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Abstract
Proof has a prominent place in the linear algebra curriculum, teaching and learning but in first-year courses it continues to be 
challenging for both instructors and students. While an introduction to new concepts through definitions and theorems adds to 
the complexity of the course, proof remains the number one hurdle for many students. How do students view proof in linear 
algebra? Do they distinguish argumentation and proof, and if so how? are among many questions that are still unanswered. 
Although research on proof in mathematics education is increasing, systematic studies on proof in linear algebra are still 
scarce. In this study, we examined responses to a set of interview questions on proof by a group of 16 first-year undergradu-
ate students shortly after their final examination. This paper opens the case for a pedagogy of proof in linear algebra and 
examines students’ reactions to, and voices on, proof in a first-year course in linear algebra. In particular, it addresses areas 
such as student views on understanding of proof, the purpose of a proof, and when and how proofs communicate to them. 
We employed Tall’s Three Worlds as well as Harel’s intellectual need to analyse the data. Although, these models are often 
applied to what students construct, we argue they can also be applied to how students perceive proofs. The results revealed 
that understanding a proof in order to gain personal conviction was a major concern of students.

Keywords Proof · Linear algebra · Convincing · Comprehension

1  Background

Proof is considered by mathematicians to be central to 
doing mathematics (Thurston 1995). Hence, there has been 
much research into student ability with respect to proof, 
comprising three broad strands: constructing proofs; vali-
dating proofs; and proof comprehension. In this paper we 
examine student perspectives on the purposes of proof and 
their preferences for the kind of proofs they think meet these 
purposes. In order to set the scene, we first review what 
the literature tells us about undergraduate students’ reading, 
comprehension and construction of proofs in mathematics 
in general, and then consider their role in the teaching of 
linear algebra.

Since proof is held in such high regard, Weber and Mejía-
Ramos (2015, p. 15) note that, often, “a primary goal of 
mathematics instruction is for students to adopt the stand-
ards for proving and conviction that mathematicians hold.” 

This may explain why considerable effort has been put into 
research on how proof construction (Mejía-Ramos and Inglis 
2009), such as students’ ability to reproduce or construct 
certain proofs (Lockwood et al. 2016). Three requirements 
for successful engagement with proof given by Stylianides 
and Stylianides (2007) are: to recognize the need for a proof; 
to understand the role of definitions in the development of a 
proof; and the ability to use deductive reasoning. However, 
among the conclusions from research is that students do not 
have the experiences to support building rigorous, deduc-
tive arguments (Stylianou et al. 2015). While mathemati-
cians may employ different strategies for proof construction 
(Lockwood et al. 2016) research has suggested some possi-
ble ways to assist students to construct proofs. These include 
the use of conjectures (Pedemonte 2008), strategic examples 
(Lockwood et al. 2016), and counterexamples (Zazkis and 
Chernoff 2008).

In addition to learning how to construct proofs research-
ers such as Harel (1997) have proposed that students should 
be encouraged to learn how to read proofs. Recently studies 
on student reading of proofs have focused on the manner in 
which they read proofs (Inglis and Alcock 2012; Panse et al. 
2018) and how this compares with the ways mathematicians 
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see proofs (Harel and Sowder 2007; Weber and Mejía-
Ramos 2011). It has been observed that, in general, students 
read proofs either to validate the proof (Selden and Selden 
2003), that is to decide if it is true or not, or to compre-
hend, or understand, a proof. Using eye-tracking technology, 
Panse et al. (2018) found no difference in reading behaviour 
between reading for validation and reading for comprehen-
sion in either undergraduates or mathematicians. However, 
studies have shown that undergraduate students tend to 
validate proofs differently from mathematicians (Inglis and 
Alcock 2012). It seems that mathematicians may expend 
considerably more effort inferring implicit between-line 
warrants, understanding the key ideas, the structure and the 
techniques employed (Weber and Mejía-Ramos 2011), while 
students may be more concerned with processing algebraic 
manipulations and focus proportionately less on words and 
logical relationships (Inglis and Alcock 2012). Weber (2008) 
also showed that mathematicians tend to use formal, infor-
mal deductive and example-based reasoning during proof 
validation. In distinguishing the role of proof, Hersh (1993, 
p. 396) asserted that “In research its role is to convince. In 
the classroom, convincing is no problem. Students are all too 
easy convinced…What a proof should do for the student is 
provide insight into why the theorem is true.”

Research on reading for comprehension has often focused 
on task-based interviews, tests and assessment models 
(Mejía-Ramos et al. 2017). While it has been proposed by 
Mejía-Ramos and Inglis (2009) that reading for comprehen-
sion may differ from that for validation, since in the former 
the proof is assumed to be valid, both types of proof read-
ing appear to be related to the students’ desire to gain a 
personal conviction, the first level of Mason et al. (1982) 
three levels of conviction. In addition, this conviction has 
been described as either relative or absolute, although few 
students will obtain absolute conviction (Weber and Mejía-
Ramos 2015). To gain a personal conviction an individual 
has both to understand what the proof is saying and believe 
that it contains a valid presentation of its truth. Such an 
understanding of a proof involves more than understanding 
each of the proof’s steps but also requires an overview of it 
(Harel 1997).

1.1  Pedagogy of proof in linear algebra

Linear algebra is a core subject for mathematics students 
and it is often recommended, or required, for many STEM 
majors. By the time students arrive at a linear algebra class 
they have had some exposure to university-level mathemat-
ics, but despite this, many struggle to grasp the theoreti-
cal aspects of the course, especially proof. One reason for 
this, observed by mathematicians, is that many calculus 
courses tend to emphasise formulas and processes (Uhlig 
2002) rather than concepts, justifications and proofs (Vinner 

1997), which may not be sufficient for the axiomatic nature 
of linear algebra. In particular, according to Uhlig (2002), 
calculus does not help because “our current calculus text-
books develop very few proofs—which are often skipped in 
class—the students of a first linear algebra course generally 
have had no experience with math proofs for many years” 
(p. 336). In search of a possible resolution to the question of 
“what causes the linear algebra fog?”, Britton and Hender-
son (2011, p. 964) claim that conceptual understanding is at 
the root of the problem.

