduce the proof that the area of a paral-
lelogram is equal to its base times its height, and to compute 
examples thereof. The proof is suggested in Fig. 2, where 
the parallelogram is in standard position. Triangle AED is 
congruent to triangle BFC; “moving” triangle AED from its 
original position to the position occupied by triangle BFC 
results in the rectangle EFCD, so the parallelogram ABCD 

Fig. 2  The parallelogram in standard position

3 See my formulation of this problem in Sect. 7.

https://en.wikisource.org/wiki/Rules_for_the_Direction_of_the_Mind
https://en.wikisource.org/wiki/Rules_for_the_Direction_of_the_Mind


1166 A. H. Schoenfeld 

1 3

and the rectangle EFCD have the same area (which, in the 
case of the rectangle is CD x DE, which are equal in extent 
to the base and height of the parallelogram).

Wertheimer asked for permission to quiz the children and, 
when it was granted, asked them to derive the area of the 
parallelogram in Fig. 3. It’s essentially the same parallelo-
gram, no longer in standard position.

From a mathematical (or what the Gestaltists would call 
a “structural”) point of view, little of substance has changed: 
drawing the perpendicular from point D to side BC results in 
a figure akin to Fig. 2, and a similar argument can be made. 
However, the students were stymied: their focus, in proce-
dural terms, was to drop the perpendicular from D to the 
base AB, and that procedure was no longer implementable.

The Gestaltists properly identified what was desired 
– perception of mathematical structure and a focus on big 
ideas. They also identified the main instructional problem: 
rote learning and a focus on procedures and replication do 
not result in structural, generative understanding. So far, so 
good. The challenge was their theoretical orientation.

As first posited by Wallas (1926) and then reified by the 
authors identified above, problem solving occurs in four 
phases:

1. Saturation – working on the problem until it becomes 
part of you and you can’t do anything more with it con-
sciously

2. Incubation – putting the problem away, and letting your 
subconscious work on it

3. Inspiration – in a flash, having the insight that suggests 
how things fit together

4. Verification – confirming the insight.

The Gestaltists offered anecdotal evidence in favor of this 
four-stage process. For example, Archimedes’ discovery of 
buoyancy is the stuff of legend. The chemist F. A. Kekulé, 
struggling to discover the structure of benzene, dreamt of 
a snake biting its tail and was inspired to explore the pos-
sible ring structure of the compound. Hadamard (1945) 
writes of Poincaré having worked fruitlessly to understand 

the structure of Fuchsian functions, taking a day off to go 
on a geological excursion, and having an inspiration as he 
boarded the bus for the excursion.

Theoretically/methodologically speaking, these ideas 
were hard to verify and quite likely the result of “cherry 
picking” – the successes are heralded, but what about all 
the unremembered failures? Practically speaking, the theory 
was hard to convert into practice. As an example, consider 
Duncker’s (1945) discussion of the “thirteen problem”: Why 
are all six-digit numbers of the form abc,abc divisible by 
13?

Duncker says that the difficulty disappears when the fun-
damental insight, that all such six-digit numbers are divis-
ible by 1001, emerges from the subconscious. But in practi-
cal terms, what can one do in order to get such insights to 
emerge? Here the Gestaltists were of little help. They went 
no further than providing general suggestions – immersing 
oneself in the problem, taking a break, avoiding getting into 
a rut, etc.

As it happens, the thirteen problem is a personal favorite, 
which I discuss in Sect. 7.1. Now, in anticipation of Sect. 7.2 
and what follows it, I want to turn to the human dimension 
of mathematics: who can do mathematics, and what image 
of mathematics is portrayed?

One could begin with Euclid, “There is no royal road to 
geometry.” The meaning is usually taken to be “There are 
no shortcuts to learning geometry (or mathematics in gen-
eral). One must apply oneself.” But it also has a sarcastic 
edge – mathematics is (only) for those smart enough and 
dedicated enough to pursue it.

Poincaré, Gestaltist hero and mathematician/scientist 
of extraordinary prowess, makes this bias explicit in the 
Foundations of science (1913). Here he speaks of people 
in general:

Now most men do not love to think, and this is perhaps 
fortunate when instinct guides them, for most often, 
when they pursue an aim which is immediate and 
ever the same, instinct guides them better than reason 
would guide a pure intelligence.… It is needful then 
to think for those who love not thinking, and, as they 
are numerous, it is needful that each of our thoughts 
be as often useful as possible. (Poincaré 1913, p. 365).

