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Abstract
In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a 
movement known as the philosophy of mathematical practice. In this paper we offer a survey of this movement aimed at 
mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the 
philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of math-
ematical practice covering topics including the distinction between formal and informal proofs, visualization and artefacts, 
mathematical explanation and understanding, value judgments, and mathematical design. We conclude with some remarks 
on the potential connections between the philosophy of mathematical practice and mathematics education.

1  Introduction

A wide variety of fields are concerned with the study of 
mathematics as a human practice, including anthropology, 
history, pedagogy, psychology, and sociology. Many phi-
losophers have also engaged deeply with the mathemati-
cal practices of their time, from Plato, Descartes, Leibniz, 
Berkeley, and Kant to Frege, Russell, Hilbert, and Wittgen-
stein. In recent years, philosophical work directly concerned 
with the practice of mathematics has intensified, giving rise 
to a movement known as the philosophy of mathematical 
practice. If one accepts the premise of this special issue—
that mathematicians’ practice matters to mathematical 
instruction—then work in the philosophy of mathematical 
practice is potentially relevant to mathematics education 
research. To foster interactions between philosophical and 
pedagogical approaches to the study of mathematical prac-
tice, we provide in this paper an overview of the philoso-
phy of mathematical practice by (1) highlighting its driving 
questions and methods and (2) surveying some of its recent 
developments.

Perhaps the first steps towards a philosophy of mathe-
matical practice were taken by Wilder (1950, 1981), who 
argued that mathematics is a cultural system, and Pólya 
(1945, 1954, 1962) who investigated mathematical problem 
solving, heuristics, and discovery. Lakatos (1976) dedicated 
his famous dialogue Proofs and Refutations to Pólya, as well 
as to Popper, the philosopher of science. In this work, he 
argued that mathematical knowledge grows not via the con-
tinuous production of formal derivations but by a dynamic 
process which involves proposing “proofs” which are then 
refuted and subsequently refined. Kitcher (1984) was also 
concerned with the growth of mathematical knowledge, 
arguing that modern mathematics evolved via a series of 
rational transitions from earlier practices.

In the past 20 years, contributions to the philosophy of 
mathematical practice have considerably increased. One 
earlier work from this time period is that of Corfield (2003) 
who argues that philosophers should pay more attention to 
what mathematicians do and presents a variety of case stud-
ies that do exactly this. More recently, a number of important 
collected volumes and monographs have been published that 
document the field. The collections edited by Van Kerkhove 
and Van Bendegem (2007), Van Kerkhove (2009), and Löwe 
and Müller (2010) bring together a variety of contributions 
focusing on the question of what a mathematical practice is 
and how it should be studied. The collection edited by Man-
cosu (2008) presents contemporary work on topics including 
visualization and diagrams, explanation and understanding, 
and mathematical concepts and definitions, among others. 
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The collection edited by Ferreirós and Gray (2006) aims to 
promote connections between the history and philosophy of 
mathematics while the collection edited by Larvor (2016a) 
focuses on mathematical culture. Giaquinto (2007) provides 
a wide-ranging epistemological study of visual thinking in 
mathematical practice which takes into account empirical 
results from cognitive science and mathematics education. 
Grosholz (2007) has investigated what she calls the “pro-
ductive ambiguity” of representations in mathematical and 
scientific practices through a diverse collection of case stud-
ies. Macbeth (2014) has given center stage to analyses of 
various past and contemporary mathematical practices in her 
general account of reason as a power of knowing. Ferreirós 
(2015) has offered an account of mathematical knowledge 
highlighting the importance of interactions between different 
practices. Finally, Wagner (2017) has proposed a philoso-
phy of mathematical practice grounded in the negotiation 
of constraints.

In the remainder of this paper we focus primarily on con-
temporary philosophy of mathematical practice, with the 
aim of providing an overview of the field for mathematics 
education researchers.1 We begin in Sects. 2 and 3 with a 
discussion of the questions investigated by philosophers of 
mathematical practice and the methods used to tackle them, 
respectively. Section 4 then surveys a selection of work in 
the philosophy of mathematical practice. Section 4.1 dis-
cusses the relationship between formal and informal proofs. 
Visualization and artefacts are the focus of Sect. 4.2. Expla-
nation and understanding are treated in Sect. 4.3 while 
value judgments more generally are considered in Sect. 4.4. 
Section 4.5 discusses the issue of design in mathematics. 
We conclude in Sect. 5 with some remarks on the relation 
between the philosophy of mathematical practice and math-
ematics education.

2 � Questions in the philosophy 
of mathematical practice

Philosophy of mathematics, broadly construed, aims to 
understand mathematics, and potentially engage with how 
mathematics should be done. However, philosophers of 
mathematics of the twentieth century have focused mainly 
on the foundations of mathematics and on metaphysical and 
epistemological questions about the nature of numbers and 
our access to them (for a review, see Benacerraf and Put-
nam 1964; Shapiro 2000). Addressing these questions did 
not require paying close attention to mathematical practice 
beyond set theory and the elementary parts of arithmetic and 

geometry (Mancosu 2008, pp. 1–2). Philosophers of math-
ematical practice aim to broaden this research agenda and 
to engage directly with mathematics as it is practiced by 
addressing questions such as:

•	 What are the components of mathematical knowledge?
•	 What do we do when we do mathematics?
•	 What is “good” mathematics?
•	 In what sense is mathematics a social practice?
•	 What can the history of mathematics tell us about its 

nature?
•	 What is the relationship between mathematics and other 

disciplines?

 Let us say a little about each question in turn.

What are the components of mathematical knowledge? 
Mathematical knowledge does not lie solely in theorems. 
Philosophers of mathematical practice investigate all the 
components of mathematical knowledge including proofs 
(e.g., Rav 1999; Detlefsen 2009), axioms (e.g., Schlimm 
2013), concepts and definitions (e.g., Tappenden 2008), and 
methods (e.g., Avigad 2006). The objective is to analyze the 
nature of these different components and to understand the 
way(s) they function in actual mathematical practice.

What do we do when we do mathematics? Mathematics is 
done by human agents. Philosophers of mathematical prac-
tice take this seriously and so investigate how we, as human 
beings, do mathematics. In this respect, topics that have 
received philosophical attention include the role of visuali-
zation (e.g., Giaquinto 2007) and imagination (e.g., Arana 
2016), the use of artefacts such as diagrams (e.g., Giardino 
2017a) and notations (e.g., Muntersbjorn 1999; De Cruz and 
De Smedt 2013), and the importance of planning agency in 
mathematical activities (Hamami and Morris, forthcoming). 
Insofar as human agents are cognitive agents, several authors 
investigate and integrate this cognitive dimension, often by 
drawing upon empirical research from cognitive science and 
mathematics education (e.g., Giaquinto 2007).