…when we expect students in a linear algebra course 
to use and understand many new definitions and to 
construct proofs similar to those they have seen, we 
should acknowledge that success in these tasks is inex-
tricably linked to their level of conceptual understand-
ing, and that in effect we are assessing that conceptual 
understanding right from the outset.

It may be that linear algebra proofs need to evolve natu-
rally in a course and Harel (1997, pp. 119–122) has offered 
four recommendations for achieving this goal.

1. Students should take an active part in the construc-
tion of relations between ideas and in the production 
of their justifications; 2. Students should be helped to 
build proofs on their intuitions; 3. Students should be 
encouraged to read proofs; 4. Students should learn 
that understanding a proof is more than understanding 
each of the proof’s steps.

While Harel acknowledges that this model of teaching 
requires many hours of class time, he believes there is no 
other alternative.

In pursuit of a natural evolution of proofs in a course it is 
reasonable to consider the role of Tall’s (2008) embodied, 
symbolic, and formal worlds of mathematical thinking, and 
so a possible question is whether there is a preferential order 
of these for linear algebra concepts to be taught. In a study 
by Hannah, Stewart, and Thomas (2014), most students 
believed that the formal aspect of linear algebra should come 
last. Others disagree and Harel (1999) cautions that start-
ing with the geometry of the embodied world may hinder 
students from learning the true concepts of linear algebra. 
Nevertheless, Harel is not suggesting eliminating geometry 
from linear algebra. His concern is that the simple geometric 
examples that are understood by most students will “form an 
extremely powerful concept image that it is hard for many to 
relinquish.” (ibid, p. 613). According to Gueudet-Chartier 
(2006, p. 190): “…geometric models must be used carefully 
in linear algebra courses. Geometry cannot be the only start-
ing point for linear algebra, other domains must intervene to 
justify the need for a general theory”. One of the difficulties 
in moving between Tall’s worlds is highlighted by Dias and 
Artigue (1995, cited in Dorier 1998, p. 158), who found 
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that “students do not spontaneously change frameworks or 
points of view and that, if they are forced to do so, they have 
great difficulty”. Hence, they propose that addressing the 
flexibility to interpret results in different frameworks must 
be explicit in teaching.

2  Theoretical framework

In this research we employed two major theoretical frame-
works to inform our data collection and analysis. The first 
is Tall’s (2008) Three Worlds of Mathematics framework, 
which Tall and Mejía-Ramos (2006) have applied to illus-
trate how proof types change as students become more math-
ematically sophisticated. The notion of a warrant for math-
ematical truth (Rodd 2000) defined as that which secures 
someone’s knowledge in what is claimed to be known (Ing-
lis, & Mejia-Ramos 2008), will be used to distinguish the 
warrants in each of the worlds. For example, in the embodied 
world physical experiments lead to visual and embodied rea-
soning, while in the symbolic world, arguments move from 
having a numerical to an algebraic warrant, supported by the 
backing of symbolic manipulation. However, in the formal 
world proof is warranted by deductive reasoning. This move-
ment through the three worlds, with their changing warrants 
characterises student development and relates to production 
of proof schemes, as students move from perception and 
action, through operation and symbolism, to reason and for-
mality (Tall et al. 2012).

Our second framework is Harel’s (2008a, b, 2013, 2018b) 
ideas on ways of understanding and ways of thinking. This 
includes the notion of proof schemes (Harel and Sowder 
1998), which builds on Hanna’s (1990) two categories, of 
proofs that prove and proofs that explain (for the individual). 
Thus, for Harel and Sowder proving is a process that removes 
or creates doubts about the truth of an assertion and comprises 
the two sub-processes of ascertaining (removing one’s own 
doubts through understanding) and persuading (removing the 
doubts of others), so that “A person’s proof scheme consists of 
what constitutes ascertaining and persuading for that person.” 
(Harel and Sowder 1998, p. 244). The concept of ascertaining 
corresponds with Mason et al.’s (1982) first level of convic-
tion, mentioned above, which is to convince yourself. This 
emphasis on proof schemes constitutes a shift towards ways 
of thinking rather than simply ways of understanding (Harel 
2008a, b), where ways of understanding are a generalisation of 
the idea of proof, and ways of thinking generalises the notion 
of proof scheme. It also includes problem solving approaches 
and beliefs about mathematics. A key implication of Harel’s 
theoretical approach is that the elements of mathematics com-
prise both ways of understanding and ways of thinking. Fur-
thermore, Harel (2013, 2018a, p. 9) suggests that “for students 
to learn what we intend to teach them, they must have a need 

for it, where ‘need’ refers to intellectual need”. Harel (2018b, 
pp. 36–37) breaks down this intellectual need into the follow-
ing five categories:

(1) Need for certainty. This is the need to prove, to 
remove doubts. One’s certainty is achieved when one 
determines, by whatever means he or she deems appro-
priate, that an assertion is true. (2) Need for causality. 
This is the need to explain—to determine a cause of a 
phenomenon, to understand what makes a phenomenon 
the way it is…. (3) Need for computation. This need 
includes the need to qualify and to calculate values of 
quantities and relations among them by means of sym-
bolic algebra. (4) Need for communication. This consists 
of two reflexive needs: the need for formulation—the 
need to transform strings of spoken language into alge-
braic expressions—and the need for formalization—the 
need to externalize the exact meaning of ideas and con-
cepts and the logical justification for arguments. (5) Need 
for structure. This need includes the need to re-organize 
knowledge learned into a logical structure.

According to Harel (2018a), “the first two needs are com-
plementary to each other: understanding cause brings about 
certainty, and certainty might trigger the need to determine 
cause” (p. 15). In this context, a major role of proof is to pro-
vide certainty for the individual that an assertion is true. How-
ever, it also provides understanding of cause, what makes a 
phenomenon the way it is, and a way of communicating, sat-
isfying “the need to externalize the exact meaning of ideas and 
concepts and the logical justification for arguments” (Harel 
2018b, p. 37).