Here he speaks with regard to the challenges of pedagogy:

How does it happen that so many refuse to understand 
mathematics – Is that not something of a paradox! Lo 
and behold – a science appealing only to the funda-
mental principles of logic … and there are people who 
find it obscure! and they are even in the majority! That 
they are incapable of inventing may pass, but that they 
do not understand the demonstrations shown them, that 
they remain blind when we show them a light which 

Fig. 3  A congruent parallelogram in non-standard position
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seems to us flashing pure flame, this it is which is alto-
gether prodigious. (Poincaré 1913, p. 430).

How one treats these issues (cf. the discussion of R.L. 
Moore) is essential. Leading questions as in the Meno do 
little or nothing for the slave as mathematical learner or 
thinker. Likewise, the essential mysticism of the Gestalt pro-
cess provides us with no tools for inculcating mathematical 
habits of mind; indeed, it reifies the notion that some have 
mathematical talent and provides no entrée into mathemati-
cal thinking.

5  Pólya

To borrow Pólya’s description of Descartes, Pólya was one 
of the very great. Pólya’s contributions to mathematics were 
far greater than his contributions to mathematics education, 
and those alone were massive (cf. Alexanderson 2000, Alex-
anderson et al. 1987).

One of Pólya’s advisees was Lakatos, parts of whose 1961 
dissertation Essays in the Logic of Mathematical Discovery 
were later revised and produced as Lakatos’s (1976) famous 
volume Proofs and refutations. A key idea of that volume, 
exemplified by the extensive discussion of the proof of the 
Euler characteristic, is that the first versions of definitions 
and proposed results are often not quite right, and need to 
be modified when counter-examples or other difficulties are 
found; hence mathematics is much more of an empirical/
experimental discipline than a deductive one. Lakatos argues 
for an approach to instruction that is more heuristic than 
deductive.

In the 1920s most texts did (and most texts still do) set 
out the content for students to master, providing exercises 
along the way. As early as 1925 Pólya and his frequent 
mathematical collaborator Gábor Szego worked differently. 
Pólya & Szego’s (1925) volume Aufgaben und Lehrsätze aus 
der Analysis I (Problems and theorems in analysis I) was a 
decidedly non-standard course in analysis: if you solved the 
problems and proved the theorems, you learned a significant 
amount of analysis. This can be seen as a robust antecedent 
of problem-based learning.

Pólya’s more direct contributions to the field of problem 
solving began with How to Solve it (Pólya 1945) and con-
tinued with the two-volume sets Mathematics and Plausi-
ble Reasoning (Pólya 1954) and Mathematical Discovery 
(Pólya 1962/65). What is essential to understand is how 
much Pólya’s ideas went beyond problem solving – even if 
one considers problem solving to be what Halmos (1980), 
another highly regarded mathematician who devoted sig-
nificant efforts to mathematics education, called “the heart 
of mathematics” (Halmos 1980). For Pólya, mathematics 
was about inquiry; it was about sense making; it was about 

understanding how and why mathematical ideas fit together 
the ways they do. This explains why Pólya said that of the 
great historical mathematicians, the one who influenced 
him most was Euler: “Euler did something that no other 
great mathematician of his stature did. He explained how he 
found his results and I was deeply interested in that. It has to 
do with my interests in problem solving (Albers and Alex-
anderson, 1985, p. 251)”. And, it was why the one movie 
of Pólya (1966) teaching is called Let us teach guessing. 
Inquiry, sense making, and exploring how things fit together 
are, in my opinion, key parts of what mathematical thinking 
(and practices) are all about. Pólya was heavily invested in 
helping people to learn to think mathematically; he taught 
summer institutes on “mathematical discovery” to teach-
ers. All this contrasts significantly with the “philosophical” 
inquiries described earlier in this paper.

Inspired by Pólya’s ideas (and following a decade of 
“back to basics” in the U.S. in the 1970s), the National 
Council of Teachers of Mathematics (1980, p. 1) recom-
mended that “problem solving should be the focus of school 
mathematics in the 1980s.” NCTM (1989) established the 
standards “movement” and re-emphasized problem solving 
as a fundamental goal of instruction. This was pursued in 
NCTM (2000) and, to some degree, in the “Common Core” 
(CCSSI 2000). However, as I see it, much was lost in the 
implementation of the ideas: “problem solving” became 
largely formulaic, and sense-making and mathematical 
thinking receded largely into the background. This was not 
simply an issue in the U.S. For broad overviews of how 
problem solving came to be interpreted and implemented 
around the world, see Törner, Schoenfeld, & Reiss (2008) 
and Santos-Trigo & Moreno-Armella (2013). Once again, 
the issue is how to open up the core mathematical ideas 
inherent in Pólya’s work.