What is “good” mathematics? Mathematicians want their 
work to be more than just correct—they also want it to be 
“good.” Philosophers of mathematical practice aim to clarify 
the ways in which a piece of mathematics can be “good,” for 
example, by being explanatory (e.g., Steiner 1978), beautiful 
(e.g., Rota 1997), pure (e.g., Detlefsen and Arana 2011), deep 
(e.g., Arana 2015), fruitful (e.g., Tappenden 2012), fitting 
(e.g., Raman-Sundström and Öhman 2018), interesting (e.g., 
Thomas 2017) or well-motivated (e.g., Morris 2020). More-
over, philosophers of mathematical practice are interested 
in good mathematical design. That is to say, they are inter-
ested in determining how we should evaluate mathematical 

1  For other overviews of the field aimed at philosophers we refer to 
Van Bendegem (2014), Giardino (2017b), and Carter (2019).
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notations and how mathematics should be structured (see, 
e.g., Sieg 2010; De Toffoli 2017; Avigad, 2020).

In what sense is mathematics a social practice? Math-
ematical practice is inherently social. Mathematicians sub-
mit their work for peer review, read journal articles, attend 
conferences, and work together to prove theorems. Phi-
losophers of mathematical practice aim to understand this 
social dimension of mathematics (Löwe and Müller 2010; 
Ferreirós 2015; Larvor 2016a) by investigating its social 
values, norms, and practices (see, e.g., Müller-Hill 2009; 
Geist, Löwe, and Van Kerkhove 2010; Andersen, forthcom-
ing; Rittberg, Tanswell, and Van Bendegem, forthcoming).

What can the history of mathematics tell us about its 
nature? Mathematics is not static—its history shows that 
it has undergone striking changes. Philosophers of math-
ematical practice thus undertake historical case studies to 
better understand these changes and the consequences asso-
ciated with them (see, e.g., Manders 2008; Yap 2011; Avi-
gad and Morris 2014, 2016; Ferreirós 2015). Indeed, many 
researchers in the field combine philosophical and historical 
expertise and aim to promote an integrated approach to the 
philosophy and history of mathematical practice (Mancosu, 
Jørgensen, and Pedersen 2005; Ferreirós and Gray 2006; 
Mumma and Panza 2012).

What is the relationship between mathematics and other 
disciplines? It is a truism to say that mathematics is used 
in virtually all branches of the social and natural sciences. 
Philosophers of mathematical practice are interested in 
investigating the various relationships between mathemat-
ics and other disciplines such as, e.g., computer science 
(Avigad 2008a, 2008b), physics (Urquhart 2008b, 2008a), 
and biology (Islami and Longo 2017), and to analyze what 
this tells us about mathematics. Furthermore, the traditional 
philosophical issue of the applicability of mathematics to the 
external world remains a central issue in the field (Wilson 
2006; Pincock 2012).

In the next section, we discuss the methodologies employed 
by philosophers of mathematical practice to make progress 
on these questions. In Sect. 4, we provide illustrations of 
their work. Our focus in this paper is on work that addresses 
the first three questions.

3 � Methodologies in the philosophy 
of mathematical practice

A distinctive characteristic of the philosophy of mathe-
matical practice, inasmuch as it instantiates a philosophi-
cal approach to the study of mathematical practice, is of 

course the use of traditional methodologies in philosophi-
cal research. But armchair philosophy—as consisting of 
pure a priori thinking without any recourse to observation 
or experiment—does not seem appropriate to investigate 
mathematical practice. Rather, if the promise to pay greater 
attention to actual mathematical practice is to be fulfilled, 
one needs specific methods to look at and investigate math-
ematical practice. For this reason, the method of case studies 
has played a central role in the development of the field, and 
the use of various empirical methods borrowed from other 
fields is becoming more and more prominent. In this section, 
we provide an overview of the main methodologies that have 
been used so far in the philosophy of mathematical practice.

Case studies As will become clear in the following sections, 
the method of case studies is central to the philosophy of 
mathematical practice. The method consists in analyzing in 
detail one or more phenomena in the context of a specific 
mathematical practice, either past or present. Although the 
method is often used in an exploratory way to identify inter-
esting phenomena, in published work it is almost always 
directed towards one or more special issues to be addressed. 
In particular, case studies can be used to support, or to pro-
vide a counterexample to, a given conceptual analysis or 
framework. As we shall see, the method has been used in 
relation to most of the issues we shall touch upon in our 
overview of the field (Sect. 4).

Conceptual analysis One of the central methods of philoso-
phy is conceptual analysis. It consists in answering ques-
tions of the form “What is X?” by reflecting on our own 
understanding of the concept X, the result of which most 
often takes the form of a set of necessary and sufficient con-
ditions for something to be or to count as X. Typical exam-
ples of philosophical concepts that have been analyzed in 
this way are agency, justice, knowledge, morality, rational-
ity, and truth, to mention a few. In the philosophy of math-
ematical practice, the method has been used, in particular, 
to analyze different values attributed by mathematicians to 
pieces of mathematics such as proofs, theorems, definitions, 
or methods. One can then find in the literature conceptual 
analyses of what it means for a piece of mathematics to be 
or to count as explanatory, beautiful, pure, deep, fruitful, 
fitting, or interesting (see Sect. 4.4).

Conceptual framework Many phenomena and concepts 
do not lend themselves to conceptual analysis but require 
instead the development of a whole conceptual framework, 
that is, a complex network of notions and theses. Perhaps the 
most illustrative examples of this are conceptual frameworks 
aiming to provide an account of the notion of mathematical 
practice itself such as the ones proposed by Kitcher (1984), 
Van Bendegem and Van Kerkhove (2004), and Ferreirós 
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(2015) which, of course, requires much more than a set of 
necessary and sufficient conditions.2

Arguments Developing arguments in favor of or against par-
ticular philosophical views is another fundamental method 
of philosophical research. This method has been central to 
traditional philosophy of mathematics in the twentieth cen-
tury, where much effort has been devoted to the articulation 
of various philosophical views—naturalism, nominalism, 
Platonism, structuralism, etc.—which has generated in turn 
a whole dialectic of arguments advanced in favor of and 
against them. Philosophical views allowing such a dialec-
tic have still to emerge in the philosophy of mathematical 
practice. But arguments have been developed in the field 
with respect to specific theses and accounts. We can mention 
here the arguments put forward by Brown (1997, 1999) and 
Giaquinto (2007, 2011) in favor of the thesis that pictures 
and diagrams can play a positive epistemic role in inference 
and proof, by Lange (2009) against the thesis that proofs by 
mathematical induction are explanatory, and by Tanswell 
(2015) against the account of informal proofs proposed by 
Azzouni (2004), among others. In line with traditional philo-
sophical practice, arguments in favor of a particular view 
or thesis can consist in showing that (1) it can account for 
a wide range of cases, (2) it is in line with mathematical 
practice, and/or (3) it relies on a minimal set of assumptions. 
Arguments against a view or thesis can take the form of (1) 
providing counterexamples, (2) deriving unwanted conse-
quences, and/or (3) exposing problematic assumptions.