While a good deal is known about students’ ability to con-
struct proofs and how they read them, less is known about 
students’ conceptions of proof and their perspectives on the 
purpose of proof in mathematics (Stylianides and Stylianides 
2007). This research was situated in the context of obtain-
ing the student voice on the purposes of proof, with the idea 
that this could contribute to Harel and Sowder’s (1998) aim to 
“map students’ cognitive schemes of mathematical proof” (p. 
237). Specifically, we anticipated revealing, which of Harel’s 
intellectual needs were more noticeable among the students. 
Furthermore, our primary goal was to investigate students’ 
perceptions of, and reactions to, proof in a first-course in lin-
ear algebra and see whether the embodied or symbolic worlds 
provided greater understanding for them (Tall 2013).

3  Method

3.1  Participants and settings

As part of a larger project, in this case study research, a 
group of 16 first-year linear algebra students from four 
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different classes (in different semesters) attending a research 
university in Southwest of the US, were interviewed and 
asked a list of open questions regarding proofs in linear 
algebra. The interviews with students (four females and 12 
males) took place shortly after the final examination in their 
linear algebra course and were independently conducted by 
a colleague in the mathematics department who had experi-
ence in interviewing from previous research collaborations. 
The students were majoring in Mathematics (2), Physics (1), 
Meteorology (1) and Engineering (12). This was a typical 
first year linear algebra course in the US, covering topics 
such as: systems of linear equations; determinants; finite 
dimensional vector spaces; linear transformations, eigenval-
ues and eigenvectors, and more. The course was taught by 
the first named author and proof was integrated into the lec-
tures and regular homework as well as being examined in the 
tests and the final examination of the course. The concepts 
were generally introduced with a combination of definitions, 
theorems, examples and sometimes pictures.

In general, the level of proof exposure in this course is 
dependent on the instructor who is teaching it. Some instruc-
tors believe that this course should cover many proofs and 
others prefer less exposure at this level. The assigned text-
book by Kolman and Hill (2008), is more inclined toward 
definitions, theorems and proofs, and throughout the teach-
ing of the course some of the theorems were proved and 
some were just quoted as results. The instructor hoped that 
knowing the properties of objects in the proofs and having 
concept images of the results would work as a base for future 
building of the proofs not covered. Unlike some calculus 
proofs, in this course it would rarely be the case that a pic-
ture would have been deemed sufficient as a proof.

3.2  Data collection and instruments

The interviews were semi-structured and took about 
20–30  min each. They were audio recorded and later 

transcribed for analysis. The interviewer first explained 
Tall’s (2008, 2013) framework and showed each student 
three sample linear algebra examples in each world (see 
Fig. 1). The students were also shown two theorems and 
their proofs from the course (see Fig. 2). These proofs were 
selected since they were set as homework assignments and 
later discussed in class in order to show how to construct 
proofs. The proof of Corollary 6.2 is short and elegant and 
brings many definitions and results together in one place. 
Similarly, the proof of part (b) of Theorem 6.4, relies on 
knowing a number of previous results and combining and 
fitting them all together in this proof. Finally, both theorems 
are significant results that are used frequently, so naturally 
we want our students to know their proofs.

The interview questions used were: What is the purpose 
of a proof? Do you find proofs convincing? What kinds of 
proofs, if any, do you prefer? Did [a specific proof—see 
Fig. 2] help you to understand why such-and-such was true, 
or why such-and-such always happens? Are there other ways 
that would have done a better job of helping you understand, 
or of convincing you? (For example, a picture or even a 
series of random examples?) Do you think we should offer 
a separate course on how to prove results in mathematics?

3.3  Data analysis

A provisional or hypothesis coding, which was based on 
the theoretical ideas underpinning the research (Miles 
et al. 2014), was carried out on the transcribed interview 
data. In this kind of coding some codes, arising from the 
theory, are assigned before reading the data and others 
emerge later from the data. Based on Harel’s (2018b) 
theoretical framework, we considered students’ intellec-
tual need for proof, particularly to provide certainty about 
assertions, to aid understanding of cause and to commu-
nicate. The initial coding then led to emergent themes 
or categories of responses. Thus, a categorical analysis 

Fig. 1  Examples of linear algebra in Tall’s Worlds
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of the data into potential themes arising from the theo-
retical framework was conducted by the second named 
researcher and validated by the first researcher. In order to 
illustrate this process, Fig. 3 provides examples of some 

of the codes and themes for the questions ‘What is the 
purpose of proof?” Other codes employed included: no 
personal value; explanatory; to build more mathematics; 
and to communicate.

Fig. 2  Theorems and proofs on transformations (Kolman and Hill 2008)
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Other examples of codes, arising from responses to the 
question ‘What kinds of proofs, if any, do you prefer?’ were: 
Short; medium length; not based on definitions; ones under-
stood; logical; step-by-step; word-based; symbol-based; and 
combining words and symbols.

4  Results

In this section we examine student reactions to the proofs 
in this linear algebra course, presenting evidence for their 
perspective on the truth of proofs (need for certainty) as well 
as their explanatory nature and ability to provide personal 

understanding (need for causality) (Harel 2013; 2018b). In 
addition, whether the underpinning of students’ proof con-
victions resided more in the embodied or symbolic world is 
considered.

4.1  Need for certainty

In response to the question, “What is the purpose of a 
proof?” nine of the 16 students said that proofs were writ-
ten to establish the validity, correctness or truth of the 
given result, or theorem. Many of the responses were in 
line with Harel’s (2013, 2018b) notion of need for cer-
tainty. This is seen in S8’s comment that the theorem will 

Fig. 3  Examples of codes and themes arising from the data
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be “true in all cases” and “it’s a law” (S16) or a “fact” (S4) 
that doesn’t have to be done again.