6  Influences on curriculum

There is a long history of groups specifying mathematics 
curricula, and of mathematicians weighing in on educa-
tional issues (cf. Poincaré, above). A major challenge is 
that most of what has been proposed is primarily about 
content rather than about practices. (In the US, this was the 
case in 1892 when the “Committee of Ten” recommended 
the standardization of the high school curriculum; it was 
the case seventy years later when the “new math” intro-
duced ideas of modern mathematics into the curriculum.4 
Likewise, debates between formalists and intuitionists 

4 Interestingly, the science curricula introduced at the same (post-
Sputnik) time, known as “hands on” curricula, were more process-
oriented.
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(e.g., Hilbert and Poincaré) were mathematically impor-
tant and interesting, but they did not have a direct impact 
on classroom practices. Among the exceptions, where 
there is attention to mathematical practices as well as 
content, one finds the work of the Freudenthal Institute, 
grounded in Realistic Mathematics Education (see, e.g., 
Freudenthal 1983; Gravemeier & Doorman 1999; Van den 
Heuvel-Panhuizen, 2003) and I.M. Gelfand’s curriculum 
work (e.g., Gelfand, Glagoleva, & Schnol 1969; Gelfand 
& Saul 2001; Gelfand & Shen, 2003).

Two bodies of literature that attend to mathematical 
practices focus on mathematical modeling and on inquiry-
based learning. Special notice must be given to Henry Pol-
lak (1969, 1979, 2003), whose work inspired much of the 
international community’s attention to modeling – a field 
that seems less integrated with mainstream mathematics 
education than it might be. There is a substantial literature 
on mathematical modeling, which has been the subject of 
an ICMI study (Blum, Galbraith, Henn, & Niss 2007), and 
which received comprehensive coverage in Volume 38, 
Issues 2 and 3, of ZDM (2006). On the surface, mathemati-
cal modeling demands (or at least offers affordances for) 
problem formulation and the use of representations (as well 
as reflecting on their adequacy). Likewise, inquiry-based 
learning (see Maass & Artigue 2013 for an overview and 
Maass et al. 2013 for an international summary) should pro-
vide affordances for meaningful mathematical inquiry and 
sense making. How much this happens, and how much of 
the approach is merely the formulaic use of problem solving 
techniques or the mechanical use of “the modeling cycle” 
is open to question.

7  Looking forward

Section 7.1 focuses on desirable mathematics classroom 
practices. Section 7.2 address the issue of supporting stu-
dents’ development as powerful mathematical thinkers.

7.1  Desirable mathematical practices

In this section I revisit and expand on two of the mathe-
matics problems discussed above, using them as launching 
points for a discussion of where I think we need to head. 
Please note as you read the discussions that I think of prob-
lems as springboards for inquiry – that an attribute of a 
good problem is that it opens up avenues for conjecture, 
for making connections, for abstraction, generalization, and 
for new problems. Although the problems discussed below 
come from my problem solving courses, my intention is to 
discuss the kinds of tasks and discussions that I think should 
be central to all mathematics instruction.

I begin with the “thirteen problem,” which we discuss the 
first day of my problem solving courses. Discussions of this 
and other problems continue over multiple days if more can 
be learned from them. The version I use is in Fig. 4.

This problem always provokes lively discussion because 
it offers opportunities for sense making, for representations, 
for making connections, and for taking ownership of the 
mathematics. The students may feel stymied at first but they 
ultimately generate a number of approaches, among them:

– Noting that dividing by 7, then 11, then 13, is the same as 
dividing by 7 × 11 x 13 = 1001. How do you check your 
division? Multiply by 1001. Oh, that’s why if works!

– Noting that the result of the final division is the 3-digit 
number you started with. How did that happen?

– Saying the six-digit number you’d created out loud and 
noticing the affordances for factoring, e.g., “seven hun-
dred eighty-nine thousand, seven hundred eighty-nine” is 
seven hundred eighty-nine times one thousand plus seven 
hundred eighty-nine, which is 789 × 1000 + 789 × 1 …

– Asking what the six-digit number really stands for. The 
students say that the number abc, abc is shorthand for (a 
× 105) + (b × 104) + (c × 103) + (a × 102) + (b × 10) + c.

  I ask “what do you do when you see an expression that 
looks like this?” They respond “factor,” which unlocks 
the problem.