Empirical methods There is now a growing interest in using 
empirical methods in the philosophy of mathematical prac-
tice (Aberdein and Inglis 2019). These methods are usu-
ally borrowed from other fields such as the social sciences, 
cognitive science, and mathematics education, and research 
using these methods is often conducted in interdisciplinary 
collaborations with researchers of these different fields. 
So far the main empirical methods that have been used in 
the field are interviews, psychological experiments, and 
surveys. They have been employed to investigate the peer 
review process in mathematical practice (Geist, Löwe, and 
Van Kerkhove 2010; Andersen, forthcoming), the way math-
ematicians write mathematical research papers (Andersen, 
Johansen, and Sørensen, forthcoming) and evaluate the 
value(s) of mathematical proofs (Inglis and Aberdein 2014), 
knowledge ascriptions on the basis of mathematical proofs 
(Müller-Hill 2009), the kind of explanations mathemati-
cians provide in online mathematical discussions (Pease, 

Aberdein, and Martin 2019), and the cognitive bases of 
Euclidean diagrammatic reasoning (Hamami, Mumma, and 
Amalric, submitted), among others.

Imports from other fields Finally, some contributions have 
imported and built upon developments from other fields. 
An illustrative example of this is the work of Avigad on 
value judgments (Avigad 2006) and mathematical under-
standing (Avigad 2008b) where he relied on formal models 
from the field of formal verification, as well as his more 
recent work which imports the notion of modularity from 
software engineering to analyze the structure and compo-
nents of mathematical knowledge (Avigad, 2020). Another 
important example is to be found in the work of Giaquinto 
(2007) which drew heavily on works from cognitive science 
and mathematics education in developing his epistemologi-
cal analysis of visual thinking in mathematics.

The philosophy of mathematical practice thus uses a wide 
range of philosophical methods and borrows methods from 
other fields as well. Research in the field has so far been pur-
sued in a multidisciplinary and open-minded spirit, and so 
it is very likely that the number of methods employed in the 
philosophical study of mathematical practice will continue 
to grow with the development of the field.

4 � A selective overview of current trends 
and issues

We provide in this section an overview of some of the main 
trends and issues driving the philosophy of mathematical 
practice. Such an overview is bound to be selective but it 
offers nonetheless a representative picture of the type of 
research conducted in the field.3

4.1 � Informal vs formal proofs

For the vast majority of the twentieth century, the domi-
nant philosophical conception of what a proof is has been 
given by the notion of formal proof coming from logic and 
the foundations of mathematics. A formal proof is always 
specified relative to a given formal deductive system, and so 
defining the former requires first defining the latter. A formal 
deductive system Γ is a triple 〈L, R, A〉 composed of: a for-
mal language L for representing mathematical propositions 
as formulas; a set of rules of inference R specifying what 

3  Two themes that will not be addressed in this paper are the role of 
computers in mathematical inquiry and the issue of ethics in mathe-
matics. For the former, we refer the reader to Avigad (2008a). For the 
latter, see Rogers and Kaiser (1995), Ernest (2016, 2018), and Ritt-
berg, Tanswell, and Van Bendegem (forthcoming).

2  For discussions relevant to the characterization of the notion of 
mathematical practice, see also Giardino et  al. (2012) and Carter 
(2019, sec. 4).
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counts as a legitimate or acceptable inference from some 
formulas taken as premisses to another formula taken as 
conclusion; and a set of axioms A consisting of certain for-
mulas in L. A formal proof in Γ is then defined as a sequence 
of formulas in L such that each formula in the sequence is 
either an axiom in A or the result of the application of a 
rule of inference in R to one or more preceding formulas in 
the sequence. The notion of formal proof constitutes then a 
normative account of what a mathematical proof ought to be, 
but it has also been taken as a descriptive account of what 
mathematical proofs are in practice.

Although many had noticed the limits of the model of for-
mal proof as a descriptive account of ordinary proofs, Rav’s 
essay entitled “Why do we prove theorems?” (Rav 1999) has 
been instrumental in triggering a philosophical discussion of 
the specificities of proofs in practice as well as of the relation 
between ordinary proofs and formal proofs. In this contribu-
tion, Rav has insisted on three features of informal proofs 
that are not—and maybe even cannot be—captured by the 
model of formal proof. The first one is what Rav calls the 
“irreducible semantic content” (Rav 1999, p. 11) of ordinary 
proofs which is precisely what is lost when an informal proof 
is translated into a formal proof—the latter being, by defi-
nition, a syntactic entity. The second one is the catalyzing 
role that the search for informal proofs plays in the growth 
of mathematical knowledge, that is, in the development of 
new mathematical tools, methods, concepts, etc. The third 
one is the capacity of informal proofs to serve as vehicles for 
various forms of practical knowledge or know-how, as Rav 
put it: “The whole arsenal of mathematical methodologies, 
concepts, strategies and techniques for solving problems, 
the establishment of interconnections between theories, the 
systematisation of results—the entire mathematical know-
how is embedded in proofs” (Rav 1999, p. 20).4 According 
to Rav, the mathematical knowledge embedded in ordinary 
proofs is of greater epistemological significance than the 
one embedded into the theorems they establish, and thus 
deserves dedicated epistemological attention.

The differences5 between informal proofs and formal 
proofs have motivated several authors to develop new 
philosophical accounts of the former, the main objective 
being to provide a conception of mathematical proofs that 
is more faithful to the reality of mathematical practice. In 
this respect, Aberdein (2006) has proposed to analyse infor-
mal proofs using the resources of informal logic—a domain 
which aims to investigate inferential and argumentative prac-
tices in concrete or “real life” instances. Aberdein’s study 

has emphasized the importance of taking into account the 
dialogical context in which informal proofs occur—follow-
ing the theory of Walton (1998)—and has identified dif-
ferent types of “proof dialogues” in which informal proofs 
function. Another proposal is due to Leitgeb (2009) who has 
developed an account in which informal proofs differ from 
formal proofs in possessing semantic and intuitive compo-
nents. In Leitgeb’s analysis, the semantic dimension refers 
to the fact that the terms and sentences occurring in informal 
proofs possess a meaning and must be interpreted, while 
the intuitive dimension refers to the fact that the elementary 
steps of informal proofs, as well as the axioms adopted in 
practice, are taken to be intuitive in specific senses of the 
term. Starting from the observation that informal proofs 
“suffer some sort of violence or essential loss” (Larvor 2012, 
p. 717) when recast or translated into formal proofs, Larvor 
(2012) has developed an account of informal proofs that 
could explain this observation. Larvor’s account is based on 
two key ideas: (1) that the validity of inferences in informal 
proofs does not depend only on the logical form of premisses 
and conclusions but also on their content; (2) that inferences 
in informal proofs should be conceived as inferential actions 
which can act not only on propositions but also on non-
propositional representations such as “diagrams, notational 
expressions, physical models, mental models and computer 
models” (Larvor 2012, p. 721). Insofar as most of these 
inferential actions are dependent on the particular math-
ematical domain to which they belong they are not formal, 
and so are essentially resistant to any formal translation—the 
inferential actions occurring in formal proofs being by defi-
nition possible and acceptable in all domains.