S4: …this is not an elegant answer but I mean show-
ing I guess proofs of how we keep track of our pro-
gress in mathematics so if something is a theorem 
or a conjecture or whatever can be proved then that 
allows us to say okay you know we can now use this 
fact and to go further in mathematics and lay more 
of the ground work so I suppose they are a little con-
nections maybe that allow us to keep going onwards 
so these things don’t have to be you write them down 
and record them I guess and publish them in a text-
book and then we don’t have to do them again and 
again hopefully they will be live on forever
S8: As a student or like in mathematics? I guess you 
said in mathematics. In mathematics the purpose 
of the proof as I see it is to um back up or, I can’t 
believe I’m going to use the word prove, or make … 
so theorems in mathematics are statements that are 
given to be held true. A proof is backing up the fact 
that they’re held true, making it apparent that this is 
true in all cases. That’s what I would describe it as.
S16: Prove that what you’re doing is not just fallacy 
or it’s not just something that somebody made up. 
It’s real. It’s a law.

Yet, when the students were asked ‘Do you think we 
should offer a separate course on how to prove results in 
mathematics?’, only a small number of students were in 
favour of having a separate course, the majority felt that 
realistically this might not be beneficial for them or that 
proofs should be integrated into other courses in linear 
algebra.

S8: I think it would be a very effective use of time 
because you are going to be proving, especially if you 
are a mathematics major, you are going to be proving 
for the rest of your life
S10: I probably wouldn’t take a proof course, but I 
would take abstract linear algebra or linear II, I would 
take a second course over you know more of a con-
cepts, probably not proofs.

We also noted that the students were mainly concerned 
about the requirement for their major, rather than their own 
need for certainty. S16 also questioned the need for proof, 
since instructors in some mathematics classes expect proofs, 
whereas others do not.

One of the students (S4) did not see the purpose of proof 
as strongly, making the point that engineers do not need 
proof, if they can get away with doing some computation 
instead. This demonstrates use of a computational warrant 
for argumentation where the veracity of a result is often 
shown by computation; as S4 says “they don’t need proof 

but and they would probably say that [i.e. computation] is 
enough”.

S4: …about engineers as long they just want to know 
how to compute these intervals you know and do what-
ever maybe use a matrix for some calculation, but they 
don’t need proof but and they would probably say that 
is enough, but I think mathematics absolutely not 
what I would say is more pure mathematics, no proof 
is absolutely essential.

4.2  Need for causality

Seven of the students, including some who commented 
above, focussed on the explanatory nature of proofs in line 
with Harel’s (2018b) need for causality, “or to understand 
what makes a phenomenon the way it is” (p. 37). They talked 
about the role of proof in helping them to understand and 
hence gain a personal conviction, not just of the result at 
hand, but of mathematics in general. Some of them con-
trasted this with a common practice of simply memorising 
proofs for tests and examinations, without really understand-
ing them. For S2 it is clear that “the purpose of a proof 
is to argue that this is correct”, however she qualifies this 
by adding that “the purpose of writing a proof is to really 
understand how it is not just memorize”. This shows that she 
wants to understand why it is correct. Similarly, S10 empha-
sized that definitions and examples are nice, but “knowing 
why it works, it helps you solve all those steps”, and thus it 
can be applied to more general cases. S9 and S15 express 
a similar thought of the contrast between understanding a 
proof and simply memorizing it.

S2: I mean, obviously the purpose of a proof is to 
argue that this is correct. That this is real and I like 
presented to somebody else and say that this is how it 
is and for them to be able to read it and understand it, 
for students I feel like the purpose of writing a proof 
is to really understand how it is not just memorize that 
this is how it is but just like see the workings of it I 
guess so
S9: …just kind of show step by step how they got what 
they got and it helps you better understand it, instead 
of just memorising the end result. Um, if you under-
stand the process and the method it will help you not 
only like understand what’s going on but it will help 
you remember the end result if you know how to get 
there.
S10: Kind of what I mentioned, I like knowing the 
proof because, yeah it’s nice to have a definition or 
just an example but knowing why it works, it helps 
you solve all those steps in between that you solve in 
the proof to get to your final theorem, all those steps 
are not just, I mean in some cases I guess they are but 
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most of the time they’re not just exclusive to that proof 
so these different maths steps combined that can all be 
used in practice with other maths steps you need.
S15: I think you just kind of do it to build up your 
foundation of the math and understand where it’s com-
ing from… I don’t see how learning the proof of some-
thing and memorizing it in a way so I can take it on an 
exam will help me in the long run.

These two types of responses correlate well with the idea 
of proofs that prove and proofs that explain (for the indi-
vidual) (Hanna 1990) or proofs related to ascertaining or 
persuading (Harel and Sowder 1998).

As noted above, a few of the students (e.g. S2, S9 and 
S15) contrasted understanding with simply memorising a 
proof in order to be able to reproduce it at a later date, such 
as in an examination. This resonates well with Skemp’s 
(1976) distinction between instrumental and relational 
understanding. In this context the former would be the 
ability to learn a theorem or proof and reproduce it with-
out understanding why it works, whereas the latter involves 
deductive reasoning, the ability to deduce the theorem (and 
proof) from the underlying principles and relationships. As 
Skemp noted, while instrumental understanding is quicker 
to attain and has more immediate benefits, relational under-
standing produces longer term benefits, since it more adapt-
able to new tasks, or as S10 put it “All those steps are…not 
just exclusive to that proof”, that is, key ideas in proofs often 
have wider application in mathematics.

4.2.1  Formal proofs versus examples within the embodied 
and symbolic worlds

One of the main goals of this study was to investigate stu-
dents’ reactions to confronting the formal mathematics, spe-
cifically formal proof, and whether they gained more under-
standing within the embodied or symbolic worlds. Hence, 
we asked if they were convinced by proofs alone or would 
have gained more conviction through a series of examples 
and pictures. The contribution of examples to understanding 
proofs, was strongly emphasised in the responses.