Fig. 4  A version of the “thirteen 
problem”

Take any three-digit number and write it down twice, to make a six-digit number. (For 
example, the three-digit number 789 gives us the six-digit number 789,789.) I’ll bet you 
$1.00 that the six-digit number you’ve just wri�en down can be divided by 7, without 
leaving a remainder. 

OK, so I was lucky. Here’s a chance to make your money back, and then some. Take the 
quo�ent that resulted from the division you just performed. I’ll bet you $5.00 that 
quo�ent can be divided by 11, without leaving a remainder. 

OK, OK, so I was very lucky. Now you can clean up. I’ll bet you $25.00 that the quo�ent of 
the division by 11 can be divided by 13, without leaving a remainder. 

Well, you can’t win ‘em all. But, you don’t have to pay me if you can explain why this 
works. 
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In class I highlight some of the strategies that have been 
used (e.g., working forwards in some solutions, working 
backwards in others; exploiting representations), the con-
nections between approaches, and the issues of underlying 
mathematical structure. These discussions, in the spirit of 
Euler and Pólya, are aimed at understanding how and why 
things work.

One year a student who sat in the last row indicated that 
she had found a different solution. In an earlier discussion 
of the problem “what is the sum of the first 137 odd num-
bers?” I had suggested the strategy of systematically testing 
out some simple cases. For that problem, it meant asking, 
“what is the sum of the first 1 odd number, the first two odd 
numbers, the first 3 odd numbers, etc.?” This student said 
she he had done the same for the problem in Fig. 4, using 
the simple 3-digit numbers 001, 002, 003, etc. What she saw 
when she did was

001,001 = 1001
002,002 = 2 × 1001
003,003 = 3 × 1001,
which gave her enough insight to keep going. I had 

been using that problem for years and had never seen that 
approach; it was wonderful, and I told the class so.

It is worth noting that the student was a fourth year Eng-
lish major who told me that she had enrolled in the course 
because she “wanted to give math one last chance.” She went 
on to gain confidence and do very well in the class.

In contrast to the Gestaltist mystification of the thirteen 
problem, the approach outlined here opens up the idea of 
systematic inquiry and of deliberate mathematical explo-
rations; it points explicitly to ways by which students 
can uncover mathematical structure and connections. In 

addition, the student’s experience described above points 
to the human dimensions of such inquiry, a theme I refer to 
in the Sect. 7.2.

Let us turn to the Pythagorean theorem. One of my 
favorite assignments is given in Fig. 5.

I want to start by highlighting the mathematical values, 
as well as the practices, suggested by the assignment. The 
fundamental stance taken is that of inquiry. Mathematics 
is about seeing how and why things fit together the way(s) 
they do. Students are given room to explore, to seek pat-
terns, to conjecture – i.e., “Let us teach guessing” in the 
spirit of Pólya. This does not mean random guessing. 
Rather, one looks for ways to systematically expand one’s 
knowledge; one evaluates conjectures and makes decisions 
accordingly. These are issues of strategic decision making 
and metacognition – see Schoenfeld 1985, 1987. Note also 
the relationship to problem posing (Brown & Walter 2005; 
Singer, Ellerton, & Cai 2015). This kind of problem fram-
ing makes it clear that mathematics is not about “getting 
the answer” – it’s about developing and deepening one’s 
understandings. What do you do when you’ve proved the 
Pythagorean theorem? You look for other proofs, for exten-
sions, for applications. Different proofs may result in deeper 
or different understandings and to connections one has not 
made before. Building such understandings is part of the 
joy of mathematics. Students need to experience mathemati-
cal thinking as generative. See the discussion of the magic 
square problem in Sect. 8.

One year, when seeking all non-trivial integer solutions 
{A,B,C} to the Diophantine equation  A2 + B2 = C2 (that is, 
A, B, and C have no common factors), my students made an 
interesting conjecture. Soon after reading the problem they 

Fig. 5  Pythagorean problems It’s �me to play with Pythagoras (well, with his ideas – not with him personally).  For 
today, and perhaps a while a�er, we’ll explore the Pythagorean theorem: 

Given any right triangle with legs A and B, and hypotenuse C, then A2 + B2 = C2. 

Here I mean “explore” in a very broad sense.  The idea is to take the Pythagorean 
theorem as a star�ng point, and ask ques�ons.  For example: 

Why is it true?  Can we prove it in one, two, or three different ways?  What if the 
triangle’s not a right triangle?  What can you say? 