Among the issues related to the nature of informal proofs 
that have attracted the attention of philosophers of math-
ematical practice is the important one of the rigor of infor-
mal proofs. Burgess (2015) provides a neat formulation of 
the notion of rigor to be investigated: “The quality whose 
presence in a purported proof makes it a genuine proof by 
present-day journal standards, and whose absence makes 
the proof spurious in a way that if discovered will call for 
retraction, is called rigor” (Burgess 2015, p. 2). But what 
does it mean to say that a mathematical proof is rigorous? 
A common answer to this question, that we might call the 
standard view, has it that a mathematical proof is rigorous 
whenever it can be routinely translated into a formal proof 
(Mac Lane 1986, p. 377). This conception of the rigor of 
mathematical proofs has, however, been heavily attacked 
in the philosophical literature, mostly on the ground that 
it yields an implausible account of how the notion of rigor 
is used by mathematicians to judge proofs in mathematical 
practice (Antonutti Marfori 2010; Detlefsen 2009; Tanswell 
2015; Larvor 2016b). A current objective for the philosophy 
of mathematical practice is thus to provide an account of 
the rigor of mathematical proofs that accords with the way 

4  For a discussion of Rav’s notion of know-how, see Tanswell (2016, 
chapter 4).
5  See Hamami (2018) for an analysis of these differences at the level 
of the elementary components of the two types of proofs.
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proofs are judged to be rigorous in ordinary mathematical 
practice.6

To sum up, a key challenge for the philosophy of math-
ematical practice is to better understand the relation between 
formal and informal proofs and to work towards a philo-
sophical account of mathematical proofs able to get at the 
subtle and multidimensional functioning of proofs in math-
ematical practice.

4.2 � Visualization and artefacts

In twentieth century philosophy of mathematics, little atten-
tion has been devoted to the nature and role of non-linguistic 
representations in mathematics. This may be explained, in 
part, by the well-known dismissal of intuition and visuali-
zation in mathematical thinking originating in nineteenth 
century mathematics (Pasch 1882; Hahn, 1933/1980), fol-
lowing mathematical developments such as the emergence of 
non-Euclidean geometries and the arithmetization of analy-
sis. Yet, it must be acknowledged that visual representations 
are widespread in both past and contemporary mathematical 
practices. One of the most active lines of research within the 
philosophy of mathematical practice has thus consisted in 
investigating the role and nature of visual representations 
in various mathematical activities—proving, justifying, dis-
covering, explaining, understanding, etc. This encompasses 
internal visual representations relying on visual imagery 
or imagination but also external representations—e.g., 
diagrams, symbolic systems, notations, computer images, 
etc.—which we will refer to as mathematical artefacts. As 
representative of this line of research we can mention the 
two monographs by Brown (1999) and Giaquinto (2007), 
the collected volume edited by Mancosu, Jørgensen, and 
Pedersen (2005), and the special issue of Synthese edited by 
Mumma and Panza (2012) on the history and philosophy of 
diagrams in mathematics. In this section, we propose a brief, 
and a fortiori selective, overview of these developments.7

In opposition to the received view, Brown (1997, 1999) 
and Giaquinto (2007, 2011) have both defended a positive 
epistemic role for visual representations in mathematics 
thereby triggering renewed interest in this topic. Brown 
(1997, 1999) has argued that pictures can prove mathemati-
cal propositions—the third chapter of the book presents and 
discusses a wealth of examples of “picture-proofs,” ranging 
from the intermediate value theorem to various propositions 
about natural numbers and infinite series.8 Brown’s view 

on the role of pictures is integrated with his defense of Pla-
tonism, the main idea being that “Some ‘pictures’ are not 
really pictures, but rather are windows to Plato’s heaven” 
(Brown 1999, p. 39), that is, pictures should be conceived as 
instruments helping us to perceive the mathematical realm. 
Giaquinto addresses in his book several themes related to the 
epistemology of visual thinking in mathematics, with a main 
focus on discovery which he defines as the process by which 
one can “come to believe [a truth] independently and in an 
epistemically acceptable way” (Giaquinto 2007, p. 2). The 
first part of the book makes a proposal about how we acquire 
basic geometric knowledge. Giaquinto argues that we pos-
sess certain belief-forming dispositions associated with our 
basic geometric concepts, drawing on contemporary works 
in cognitive science. Visual perception and imagination can 
trigger these dispositions, leading to the acquisition of geo-
metric beliefs. When these belief-forming dispositions are 
reliable, the acquired beliefs count as knowledge, and they 
constitute then a case of synthetic a priori knowledge. The 
second part of the book examines the case of arithmetic, and 
the third part is concerned with the role of visual thinking in 
more advanced mathematics. An important point of the book 
is that visual thinking in mathematics is not uniform—there 
is a diversity of visual operations associated with different 
mathematical domains and contexts. In this respect, the last 
chapter of the book urges the development of a fine-grained 
taxonomy of the kinds of visual thinking present in math-
ematics, and in fact makes a substantial step forward in this 
direction.

The most common method to investigate visual represen-
tations in mathematical practice is that of case studies. A 
perfect representative of this approach is the seminal analysis 
by Manders (2008) of the functioning of Euclidean diagrams 
in the geometric proofs of Euclid’s Elements. The modern 
view considers that Euclid’s geometric proofs are flawed 
insofar as they contain deductive steps that rely essentially 
on the diagram such as the famous intersection point of the 
two circles in proposition 1 from book I of the Elements. In 
opposition to the modern critics, Manders aims to defend 
Euclid’s diagram-based geometric practice by showing that 
diagrams are used in a highly controlled way in the context 
of Euclid’s geometric proofs. More specifically, Manders 
provides an analysis of what he calls diagram-based attri-
butions, that is, the claims introduced in the demonstration 
text which are based in totality or in part on the diagram. 
Central to his account is the distinction between the exact 
and co-exact attributes of Euclidean diagrams: a co-exact 
attribute is a condition which is insensitive to a certain range 
of continuous deformations of the diagram—e.g., that two 
circles intersect, or that an angle is contained in another 
one—an exact attribute is a condition that is sensitive to at 
least some of these deformations for which it obtains only in 
isolated cases—e.g., that a line is tangent to a circle, or that 

7  For extensive reviews of visual and diagrammatic thinking in math-
ematics, see Giaquinto (2016) and Giardino (2017a).
8  For a critical outlook on Brown’s view, see Folina (1999).