S3: Examples always help…I was just going back to 
the embodied world [of Tall] or giving symbolic exam-
ples but it gets you in the right direction and thinking 
the right way…you might not be able to connect these 
ideas until you get a, example, it helps you combine 
and understand what it’s trying to tell you.
S6: …my assumption is that examples always help me 
and I’m assuming that examples help me understand 
this.

Both students believed that since examples are always 
helpful, so they must be helpful with proofs as well. S3 

believed examples will point you on the right directions and 
help with connecting, combining and understanding ideas 
in proofs.

In a similar manner some felt that sometimes visualisa-
tion might help, either in addition to, instead of, or within 
examples, but with the need for understanding once again 
at the centre of their thinking. However, it appears that they 
were not using the embodied world (Tall 2008) as a war-
rant for truth, but more as a support for understanding the 
proof content (Lew et al. 2014), in line with Harel’s need 
for causality.

S2: …sometimes I would say a picture would be help-
ful…With a proof I don’t think examples would be 
really necessary but aside like, I like those little pic-
tures that come in the on the sides of the textbooks.

Others gained their understanding, and hence a personal 
conviction from the proof as presented to them using deduc-
tive reasoning as a warrant for truth and were much more 
sceptical about the pictures. For example, both S4 and S16 
believed that for proofs given them during the interview (see 
Fig. 2) it may have not even be possible to come up with any 
pictures. S8 made it clear that “a series of examples does 
not convince me…I prefer proofs”. However, he acknowl-
edged that examples and an embodied ‘geometric argument’ 
do have a place in mathematics. S12’s comments indicated 
that although examples are helpful for understanding, since 
theories work in “any situation”, in some ways proofs are 
“self-sufficient”.

S4: Sure. I really I don’t think so I mean I suppose 
you could come up with a picture for this or maybe 
an example but I guess for myself if I was teaching 
this course I would not be.. to do that because this is 
hopefully what we are trying to lean towards even in 
this case I don’t think that would have been neces-
sarily more help for me as a student I can’t speak for 
others but this was fine this I think conveyed all of the 
understanding.
S8: Well I’m kind of a sceptical person by nature and 
so if you just gave me a bunch of subsets for L and 
showed that they were subspaces of V, I’d be like 
alright that’s neat, but I wouldn’t believe it was true 
in all cases. I guess a geometric argument might sway 
me depending on how effective it was. If it wasn’t just 
a series of examples but you know like if you use the 
geometric definition of a span or if you look at span, 
geometric ones, it’s pretty easy to see some of the 
properties of span. So that would maybe convince me 
but generally speaking a series of examples does not 
convince me that something is true in all cases or true 
in many cases or true in X cases. I prefer proofs. I’m 
more of a questioning type. But there is definitely a 
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place in mathematics if you just want to get the work 
done, so.
S12: Examples of pictures helps me to try and under-
stand but I mean but the proof is more like the most 
definite thing because you can give an example, I mean 
how I make sure that it didn’t give that specific exam-
ple that works with this theorem but if you give me a 
proof that doesn’t have specific example that make sure 
that this theorem works with any situation.
S16: I don’t think so. I mean if you could visually show 
it to me it might. But I can’t see that visually. I don’t 
know how that would be represented. So I’m not sure 
how to, if … if you could show it to me visually I think 
that I could understand it better. But it’s not to say that 
I don’t feel like I understand it, cause I do.

4.2.2  Proofs and personal conviction

As Harel (2018a) states, the need for certainty and the need 
for causality are complementary, “… understanding cause 
brings about certainty, and certainty might trigger the need 
to determine cause” (p. 15). We found the relationship the 
students perceived between being personally convinced and 
understanding was seen in their responses to when they were 
asked “Do you find proofs convincing?” These responses 
show that for them understanding and making sense are pre-
requisites for gaining personal conviction.

S7: Yes if I understand them. They’re pretty convinc-
ing.
S11: I’m not too good of a proof writer but I like them, 
I think they’re useful. There’s some proofs that have 
convinced me. If they haven’t convinced me then I 
probably don’t understand them.
S13: I do generally go through each step of a proof 
trying to fully understand it but I do find them rather 
convincing once I understand them.

So these students linked being convinced by a proof with 
first understanding and making sense of the content. How-
ever, at least six of them acknowledged that they can occa-
sionally get lost in proofs, since forming understanding is 
not always easy for them. We see that S2 says “It depends on 
the proof…I get lost easily”, while S16 seems to have prob-
lems with proofs that “just throw things in from all different 
angles” or use other proofs to prove and links his personal 
conviction with proofs that are “more definite” and “make 
things make sense” for him.

S1: If it’s just words, no. It’s just a block of text, my 
eyes glazed over.
S2: It depends on the proof. These, the linear algebra 
ones definitely help. In some other courses I feel like 

I don’t know, sometimes I get lost easily but the ones 
that we’ve done in our text book seem really well, 
well to read and easy to read.
S12: Most of the time…Well sometimes some steps 
I need to think a bit more to convince myself about 
it. I mean some proof they use specific number of 
something so I’m not sure sometimes. Most of the 
time yeah, if it’s convinced me.
S16: Some proofs seem to kind of just throw in 
things from all different angles and kind of go in a 
big circle to do what you just showed. Um I think 
there’s a lot of proofs that just use other proofs to 
kind of prove a proof. But there are some proofs that, 
you know, are more definite and do, can make things 
make sense for sure. But when you do geometry and 
you do some of the proofs that we did for like when 
you use an inverse to prove something, it’s kind of 
like yeah I can use inverse to prove it.

Hence, some reasons why certain proofs were more dif-
ficult to understand and so were not convincing included 
those that were poorly structured (Harel’s need for struc-
ture), those written in a manner that is difficult to read 
(Harel’s need for communication), those hard to follow 
certain steps in the proof and those relying on too many 
prior proofs/theorems (Harel’s need for structure). The 
lack of a clear structure in many proofs and what might be 
done about it is something that has been noted for many 
years (Alibert and Thomas 1991).