We know that one solu�on in integers to the equa�on A2 + B2 = C2  is the famous 
“3,4,5” right triangle.  Are there other solu�ons in consecu�ve integers?  In arithme�c 
sequence?  In geometric sequence? 

Look at different solu�ons, in integers, to the equa�on A2 + B2 = C2.  Can you find 
anything interes�ng?  Are there pa�erns in the rela�onships among A, B, and C?  Are 
there infinitely many solu�ons to the equa�on in integers?  Are there infinitely many 
“essen�ally different” solu�ons? Can you generate some of them?  All of them? 

Are there Pythagorean quadruples: integers A,B,C,D such that A2 + B2 + C2 = D2 ? 

How about  A2 + B2 = C2 + D2 ?  Or . . . ?????? 
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had listed all the Pythagorean triples they knew: {3,4,5}, 
(5,12,13}, {7,24,25}, {8,15,17}, and {12,35,37}. In the sam-
ple they generated, the hypotenuse differs from the larger 
leg by either 1 or 2, when the smaller leg is respectively odd 
or even. On the basis of this sample, they conjectured that

 i. There are infinitely many Pythagorean triples of the 
form {x, y, y + 1};

 ii. There are infinitely many Pythagorean triples of the 
form {x, y, y + 2};

 iii. There are no others.

To my surprise, the students proved conjectures (i) and 
(ii). At that point a student asked, “If we prove there are no 
others, do we have a publishable theorem?”

Conjecture (iii) is false. There is a standard solution, 
which we discussed. But that’s minor; we all make false 
conjectures. The point is that my students – in this class, 
student teachers who had no intention of being mathemati-
cians –made two discoveries that were new to me and my 
colleagues. (In another course, the students did produce a 
result that got published.) The students were engaging in the 
practices of generating examples, perceiving relationships 
and making and testing conjectures according to the high-
est mathematical standards. They were doing mathematics.

This is a key point. The issue is not simply problem solv-
ing; It is about the use of problems as opportunities for 
developing mathematical practices and habits of mind, in 
any instructional context. It should be this way in all courses. 
A focus on using problems (broadly construed as opportu-
nities for mathematical exploration, as illustrated in Fig. 5) 
raises the fundamental question,

What do good problems (i.e., tasks and contexts that 
support the development of powerful mathematical 
practices, habits of mind, and rich discourse) look 
like?

In Schoenfeld (1991) I discussed my “problem aesthetic,” 
a characterization of the properties of the kinds of problems I 
find instructionally valuable. Here is an updated distillation.

A. In general, I like problems that are easily under-
stood and that do not require a lot of vocabulary or 
machinery as the “cost of admission.” Undergrad-
uates can start work on the four color problem and 
Fermat’s last theorem without knowing too much 
background mathematics. Likewise, the explora-
tions of the task in Fig. 5 can veer into deep math-
ematical territory. Much of the content in regular 
courses can be approached by “problematizing” 
the content in this way.

B. I tend to prefer problems that can be approached 
in a number of ways. Students tend to think that 

there is only one way to solve any given problem 
(usually the method the teacher has just demon-
strated in class). In contrast, I want them to see 
mathematics as a realm for exploration. The pos-
sibility of multiple approaches also lays open 
issues of “executive” decisions – what directions 
or approaches should we pursue when solving 
problems, and why? Problems with multiple entry 
points allow more students to find handholds into 
the mathematics and are the seeds for rich stu-
dent-to-student discourse, which is essential (cf. 
“group-worth problems,” Cohen & Lotan 1997) 
and seeing the connections between multiple 
approaches deepens one’s understanding.

C. The problems and their solutions should serve as 
introductions to important mathematical ideas. 
This can take place in at least two ways. Obvi-
ously, the topics and mathematical techniques 
involved in the problem solutions can be of agreed 
importance. And, problems can serve as fertile 
ground for learning problem solving techniques.

D. Problems should, if possible, serve as “seeds” for 
honest-to-goodness mathematical explorations. 
Open-ended problems provide one way to engage 
students in doing mathematics. Good problems 
lead to more problems – and if the domain is rich 
enough, students can start with the “seed” prob-
lem and proceed to make the domain their own 
(adapted from Schoenfeld 1991, p. 7).

These comments apply to all mathematical tasks. The 
idea is for tasks to support rich mathematical explorations 
and discourse – for them to serve as fertile ground for the 
development of mathematical practices. This perspective is 
entirely consistent with inquiry-based approaches to math-
ematics (see, e.g., Laursen & Rasmussen 2019; Maass, 
Artigue, Doorman, Krainer, & Ruthven 2013; Rasmussen, 
Wawro, & Zandieh 2015.