6  See Hamami (forthcoming) for an attempt to meet this challenge 
which is nonetheless compatible with the standard view.
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two segments are equal in length. The key insight of Man-
ders is that diagram-based attributions in Euclid’s geometric 
proofs are exclusively limited to co-exact attributes—exact 
attributes are never read off from the diagram, they must 
be established based on prior claims in the demonstration 
text. According to Manders, it is because co-exact attrib-
utes are sufficiently stable under the (concrete) drawing of 
(imperfect) diagrams that it can be controlled so as to ensure 
agreement among the members of the practice with respect 
to diagram-based attributions, thus explaining the incredible 
stability of the practice across centuries.9

More recently, the method of case studies has been 
applied to different kinds of visual representations used in 
contemporary mathematical practice. Carter (2010, 2012) 
has analyzed the role of diagrams in the production of a 
set of proofs in the field of free probability theory. On the 
basis of her case study, she has argued that diagrams provide 
a source of inspiration for identifying relevant definitions 
and proof strategies, that they can serve as “frameworks” 
for parts of a proof, and that they can help break a proof 
down into parts which are more manageable. Starikova 
(2010, 2012) has looked at the role of Cayley graphs in the 
development of geometric group theory. She has analyzed 
how the visual representations of Cayley graphs led to the 
discovery of new geometric properties of groups and to the 
introduction of new mathematical concepts, showing thereby 
that visual representations can play a substantial role in the 
development of new mathematics. De Toffoli and Giardino 
have investigated the use of diagrams in knot theory (De Tof-
foli and Giardino 2014) and low-dimensional topology (De 
Toffoli and Giardino 2015). In both cases, they have argued 
that the use of diagrams in these mathematical practices 
brings into play a certain form of manipulative imagina-
tion which is acquired by the practitioners through training 
and which allows them to perform epistemic actions (Kirsh 
and Maglio 1994) on the considered visual representations, 
thereby playing a substantial epistemic role in the contexts 
of proving and discovery. Finally, Eckes and Giardino (2018) 
have studied the role of diagrams in solving classification 
problems in the context of combinatorial topology—con-
cerning the classification of compact surfaces—and alge-
bra—concerning the classification of complex semisimple 
Lie algebras.

A topic that is receiving growing attention in the phi-
losophy of mathematical practice is the one of mathemati-
cal notations. Brown (1999) and Colyvan (2012) have both 

dedicated a whole chapter of their introductory textbooks in 
the philosophy of mathematics to this topic. Brown (1999, 
chap. 6) presents various notations used in the contexts 
of number systems and knot theory and argues, from his 
Platonist position, that notations are a means to discover 
and reveal properties of mathematical objects, emphasizing 
also the importance of their computational role, that is, they 
make it possible to perform systematic computations. Coly-
van (2012, chap. 8) reflects on what constitutes a good nota-
tion or notational system, and by working through diverse 
examples identifies several benefits that good notations pos-
sess such as enabling economical mathematical expressions, 
promoting generalizations and new mathematical develop-
ments, providing computational power, and enabling math-
ematical explanation and understanding. Macbeth (2012b) 
argues that good mathematical notations are not just “con-
venient shorthand” for mathematical expressions, they more 
importantly have the capacity to embody mathematical rea-
soning by formulating the content of mathematical concepts 
and making it possible to manipulate this content through a 
manipulation of the notation itself. Dutilh Novaes (2013) has 
defended the thesis that external symbolic systems play an 
essential role both in the acquisition of mathematical abili-
ties by individuals as well as in the historical development 
of these abilities. Finally, De Cruz and De Smedt (2013) 
have put forward a view in which mathematical symbols are 
(1) constitutive of the mathematical concepts they represent 
and (2) play a central role in mathematical cognition by sup-
porting mathematical operations which constitute epistemic 
actions in the sense of Kirsh and Maglio (1994).

Significant progress has been made to understand the 
nature and role of visualization and artefacts in several areas 
of past and present mathematical practices. Efforts in this 
direction need to be pursued, but it will also be important to 
develop more unified frameworks and to provide a general 
conceptual toolbox for the study of specific cases.

4.3 � Explanation and understanding

Intuitively, some proofs establish that a theorem holds, 
while others show why it holds. Proofs of the latter kind 
are often called explanatory. Philosophers of mathemati-
cal practice have attempted to clarify what it means for a 
proof to be explanatory in more precise terms via concep-
tual analysis. Here we consider two well known accounts 
of explanation due to Steiner (1978) and Kitcher (1989). 
More recent accounts, which due to space constraints can-
not be discussed here, include those by Frans and Weber 
(2014), Lange (2014) and Inglis and Mejía-Ramos (2019). 
We also briefly consider more recent developments that go 
beyond giving an analysis of what makes a proof explana-
tory, before discussing the connection between explanation 
and understanding.

9  For another seminal analysis of the role of diagrams in Greek 
mathematics, see Netz (1999). For attempts to formalize diagram-
matic reasoning in the proofs of Euclid’s Elements see Miller (2007), 
Mumma (2006, 2010), and Avigad, Dean, and Mumma (2009). For 
an analysis of the relation between geometric objects and the dia-
grams that represent them, see Panza (2012).
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In his 1978 paper, Steiner considers a variety of criteria 
for explanatory proofs, including generality and discover-
ability. While initially plausible, Steiner argues that these 
criteria do not capture mathematical explanation. To try to 
demonstrate this, he exhibits proofs which, he claims, sat-
isfy the criteria but fail to be intuitively explanatory (Steiner 
1978, pp. 130–40). Next Steiner presents his own account 
of mathematical explanation. On his account, an explana-
tory proof is one which depends on a “characterizing prop-
erty” (Steiner 1978, p. 147) of something mentioned in the 
theorem. Moreover, it should be generalizable, so that if we 
change the characterizing property to that of a different, but 
related, mathematical object or structure then we see how 
the proof changes and thus arrive at a different theorem. 
Steiner then tests his account against the example proofs 
he used to rule out the discarded criteria of explanation and 
argues that his account judges these proofs correctly.