4.2.3  Student preferences of proof type

To learn about the kind of information in proofs that the 
students thought would assist them in ascertaining, con-
vincing themselves or gaining relational understanding of 
the proof they were asked “What kinds of proofs, if any, 
do you prefer?” some students’ responses showed their 
lack of exposure to different types of proof. For example, 
S2 said “I’m not sure what do you mean by different.”, S9: 
“What do you mean by kinds?” and S10: “What different 
types of proof are there?”

As a whole, there was no consensus on preference, with 
several themes emerging from their comments. However, 
their preference was often linked to understanding (Harel’s 
need for causality) and shed some light on what the stu-
dents employed as a warrant for mathematical truth (Rodd 
2000). Some preferred to gain understanding through 
symbolic world proofs, with symbolic algebra being their 
preferred warrant for truth, rather than those proofs with 
more words, and it is noteworthy that S15 did not seem to 
associate words with mathematics, as if these are insuf-
ficient for use as a backing.
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S5: I would say definitely see symbolic cause I’d 
rather have, I would rather look at the symbols and 
be able to, yeah, I like, I like the symbolic ones bet-
ter.
S15: I like proofs that use the math and not the words.

The link to understanding proof was seen in one reason 
given for preferring symbols to words, expressed by S7. This 
was the pyramid structure of mathematical proofs and defini-
tions, where one construct is built upon one or more others. 
As he states it, such proofs require full understanding of all 
the definitional building blocks. He seems to recognise the 
importance of a deductive backing that employs definitions 
even though he prefers a symbolic algebra warrant.

S7: It’s easier to see symbols than it is to read words in 
my mind, for like, especially if I don’t understand the 
definition that they’re using in the first place because 
then you have to refer back but…I won’t necessarily 
understand you know a definition without having to 
look back and then especially if that definition has 
another word that I don’t understand in it.

Another student (S8) liked symbolic proofs but recog-
nized that he could do some of these proofs without nec-
essarily understanding the ideas behind them, simply by 
applying other symbolic results. Hence, he added that he 
likes integrated proofs that rely ‘more on properties than 
just algebra’ as long as he understands those properties and 
so can establish a personal conviction.

S8: Well I always love algebraic proofs. So in linear 
algebra there are lots of proofs that like if you have 
algebraic properties you can kind of just like toss 
things together and really quickly create an interesting 
proof. But they are kind of unsatisfying in terms of the 
fact that you can kind of reach a conclusion without 
the full knowledge of the subject matter underneath 
it. Just because you have this one property…I don’t 
know. I prefer if I have the knowledge to do more of 
a written proof or proof that relies more on properties 
than just on algebra.

Others had a clear preference for words over symbols, 
with S6 who mentions the need for ‘reconnecting’ variables 
to ideas in context, which relates to Harel’s need for commu-
nication, and S13 again linking a preference for words with 
understanding of proofs. This may be because in their proof 
schemes they are moving towards acceptance of a deductive 
warrant and its backing of formal mathematics.

S6: I like the English, English words preferably 
cause I’ve taken calculus and I’ve had difficulty with 
reconnecting all of the variables to certain things and 
because some variables mean different things in cer-
tain situations. So I prefer the linear algebra format.

S10: …what I’m comfortable with as far as like when 
I’m learning a new proof, I’d much rather have the 
words. Just the paragraph of why it works, I like that 
better than all of the step-by-step algebra or something 
that when I’m learning a proof. I don’t necessarily like 
the math…I definitely like a paragraph and words I 
think is what I like better.
S13: I generally prefer primarily text. I like seeing like 
the symbolic representation of what they’re doing but I 
can usually understand it from primarily text.

The length of a proof is also a factor that contributes to 
students’ ability to understand it, with shorter rather than 
longer proofs preferred, since longer proofs “make it harder 
to follow’ or cause one to get ‘lost’. These two students 
wanted proofs to be short and preferably fit on a single page.

S4: …but I mean the shorter proofs I suppose. A proof 
is like two pages long it is likely I am sure that is not 
nearly that but it does make it harder to follow.
S7: Maybe about three or four lines and then you get 
like a three page derivation I’m just like I don’t know 
what you said anymore, I’m lost.

Other related factors leading to a preference for certain 
kinds proofs, again linked to understanding, is their struc-
ture, particularly whether they lead students through step-
by-step or have a clear, explanatory logical progression for 
students (the need for communication). They refer to these 
proof properties being necessary for them to ‘understand 
‘what’s happening’, to ‘see like the connection’ or so it 
‘makes lots of sense’. Their focus is on the need for under-
standing and sense-making, although there is an important 
distinction between these two that we will return to below.

S1: The ones that, um, examples where you can see 
step by step along with the phrases. Ok this group of 
words means here’s what’s happening.
S6: The proofs that I don’t prefer are the ones that it 
seems like A equals A through this iteration. I mean 
it feels like it just repeats itself almost like it, I don’t, 
sometimes, usually I don’t see like the connection, so.
S15: I like proofs that use the math and not the 
words… symbols are…they’re not hard to read…
I don’t know how to say this, to me it doesn’t quite 
compute all the time. So if it’s here, this is the proof 
and then you go eight steps, A, B, C, D, E, you know 
what I mean, very clear step by step, makes lots of 
sense instead of a whole bunch of jumbled paragraphs 
that you kind of have to haul it out.

Even S9, who expressed no preference for a particular 
type of proof, emphasised the need for causality as the pri-
mary consideration, twice stating ‘as long as I understand’. 
This again highlights the student need for communication, as 
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well as the need for structure, for re-organizing the knowl-
edge learned in a logical manner (Harel 2013, 2018b).

S9: I mean as long as I can see what they’re starting 
with and as long as I understand the method that they 
are using I don’t think that I really have a preference. 
Just like as long as I understand and I can see where 
they’re starting with and the direction they are going, 
I don’t think it really matters that much to me.