7.2  Supporting students’ development as powerful 
mathematical thinkers

I now turn to the second main issue, the question of how we 
can support students’ development as powerful mathemati-
cal thinkers. To frame the discussion I begin by character-
izing two polar opposites. It may well be the case that the 
Moore method, which has its devotees and has undoubtedly 
produced many mathematicians of note, also destroyed the 
mathematical careers of many potentially fine mathemati-
cians and drove many more people out of mathematics. A 
dose of pure mathematical practices was helpful for some 
and toxic for others. At the other end of the spectrum, the 
stories told in Sect. 7.1 discuss the mathematical experiences 
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of people who had no intentions of pursuing careers produc-
ing mathematics. They show a graduating English major 
who was “giving math one last chance” finding her math-
ematical voice, and a class of pre-service teachers making 
truly interesting mathematical discoveries.

This raises the question: which mathematical practices, 
for whom? That, first and foremost, is a question of values. 
I believe that opportunities for real mathematical thinking 
as described in this paper can and should be made available 
to all. But, I must also point out that the question “which 
mathematical practices, for whom?” is also potentially mis-
leading, because many people conceptualize the issue as a 
zero-sum game, along the lines of “Do I serve mathematics 
by honing the best talent, or do I serve the masses?” Simply 
put, both are possible: it is possible to offer rich mathemati-
cal instruction for all students (which, I note, enlarges the 
potential talent pool by enfranchising more potential math-
ematicians) and support those who wish to pursue math-
ematics. Framing instruction that does so has been the main 
focus of my research for the past decade.

The Teaching for Robust Understanding (TRU) project 
(2019) identifies the characteristics of classrooms from 
which all students emerge as knowledgeable and resource-
ful thinkers and problem solvers. Research indicates that 
five dimensions of classrooms practice are essential: the 
richness of the disciplinary content and practices (Dimen-
sion 1); Cognitive Demand, or the opportunity for students 
to engage in what has been called “productive struggle” 
(Dimension 2); equitable access to core content and prac-
tices for all students (Dimension 3); opportunities to develop 
a sense of agency, to make the mathematics their own, and 
to develop productive mathematical identities (Dimension 
4); and, formative assessment, the degree to which student 
ideas are made public and responded to in productive ways 
(Dimension 5). It goes without saying that Dimension 1, the 
quality of the mathematics and the mathematical practices 
in which students engage, is crucial. But then the question 
is which students engage with the mathematics, and how 
they do so. Those are the other 4 dimensions of TRU, which 
has a central focus on the student’s experience of the math-
ematics. There is by now ample evidence that each of the 
five dimensions of TRU is essential; that students who learn 
in classrooms that do well on the five dimensions of TRU 
tend to be knowledgeable and resourceful; and that because 
TRU embodies a set of principles but is not prescriptive, 
the framework can be adapted successfully for professional 
development in widely disparate contexts. (Schoenfeld 2013, 
2019; Schoenfeld et al. 2020.)

Five dimensions of practice are, at first, a lot to keep track 
of. We have found that it is useful to conceptualize them as 
follows. At the forefront are the mathematics (Dimension 1) 
and all students’ opportunities to engage with the core math-
ematics in ways that enable them to contribute and build 

on each other’s ideas, thus building a sense of agency and 
positive disciplinary identities (Dimensions 3 and 4). One 
then asks, how can this be made to happen? A fundamental 
mechanism for doing so is making student thinking public, 
thus anchoring instruction in the students’ current under-
standing and providing the grounds for productive struggle 
(Dimensions 5 and 2).

Evidence indicates that it is possible to configure class-
room dynamics so that all students engage with core mathe-
matical content and practices, in ways that support the devel-
opment of productive mathematical identities – the English 
major and pre-service teachers discussed above can be taken 
as cases in point. A key point to understand is that opening 
up mathematics to more students does not necessarily make 
it easier (an argument made by those who feel that greater 
enfranchisement would disadvantage the “talented”); if the 
mathematics is opened up in the right ways it is made richer, 
because there are more connections to be made. As an exam-
ple, compare the “lean” version of the “thirteen problem” in 
Sect. 4 with the more open version given in Sect. 7.1. The 
lean version may seem more challenging at first; but there is 
much richer mathematics, which includes the algebraic solu-
tion to the lean version, in a full discussion of the more open 
version. And, of course, there is nothing to prevent those stu-
dents who get excited about this or other mathematics from 
digging more deeply. Making sure that every student can run 
an 8-min mile does not slow down those who can run faster.