Steiner’s account has attracted much discussion and criti-
cism (see Resnik and Kushner 1987; Weber and Verhoeven 
2002; Hafner and Mancosu 2005; Lange 2014; Pincock 
2015). Many of the criticisms take the form of counterexam-
ples developed via the method of case studies. That is to say, 
philosophers present a proof that they, or mathematicians, 
intuitively take to be explanatory (or non-explanatory), but 
which Steiner’s account judges to be non-explanatory (or 
explanatory). For example, Hafner and Mancosu (2005) 
focus on a proof of Kummer’s convergence test due to 
Pringsheim. Kummer’s convergence test states that, for an 
arbitrary sequence of positive integers (Bn), if 
lim
n→∞

(

B
n

a
n

a
n+1

− B
n+1

)

> 0 then the series 
∑

a
n
 converges. 

The appearance of such an arbitrary sequence (Bn) in the test 
was puzzling to mathematicians, and Pringsheim explicitly 
intended his proof to explain its presence (Hafner and Man-
cosu 2005, p. 229). However, because the sequence is arbi-
trary, it has no characterizing property. This means 
Pringsheim’s proof does not depend on a characterizing 
property and so fails to be explanatory on Steiner’s account 
(Hafner and Mancosu 2005, p. 230). In other words, because 
Pringsheim’s proof was designed to be explanatory, Steiner’s 
account judges it incorrectly.

Kitcher’s (1989) account of mathematical explanation is 
based on unification. It is rather technical, so what follows 
is only a rough description. For Kitcher, a proof in a math-
ematical theory K is explanatory if and only if it belongs 
to the “explanatory store” (Kitcher 1989, p. 430) of K. The 
explanatory store of K is the collection of proofs which most 
unifies K, where the degree to which a collection of proofs 
unifies a theory is based on the number of genuine and dis-
tinct derivation patterns or schemes its proofs instantiate and 
the number of theorems that are proven. The most unifying 
collection will do the best job at minimizing the number of 
derivation patterns instantiated while maximizing the num-
ber of theorems proven.

Philosophers including Hafner and Mancosu (2008), 
Lange (2014) and Pincock (2015) have offered counterex-
amples to Kitcher’s account. For example, as many theorems 
can be proven via “a ‘plug and chug’ technique” (Lange 
2014, p. 523), Lange argues that these “brute force” proofs 
will belong to a theory’s explanatory store. They will thus be 
judged as explanatory on Kitcher’s account. But such proofs 
are not intuitively explanatory, and so Kitcher’s account 
judges them incorrectly. Hafner and Mancosu’s (2008) 
detailed analysis provides a concrete example of this. There 
is a decision procedure for an axiomatization of the theory of 
real closed fields and so all elementary results in this theory 
can be proved by using the same algorithm. All of these 
proofs therefore instantiate the same derivation scheme. As 
all elementary results can be proven using just one argument 
scheme, the collection of these proofs constitutes the most 
unifying systematization of the theory of real closed fields, 
i.e., they constitute its explanatory store. This means that 
Kitcher’s account judges them to be explanatory (Hafner and 
Mancosu 2008, pp. 165–166). However, such proofs are not 
intuitively explanatory. Indeed, Hafner and Mancosu note 
that the proofs may be so large that it is physically impossi-
ble to write them down (Hafner and Mancosu 2008, p. 159).

Further work on explanation has gone beyond giving an 
analysis of explanatory proofs. For example, D’Alessandro 
(forthcoming) argues that theorems can be explanatory and 
that a preoccupation with explanatory proofs has led to phil-
osophical mistakes, while Lehet (forthcoming) argues that 
definitions can be explanatory. Finally Morris (forthcoming) 
has asked about the instrumental value of explanations in 
mathematics.

Closely related to mathematical explanation is the issue 
of mathematical understanding which has been the object 
of dedicated philosophical studies in recent years. One of 
the first articulated accounts of mathematical understanding 
is due to Avigad (2008b) who has proposed that an agent’s 
understanding of a piece of mathematics—a proof, a theo-
rem, a definition, a method, etc.—can be conceived in terms 
of the possession of certain mathematical abilities. From this 
perspective, providing an account of mathematical under-
standing in a specific case amounts to characterizing the rel-
evant abilities, an approach that he has adopted with respect 
to the understanding of ordinary mathematical proofs. In 
this latter case, Macbeth (2012a) has argued that if we are to 
account for how mathematical proofs can convey mathemati-
cal understanding, we need a conception of mathematical 
proof different from the notion of formal proof, one that can 
explain how one can reason mathematically on the basis 
of content. Finally, Folina (2018) proposes that mathemati-
cal understanding encompasses a whole range of different 
phenomena and that it should be approached as a “fam-
ily resemblance” concept. To this end, she has developed 
a structuralist perspective on mathematical understanding 
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which is driven by the idea that mathematical structures are 
the subject matter of mathematics, and that the various com-
ponents of mathematical understanding should be conceived 
as related to an understanding of its subject matter.

In sum, then, there has been much debate over the nature 
of explanation in mathematics, but there is as yet no widely 
accepted account of mathematical explanation. While under-
standing is closely related to explanation, it has only recently 
started to receive sustained philosophical investigation and 
so more work remains to be done in this direction.

4.4 � Value judgments

Mathematicians frequently judge pieces of mathematics on 
criteria other than correctness. For example, mathematicians 
may praise a theorem or a proof for its beauty, commend 
a proof for its purity or admire the fruitfulness of a math-
ematical method. Philosophers of mathematical practice 
aim to clarify these terms and make them more precise via 
conceptual analysis and the use of case studies. Here we 
briefly present the work of Rota (1997) and Cellucci (2015) 
on beauty, Detlefsen and Arana (2011) on purity, and Yap 
(2011) on fruitfulness.

Rota (1997) argues that when mathematicians judge a 
piece of mathematics to be beautiful they really mean that 
it is enlightening. He claims they speak of beauty instead of 
enlightenment because the latter concept has two features 
mathematicians dislike: it is hard to formally analyze and it 
is a fuzzy concept in the sense that a piece of mathematics 
can be partly enlightening (Rota 1997, p. 181). Rota does 
not offer a full analysis of enlightenment but suggests that 
it involves grasping the role of a mathematical statement, 
its relevance, and how it relates to other statements. He also 
insists that it is a logical, not just psychological, concept 
(Rota 1997, p. 181).

Cellucci (2015) argues that mathematical beauty consists 
in understanding rather than enlightenment, where under-
standing is to be analyzed in terms of grasping of fit. For 
example, on Cellucci’s account, a proof is beautiful when it 
yields understanding, i.e., when it makes it clear how each 
of its parts fit with each other as well as with the proof as a 
whole (Cellucci 2015, sec. 10). As an example of a beautiful 
proof, Cellucci (2015, sec. 11) considers the problem from 
Plato’s Meno of constructing a square with double the area 
of a given square. The diagram in Fig. 1 shows that while the 
area of the given square in the bottom left has an area equal 
to that of two right angled triangles, the area of the middle 
square is equal to four right angled triangles. A beautiful 
theorem, for Cellucci, yields understanding by establishing 
a clear relationship between fundamental mathematical con-
cepts (Cellucci 2015, sec. 14). As an example of a beautiful 
theorem, he cites Euler’s identity eiπ + 1 = 0 (Cellucci 2015, 
sec. 14).