It seemed that the very nature of linear algebra proofs 
made it difficult for some students to tackle them. Most stu-
dents were not used to seeing proofs that relied on other 
theorems as results to be used, including many words and 
symbols that were taken from definitions or other theorems.

4.3  Two specific proofs

As most of our interview questions were more general and 
did not involve solving linear algebra tasks, we considered 
that, in order to examine students’ thinking, it would be 
beneficial to consider their responses to two familiar, spe-
cific proofs from the course. Hence, the students were asked 
about their understanding and conviction with regard to two 
specific theorems (see Fig. 2) and their proofs. The ques-
tion was: “Did [this specific proof] help you to understand 
why such-and-such was true, or why such-and-such always 
happens?”

Both Corollary 6.2 and Theorem 6.4 and their proofs were 
set as homework and later were assessed in an examination. 
The proof of Corollary 6.2 required knowing the definitions 
for one-to-one and onto and linking them to other theorems 
to deduce the desired result. This Corollary was also useful 
in solving other problems. Part (b) of Theorem 6.4, was a 
key result in the course and was often used in proving other 
theorems (e.g. Corollary 6.2) and solving various exercises 
involving matrices. Moreover, the proof for part (b) revealed 
the definition of one-to-one in action. In a way, both these 
proofs were meant to help students to work with definitions 
and to practice with their key elements in order to arrive 
at the result. During the course most students found these 
proofs difficult. One main reason is that many students were 
still struggling to understand the definitions and meanings of 
the terms such as Kernel and specially Range. Most students 
also struggled to compute and find the Kernel and Range of 
a matrix.

This was the first time we initiated the word “understand-
ing” within our interview questions. Although, we were 
interested in students’ views, we tried to limit the boundary 
for the meaning of understanding to “why such-and-such 
was true, or why such and such always happen”.

At least one student (S1) missed the point of this exercise 
completely and thought that understanding proofs such as 
these required the use of examples.

S1: These only really help me after I’ve seen an exam-
ple of them worked first where I know what the terms 
are trying to tell me.

However, another student (S2) could clearly see a pattern, 
referring to the proof of Corollary 6.2 as “a circle”, or “like 
a domino thing”.

S2: I don’t feel like I’ve ever needed help understand-
ing it but like, um, I don’t know, it shows like it shows 
that it’s a circle I guess and then it’s like a domino 
thing. So yes it helped.

Several students noted that reaching understanding of 
these proofs in the formal world required some consider-
able effort on their part, describing it as ‘daunting’, having 
a ‘steep learning curve’ and occasionally requiring a ‘giant 
jump of understanding’ for both reading and writing proofs.

S5: The Theorem 6.4, I think it’s a little wordy…it’s 
real wordy, it’s kind of like daunting and a little off 
putting to me. Uh, it, it made sense going through it 
after a couple of times but it’s definitely easier to fol-
low the first one [Corollary 6.2 in Fig. 2].
S8: I do think with proofs there’s a really steep learn-
ing curve. I think that’s probably the biggest problem 
with the formal world of mathematics is the learning 
curve with a proof is extremely steep. You can stare at 
a proof for 25 min and get nothing out of it.…there’s 
like a, there’s almost like a wall that you run into at 
a certain point and you can puzzle it out for a long 
time… Sometimes you just won’t get there and it takes 
this giant jump of understanding to get to the end of it. 
Especially if you are writing proofs, mostly when you 
are writing proofs, but reading them too.

Some students claimed that little or no understanding was 
gained, in one case since it did not ‘make sense’ to them, 
and hence there was no personal conviction for the proofs 
provided.

S10: I don’t know if it necessarily helped me under-
stand why …I guess this could be a case where I’d 
want more algebra instead of just a couple of sentences 
or maybe I need like four more sentences.
S13: I agree that it is, it does show that. I don’t know 
like my actual understanding of why that is or why that 
should make sense is really there but I can see that it is.

For Corollary 6.2, working from a dimension equation 
(dim ker L + dim range L = dim V), and understanding its 
importance, even if they did not precisely remember the 
equation, helped two students to remember or reconstruct the 
proof. This too was related to understanding, with S9 stat-
ing that the equation, even one they seem to have wrongly 
remembered, ‘definitely helps me actually understand why 
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the corollary is true for sure’. The use of this equation as a 
central plank for understanding appears to imply that, in line 
with Harel’s (Harel 2018a, b) need for computation, they 
were using symbolic algebra as a warrant for truth.

S7: I know it involves the different dimensions, how 
has this got to work to get it right…I wanted to play it 
safe so I just wrote words. So obviously you know this 
dimension is zero then obviously these two are equal, 
so I knew that based on.. I mean it had to be that way 
because I knew the final result, but I mean it was kind 
of regurgitation in a way. I had to think about it though 
because I didn’t remember the equation. But I mean 
this one still makes perfect sense to me.
S9: I know it definitely helps just ‘cause you have this 
symbol equation dimension [kernel] L plus dimension 
range L plus [equals] dimension of V and you make 
one assumption, then you can solve for the other one…
But then looking at this equation, given Theorem 6.6, 
it shows clearly and simply like how they got there. 
So yes, so that definitely helps me actually understand 
why the corollary is true for sure.

Overall, students’ responses indicated that even the proofs 
that were well discussed and elaborated on in class were not 
necessarily viewed as straightforward and many concerns 
still remained in students’ minds.