I now believe that it is within the realm of possibility to 
do the kind of teaching discussed here – teaching that does 
well along the five dimensions of the TRU framework – at 
scale. The pedagogy in the Formative Assessment Lessons 
(Mathematics Assessment Project 2016), known as FALs, 
is entirely consistent with the TRU Framework (Burkhardt 
& Schoenfeld, 2019); the FALs have been shown to sup-
port teachers in building more TRU-like environments, 
with concomitant improvements in student performance 
(Herman et al. 2014; Research for Action 2015). The FALs 
span enough of the school year (50–60 days of instruction, 
at 5 grades) that it no longer takes a leap of imagination to 
envision their serving as the base for a body of instruction 
grounded in this kind of approach. However, there is a long 
way from possibility to reality, both within the classroom 
and regarding the contexts within which classroom activi-
ties take place. I can speak here with confidence regarding 
the U.S. Other national contexts differ, and they surely have 
their own issues as well.

An issue explored in Schoenfeld (2019) is that the 
mathematical practices encouraged by standards and 
related assessments are at far too granular a level: big 
ideas are lost when there is a focus on low-level detail. 
(See also Ma 2013). To give just one example, many stu-
dents memorize the point-slope formula, two-point for-
mula, slope-intercept formula, and two-intercept formula 
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for lines in the plane, thinking they are all different in 
some fundamental way. The important understanding is 
that any two key pieces of information (among them, those 
identified above) determine the equation of a line, and that 
the different formulas are mere conveniences.

Finally, to avoid misconceptions: TRU is not prescrip-
tive, in that it does not say how one should do well in 
the five TRU dimensions. Very different curricula, and 
instructors with very different styles, can excel in all five 
dimensions.

Reconceptualizing the curriculum to focus on big ideas 
is the easy part compared to what is needed in the other 
dimensions. Issues of formative assessment and cognitive 
demand (adjusting things so that students are engaged in 
productive struggle) are far more complex: they require a 
deep knowledge of the mathematics, so that the teacher 
can react in the moment to the ways classroom conver-
sations are evolving, and keep the students productively 
engaged. They can be scaffolded by materials such as the 
FALs, however.

Moreover, the complexity of these issues pales in com-
parison to the complexity of issues related to equitable 
access and supporting student agency and identity. In class-
rooms in the U.S., this involves issues of race and power: 
the very moment students walk in the classroom door they 
are positioned by the way they look and act. Creating class-
room environments that counter often unspoken assump-
tions, and that truly provide all students with opportunities 
to contribute meaningfully to the class’s mathematical con-
versations – to be heard fairly and respectfully in generating 
ideas, reflecting on the group’s work, and contributing to 
collective efforts – is a major challenge (Battey 2013; Bat-
tey et al., 2018; Martin 2006, 2009; McGee & Martin 2011; 
Shah 2017). Mathematics classroom practices and norms 
(Cobb & Yackel 1996; Yackel & Cobb 1996) shape each 
student’s experience of the mathematics and what they take 
from it, personally as well as mathematically. And that, in 
the U.S., is just the beginning: in some schools, you can tell 
which mathematical track (stream) a class is in by the racial 
composition of the students in it; and there are huge dispari-
ties in the resources available to schools and school districts 
across the U.S., as a function of demographics. Such issues 
go beyond those of classroom practices, but they need to be 
mentioned.

8  Discussion

Reflecting on nearly 50 years of Research and development 
in this arena, I conclude with a list of pedagogical/math-
ematical practices that I think are under-emphasized and 
need to move to center stage.

• Establishing a climate of inquiry, in which mathematics 
is experienced as a discipline of exploration and sense 
making.

  One of the problems I use in the first day of my 
problem solving courses is to have the students work a 
3 × 3 magic square. When they have done so, I ask if 
we are done. “Yes,” they chorus. I say, “No we’re not. 
What about placing, say, the integers 2 through 10, or 
21 through 30?” When they have dealt with those prob-
lems, I ask if we are done. “Yes,” they chorus once more. 
I say, “No we’re not. What about the integers 20, 40, 
60, …, 180? Or the integers 21, 41, 61, …, 181? The 
students generalize to the fact that if you think of any 
magic square as a matrix, M, then aM, and M + b; and 
aM + b are also magic squares. That ties up this series 
of mini-explorations neatly. I ask, “OK, are we done?” 
Yes, they say. I say, “No we’re not. In the original magic 
square the sum of each row, column, and diagonal was 
15. Suppose I give you a random integer. Is there a magic 
square whose rows, columns, and diagonals sum up to 
that integer? They prove that such integers must be divis-
ible by 3, in which case such magic squares exist.