A preference for the use of “pure” methods in mathemat-
ics goes back as far as Aristotle and continues to the present 
day. Detlefsen and Arana (2011) aim to clarify what is meant 
by such references by offering a conceptual analysis of what 
they call topical purity and its epistemic benefits. They begin 
by defining the topic of a mathematical problem to be the 
set of mathematical resources including axioms, definitions, 
and inferences such that, if a mathematician retracted any 
one of these, then the content of the problem would change. 
They then call a solution to a problem topically pure when it 
only uses resources that determine the topic of the problem 
(Detlefsen and Arana 2011, p. 13).

As an example, consider the problem of determining 
whether there are infinitely many primes. The topic of this 
problem is determined by the axioms for successor, induc-
tion axioms, order axioms, and the definitions of prime, 
divisibility, and multiplication (Detlefsen and Arana 2011, 
p. 13). One solution to this problem, due to Furstenberg, 
uses topological resources, which are outside the topic of 
the problem since they can be retracted without changing 
the content of the problem (Detlefsen and Arana 2011, sec. 
5). Furstenberg’s solution is thus impure.

Pure solutions have an important epistemic benefit: they 
are stable in a way that impure solutions are not. Detlefsen 
and Arana (2011, p. 13) point out that if a mathematician 
retracts any part of a topically pure solution then its content 
changes and the original problem dissolves. With a topically 
impure solution, however, there are parts that she can retract 
without dissolving the original problem. In other words, a 
topically pure solution will remain a solution for as long as 
the problem remains the same (Detlefsen and Arana 2011, 
p. 17).

In addition to wanting their proofs to be explanatory 
or beautiful and their solutions pure, mathematicians also 

Fig. 1   The middle square has area twice that of the given square in 
the bottom left corner
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want their concepts and calculi to be fruitful. Tappenden 
(2012) and Yap (2011) both offer accounts of what fruitful-
ness amounts to. Here we focus on Yap’s analysis, which 
begins with Gauss. In a letter to one of his students, Gauss 
suggested that a new mathematical system or calculus that 
does not provide any additional deductive power can still be 
fruitful if it “corresponds to the innermost nature of frequent 
wants” since “every one who assimilates it thoroughly” can 
solve problems “mechanically” (Yap 2011 Gauss quoted on 
pp. 410–411). Yap offers an interpretation of these phrases 
and thus fleshes out a way of characterizing fruitfulness 
which she illustrates with the case study of congruences.

Sometimes when writing proofs, we end up having to 
re-derive the same results again and again because we don’t 
have a general theorem or lemma we can appeal to. Yap 
suggests that our frequent wants are the results that we have 
to re-derive, so a calculus that corresponds to them is one 
which provides us with theorems or lemmas that we can 
apply in our proofs to obtain those results without having 
to re-derive them (Yap 2011, p. 411). For example, impor-
tant properties of congruences, such as preservation under 
multiplication, i.e., if a ≡ b (mod c) and a′ ≡ b′ (mod c) then 
aa′ ≡ bb′ (mod c), are formulated as lemmas in congruence 
theory. If we use the theory of congruences, we can apply 
these lemmas directly in our proofs. If we don’t use the 
theory of congruences and instead work directly with the 
notion of divisibility, then we can’t apply these lemmas and 
must re-derive the corresponding results every time we want 
to use them. Consequently, proofs that use congruences are 
shorter and cleaner than those that do not (Yap 2011, p. 412).

Yap suggests that assimilating a new calculus thoroughly 
can be interpreted as adding its resources to existing meth-
ods. So, for example, part of assimilating congruences means 
adding their important properties, like preservation under 
multiplication, to the collection of results that we can use 
when proving theorems (Yap 2011, p. 412). Solving problems 
mechanically is interpreted by Yap as providing a systematic 
way of breaking them down into smaller problems which are 
easier to address. She uses Gauss’s inductive proof of Quad-
ratic Reciprocity as an example of a mechanical solution 
made possible by the use of congruences (Yap 2011, p. 414). 
Putting this all together, a fruitful calculus is thus one which 
allows us to systematically analyze problems into smaller, 
more manageable pieces by supplying us with tools that inte-
grate with our existing methods and which allow us to avoid 
continually re-deriving the same results in our proofs.

Philosophers of mathematical practice have investigated a 
wide variety of value judgments in mathematics in addition 
to explanation, beauty, purity, and fruitfulness. For example 
Arana (2015) has explored depth, Raman-Sundström and 
Öhman (2018) have analyzed fit, Thomas (2017) has exam-
ined interestingness in mathematics and Morris (2020) has 
investigated proofs that are well-motivated. Philosophers are 

also interested in how these different values are related. For 
example, whether mathematical explanations are also beauti-
ful and vice versa (see, e.g., Lange 2016).

In short, there are a wide variety of value judgments that 
mathematicians make about their mathematics. Philosophers 
aim to identify and develop precise accounts of these values 
so that they can be clarified and better understood.

4.5 � Mathematical design

Mathematicians often have to make design decisions in the 
course of their work. For example, a mathematician must 
choose which notation to use and how best to structure her 
proof. Here we present recent work by De Toffoli (2017) 
and Avigad (2020) that focuses on such design issues in 
mathematics.

De Toffoli (2017) identifies three criteria that can be 
used to evaluate a mathematical notation: expressiveness, 
calculability, and transparency. Expressiveness refers to the 
information that the notation captures. For example both 
Arabic and Roman numerals are equivalent with respect to 
expressiveness because they can be used to represent the 
same things (De Toffoli 2017, p. 165). Calculability refers 
to the calculations that the notation allows. For example, the 
Arabic numerals are superior to the Roman numerals with 
respect to their calculability, because they allow for much 
more efficient calculations (De Toffoli 2017, p. 165; see also 
Schlimm and Neth 2008). Finally transparency refers to how 
intuitive or natural the notation is to use. For example, in 
some ways the Roman numerals are more intuitive to use 
than the Arabic numerals because of their use of strokes to 
represent one, two, three, and four (De Toffoli 2017, p. 165).

Ideally we would like our notation to score highly on each 
of the criteria of expressiveness, calculability, and transpar-
ency, but De Toffoli notes that there are often trade-offs 
between them. She illustrates this with the examples of Euler 
and Venn diagrams (De Toffoli 2017, p. 164). Euler diagrams 
are a way of representing logical relationships visually and 
are very easy to use and understand. However, there are some 
cases they are unable to represent. They thus score highly on 
transparency, but less well on expressiveness. Venn diagrams 
were designed specifically to overcome some of the limita-
tions of Euler diagrams by introducing additional conven-
tions. While they thus score better on expressiveness, the 
additional conventions make them less intuitive to work with, 
and so they score lower on transparency.