5  Discussion

The goal of this study was to investigate students’ perception 
of proof in a first-course in linear algebra. It is clearly not 
possible to make generalisations from such a small sam-
ple of students in a single university setting. However, our 
results do show that many students take a different view 
of proof from mathematicians. Unlike, Hersh’s (1993) per-
ception that students are perhaps easily convinced, students 
often see them as something they need to understand, with 
understanding, or comprehension of proofs a crucial step in 
gaining a personal conviction of the mathematics. Although, 
we are aware that the students’ view of understanding may 
be closer to Skemp’s (1979) concept of instrumental under-
standing and some way from his relational understanding. 
In this study, while we do not know exactly what the stu-
dents meant by understanding, we do have some evidence 
of what they believed non-understanding is, which include 
rote learning or memorizing a proof. A second vital step in 
gaining a conviction is that the content has to make sense 
to the student. Sense-making is gaining more attention 
in recent years and we agree with Klein et al. (2006) that 
sense-making is about forming and understanding connec-
tions between ideas. Thus, if to understand something is 
to connect it to a relevant schema (Skemp 1979) then to 

make sense of it is to form relevant connections between any 
appropriate schemas. For example, in linear algebra we have 
previously shown (Thomas and Stewart 2011) that students 
can make sense of the algebra of eigenvectors by connect-
ing appropriate embodied world visual imagery to algebraic 
formulations. Thus, embodied and symbolic world thinking 
can be helpful for some in forming understanding and mak-
ing sense of proof. So, our contention is that understanding 
and making sense will need to precede forming a personal 
conviction. In the absence of these students may tend to 
memorise proofs, proceeding instrumentally and some also 
admit to having only instrumental understanding when using 
symbolic manipulation in proofs.

Tall (2010) points out the different roles that embodi-
ment, symbolism and formalism may play and that these 
need to be made explicit in teaching. For example, in some 
situations not only is symbolic manipulation easier than 
thinking through the embodiment it also “enables a more 
compressed form of thinking that is supportive in building 
formal proofs” (p. 25). In his view, “formal mathematics 
clarifies issues by specifying explicit axioms that are ‘rules 
of the game’ and formal proofs deduced using these rules 
are proven once and for all in any situation where the rules 
are satisfied” (p. 27).

Our analysis showed some evidence of changing proof 
schemes illustrating students’ ways of thinking about proof, 
and at least two of them (S10, S14) expressed their interest 
in knowing “why things work the way they work”. S4 also 
gave the impression that, although this was his first exposure 
to proofs, once he spent the time studying, he could see the 
thinking behind them.

Our results also align well with the observation of Alibert 
and Thomas (1991, p. 215), that it is important to obtain the 
“students’ view of whether proof is a necessary mathemati-
cal activity, their understanding of the need for rigour, and 
their preference for one type of proof over another”, which 
is sometimes neglected in order to preserve the rigour of 
mathematics. Failure to recognise the disjunct between the 
mathematician’s perspective on the rigour of proof and that 
of students risks alienating them early on in linear algebra, 
as Harel (2018b, p. 38) notes “there is an inherent peda-
gogical inconsistency in instruction that emphasizes rigor 
without attention to the origin and need of that rigor…As 
a consequence, students feel aliens in knowledge construc-
tion.” We need to accept that students may reach understand-
ing and conviction through different warrants for truth.

In addition, to prepare students for a second course in 
linear algebra, they need to be comfortable with some level 
of rigour in the first course. The nature of this rigour and 
the teacher’s expectations are best clarified as the proofs 
are introduced in class. It appears that for some students 
the structure of a proof required by mathematical rigour 
may tend to obscure understanding. This is something that 
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could be attended to in a course specifically addressing 
proof. Around half of university personnel in an ICME 
survey (Thomas et al. 2015) said their university had a 
separate course on proving, and agreed (averaging 3.7 
out of 5) that learning how to read a proof, working on 
counterexamples, building conjectures and constructing 
definitions would be useful components of such a course. 
However, our research suggests that a proof course could 
also address examples, which can play an important role 
in learning concepts. In this regard, the research of Lock-
wood et al. (2016) suggests four pedagogical ways to assist 
students’ use of strategic examples in proof activity that 
could be incorporated into linear algebra courses, namely 
not discouraging example use, encouraging awareness and 
discussion of example use, explicitly highlighting example 
use in proving and shifting norms about what it means 
to be a competent or successful prover. In addition, such 
courses could include activity addressing the structure of 
proofs.

Pedagogy of proof in a first-year linear algebra is cer-
tainly a complex endeavour. Many students are not math-
ematically equipped to construct their own proofs. As stu-
dent S8 put it, “the methodology of proving is very precise 
and specific. It has to work a certain way or it’s not well 
accepted.” Despite their exposure to two semesters of cal-
culus and, for some, a course in discrete mathematics, our 
analysis showed that many students still struggled with proof 
in linear algebra. One reason is that each component in a 
proof is packed with meaning and conceptual ideas. Many 
students struggle with understanding the basic concepts in 
linear algebra. It is almost unrealistic to expect students to 
logically piece together many definitions and other theorems 
and results together inside a proof. As S8 summed it up “in 
this class when we were asked to write proofs it was kind 
of assumed that we knew the direction we would want to go 
and the methodology we needed to know”. Although, we did 
not study the effect of emotions closely in this paper, some 
students’ negative attitudes toward proof was apparent. For 
example, S7 said: “I kind of want to stay far away from that 
as possible, that’s why I’m only a math minor”.

Regrettably, in many traditional settings linear alge-
bra students may not be given the opportunity to develop 
Harel’s (2008a, b) ways of thinking and ways of understand-
ing that can assist students to be successful. As Tall (2013, 
p. 414) reminds us, “unlike an apprentice carpenter, who 
can observe the actions of an expert applying his trade, an 
apprentice mathematician cannot see what is going on inside 
an expert mathematician’s head”. We believe that teaching 
linear algebra proofs well certainly requires more class time 
and an awareness and nurturing of individual’s intellectual 
needs. It seems that ignoring students’ need for causality and 
sense-making (Harel 2018b) will only add more obstacles 
to their learning.

Our research results point lecturers more toward the stu-
dent perspective of the learning of proof in linear algebra 
than has previously been the case. Equipped with this, we 
hope that it will assist lecturers to contemplate strategies 
used by students and so have a more specific focus, making 
their noticing more productive by modifying their instruc-
tional decisions to match student difficulties (Choy et al. 
2017).
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