  Once again I ask, are we done? A student throws up 
his hands in mock exasperation and says, “We’re NEVER 
done!” That, I say, is precisely the point. The way math-
ematics gets built is by consistently seeking to extend 
what we know through generalizations, abstractions, and 
pursuing issues of structure. Euclid’s fifth postulate is a 
perfect example of structural concerns. From the time 
of Euclid, five postulates sufficed to define Euclidean 
geometry, for all practical purposes. But, for 2000 years, 
mathematicians tried to see if the dependence on five 
postulates could be reduced to a dependence on four. 
Eventually, non-Euclidean geometries were found. Math-
ematics is about problematizing. It’s true: we’re never 
done.

  A few weeks later the same student asked me why I 
was no longer asking “Are we done?” I told him that I 
didn’t have to – the class was now running with math-
ematical ideas in the ways I’d hoped.

• Focusing on big ideas, and not losing the forest for the 
trees.

  I will not dwell on this, having devoted significant 
space to the ideas in Schoenfeld (2019). A key idea is 
generativity: what students learn and remember, should 
be sufficient to allow them to regenerate what they need, 
long after instruction is over. An indelible memory 
(literally more than 50 years ago) is my undergraduate 
probability teacher starting to write the statement of the 
binomial theorem, stopping, and saying “I always forget 
the statement, but it doesn’t matter – it’s so easy to derive 
the result.” She reasoned her way through the theorem, 
and then wrote the statement at the top.
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  I should note that I consider heuristic strategies to be 
big ideas. The key ideas for approaching problem solving 
as curricular content were established, as existence proof, 
as long ago as Schoenfeld (1985).

• Making student thinking central to classroom discourse.
  Formative assessment depends on knowing what stu-

dents think! Having student thinking be public is the 
best way to understand current student understandings, 
and for students and teacher alike to refine them (see 
Burkhardt & Schoenfeld, 2019). Moreover, the key to 
the development of a student’s mathematical agency 
and identity, their mathematical authority (in the sense 
of authorship) and their ownership of what is produced 
is that student’s contributions to core ideas and refin-
ing them. I hasten to add that there are multiple ways to 
contribute to collective work, among them: generating 
ideas, testing ideas and reflecting on them, seeking con-
nections, clarifying and organizing contributions, and 
writing things down clearly.

• Insuring that classroom discourse is respectful and invit-
ing.

  Students will not contribute to classroom discourse 
unless they feel it is safe to do so. As noted above, issues 
of race and power are likely to be in play in a classroom 
before any student says a single word; positionings in 
discourse are subtle but powerful (see, e.g., Langer-
Osuna 2011, Reinholz & Shah 2018, Wood 2013). This 
means that the ways students are positioned – not just by 
the teacher but by other students as well – are critical. 
Finding ways to invite students into classroom discourse, 
whether via critically relevant pedagogy (e.g., Brown-
Jeffy & Cooper 2011, Gay 2018, Ladson-Billings 1994, 
1995, Palmer 1998), via relational teaching (e.g., Franke, 
Kazemi, & Battey 2007), or via any other mechanism 
one can use, is a beginning; making sure that students’ 
contributions (even if not seemingly correct) are seen 
as enriching classroom discussions is essential. Cycling 
back to the first bullet, note that in a climate of inquiry, 
the vast majority of suggestions for making progress on 
challenging problems are sure to be flawed – as is the 
case with the vast majority of professional mathemati-
cians’ attempts to work at the cutting edge. It’s only after 
many flawed attempts that the final product is polished.

In these final comments I have tried to focus on big ideas. 
The first two bullets pertain largely to Dimension 1 of the 
TRU framework, in an attempt to make sure that classroom 
norms and practices focus on what counts mathematically. 
The third and fourth bullets are at the heart of Dimensions 
3 and 4. Our classrooms must be environments in which all 
students are empowered to engage meaningfully in math-
ematical practices, for such engagement is the source of 
agency and identity. Those two bullets also provide much 

of the substance behind dimensions 5 and 2: formative 
assessment is enabled when student thinking is made pub-
lic, and work in students’ zone of proximal development is 
the locus of productive struggle. Attention to such issues in 
curriculum and pedagogy will provide students with deeper 
opportunities to engage meaningfully with mathematics, and 
become more agentive and deeper mathematical thinkers.
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