De Toffoli does not provide an “algorithm” (De Toffoli 
2017, p. 163) for evaluating a notation based on her criteria, 
as she argues that the context of the evaluation and goals of 
the notation must be taken into consideration. Generally, 
however, if two notations score just as well as each other on 
two of her criteria but one does better on the third, then the 
one that does better on the third is to be preferred.
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Avigad (2020) considers not just the design of notations, 
but the design of mathematics in general. He argues that 
mathematics is designed to have a “modular” structure. 
Moreover, he argues that it should be so designed because 
modularity has a number of important benefits.

Avigad borrows the term “modular” from software engi-
neering. He notes that from the 1960s onwards, software 
engineers began decomposing complex computer programs 
into a number of independent parts or “modules” (Avigad 
2020, sec. 3.2). Interactions between these modules and 
between the user and the modules happen via interfaces. 
These interfaces specify, for example, the input the mod-
ule expects and the output it produces. Importantly, the 
nitty–gritty details about the workings of the code of the 
module are “hidden” or “encapsulated” (Avigad 2020, 
sec. 3.4) and can be ignored. The complex computer pro-
gram, when decomposed into independent parts whose inter-
actions are limited and controlled, is an example of a system 
with a modular structure.

Avigad argues that mathematics is analogous to software 
engineering. He points out that we break down complex 
mathematical proofs into independent parts like sequences 
of definitions and lemmas. These definitions and lemmas 
serve to hide information. Consider, for example, the defi-
nition “x divides y” which says that there is a z such that 
y = z ∙ x. This definition hides information, in particular 
the value of z (Avigad 2020, sec. 5.1). Similarly, when we 
break a proof down into a series of lemmas, the proofs of 
the lemmas are hidden from the body of the main proof, and 
the statement of the lemma serves as an interface (Avigad 
2020, sec. 4.3). We have thus designed our proofs to have a 
modular structure, much like modern computer programs.

Moreover, Avigad argues that mathematics should be 
modular because modularity brings numerous benefits. In 
particular, he argues that the benefits of modularity in soft-
ware engineering carry over to mathematics and illustrates 
them with case studies from number theory (Avigad 2020, 
sec. 5). These benefits include making it easier (Avigad 
2020, sec. 3.1): (1) to understand; (2) to find problems or 
mistakes; (3) for different agents to work on different pieces 
concurrently; (4) to take components and use them again in 
a different context.

In sum, philosophers have conducted case studies and 
used work from other fields to help identify criteria for eval-
uating the design of mathematics and to assess the benefits 
and drawbacks of different ways of designing mathematics.

5 � Conclusion

Our aim in this paper was to provide a survey of the philoso-
phy of mathematical practice for mathematics educators by 
describing the main questions and methods in the field and 

illustrating them with key examples. We saw in Sect. 2 that 
philosophers of mathematical practice tackle a wide variety 
of topics ranging from the various components of mathe-
matical knowledge to the historical and social dimensions of 
mathematics. In Sect. 3 we presented the main philosophical 
methods employed in the field, including traditional meth-
ods such as case studies and conceptual analysis, as well as 
more modern empirical ones. In Sect. 4 we illustrated how 
these methods have been applied to tackle issues such as the 
relationship between formal and informal proofs, visuali-
zation and artefacts, explanation and understanding, value 
judgments, and mathematical design, thereby providing an 
overview of some of the current trends and issues driving 
the field.

As it turns out, mathematics education researchers are 
also concerned with many of the same issues. A quick look 
at the mathematics education literature attests to this. For 
instance, CadwalladerOlsker (2011) discusses formal and 
informal proofs and considers pedagogical issues that arise 
when teaching students how to write proofs. Presmeg (2006) 
addresses existing work on visualization in mathematics 
education and identifies a list of 13 important questions for 
future research in the area. Hanna (2018) contrasts proofs 
which are explanatory in a philosophical sense with proofs 
that are explanatory in an educational sense and argues that 
philosophical analyses may prove useful to mathematics 
education researchers. Sinclair (2004) argues that aesthetic 
experiences in mathematics can help motivate students. 
Erbas, Alacaci, and Bulut (2012) analyze the design of cer-
tain mathematical textbooks, considering, for example, how 
the mathematical content is structured. This indicates that 
there is a significant overlap between the issues addressed in 
the philosophy of mathematical practice and in mathematics 
education. So how can these two fields benefit from each 
other?10

On the one hand, the philosophy of mathematical prac-
tice can offer concepts, frameworks, and theories that can 
be used to frame, or be applied to, mathematics education 
research. For example, philosophers of mathematical prac-
tice have developed analyses of virtues like explanation and 
beauty, and have proposed accounts of how diagrams and 
notations are used in specific mathematical practices. Math-
ematics education researchers may want to teach students 
to recognize mathematical explanations or mathematical 
beauty, or to use certain diagrams and notations, and so may 
find these analyses to be a useful starting point for designing 
and testing educational policies.

10  Several important volumes have already brought together philoso-
phers and mathematics educators to reflect on the relation between 
the two fields (François and Van Bendegem 2007; Van Kerkhove and 
Van Bendegem 2007; Ernest et al. 2016; Ernest 2018).
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On the other hand, mathematics education can offer phi-
losophy of mathematical practice much needed empirical 
data as well as key insights into the transmission of math-
ematical knowledge. In most cases, philosophers of math-
ematical practice base their analyses on their own under-
standing of what is going on in mathematical practice, 
and at best appeal to the judgments of a small number of 
mathematicians. It would be much better if these analyses 
were constrained by concrete empirical data on mathemati-
cal practice, and as a matter of fact the mathematics educa-
tion literature already provides a rich repertoire of empiri-
cal studies to borrow from. Furthermore, the transmission 
of mathematical knowledge through training is an essential 
part of mathematical practice, yet it has received little philo-
sophical attention. Mathematics education can and ought to 
inform philosophical investigations in this direction.

There are thus many avenues for fruitful interactions and 
collaborations between the philosophy of mathematical 
practice and mathematics education. But as we mentioned 
at the very beginning, several other fields are also concerned 
with the study of mathematics as a human practice. Much is 
to be gained by recognizing that the study of mathematical 
practice is fundamentally a multidisciplinary enterprise, and 
that all the different fields involved can only benefit by inter-
acting, communicating, and collaborating with each other.

Acknowledgements  We are grateful to three anonymous reviewers for 
helpful feedback and suggestions.
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