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Abstract
Metacognitive monitoring in educational contexts is typically measured by calibration indicators, which are based on the 
correspondence between cognitive performance and metacognitive confidence judgment. Despite this common rationale, a 
variety of alternative methods are used in the field of monitoring research to assess performance and judgment data and to 
calculate calibration indicators from them. However, the impact of these methodological differences on the partly incongruent 
picture of monitoring research has hardly been considered. Thus, the goal of the present study is to examine the effects of 
methodological choices in the context of mathematics education. To do so, the study compares the effects of two judgment 
scales (Likert scale vs. visual analogue scale), two response formats (open-ended response vs. closed response format), the 
information base of judgment (prospective vs. retrospective), and students’ achievement level on confidence judgments. 
Secondly, the study contrasts measures of three calibration constructs, namely absolute accuracy (Absolute Accuracy Index, 
Hamann Coefficient), relative accuracy (Gamma, d’), and diagnostic accuracy (sensitivity and specificity). One hundred and 
nine seventh-grade students completed a set of 20 mathematical problems and rated their confidence in a correct solution for 
each problem prospectively and retrospectively. Our results show a pervasive overconfidence of students across achievement 
levels. Monitoring was more precise for retrospective judgments and the visual analogue scale format. Gamma, sensitivity, 
and specificity proved to be susceptible for boundary values, caused by the general overconfidence in the sample. Measures 
of absolute accuracy were affected by response format of the task and judgment scale, with higher accuracy found for closed 
response format and visual analogue scale. We observed substantial correlations within the three calibration constructs and 
comparably low correlations between indicators of different constructs, confirming three interrelated aspects of monitoring 
accuracy. The low correlations between corresponding prospective and retrospective calibration indicators suggest different 
calibration processes. Implications for studies on calibration and mathematics education are discussed.
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1 Introduction

Research on metacognition originated in the domain of 
memory development (termed metamemory) and is theo-
retically, methodologically, and empirically well elaborated 
in this domain (Dunlosky and Tauber 2016). Its potential 
was also recognized early in other domains such as text com-
prehension (for a review, see Baker 1989) and mathematics 
(for a review, see Schneider and Artelt 2010), showing that 

students’ metacognitive knowledge and competencies were 
substantially related to their performance.

Metacognition is defined as any knowledge or cogni-
tive activity that takes cognitive processes as its object (cf. 
Flavell et al. 2002). Thus, on the one hand, metacognition 
refers to people’s knowledge about their own information 
processing skills, about the nature of cognitive tasks, and 
about strategies for coping with such tasks. On the other 
hand, it also includes executive skills related to monitoring 
and self-regulation of one’s own cognitive activities. With 
regard to mathematics instruction, the role of monitoring 
was especially emphasized (e.g., Desoete and Veenman 
2006; Schoenfeld 1987).

As in other domains, an extensive repertoire of assessment 
methods has been developed in the field of mathematical 
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metacognition (e.g., Desoete 2008). However, unlike the 
metamemory domain with its long-lasting and vivid discus-
sions on methodological issues and problems (e.g., Schwartz 
and Metcalfe 1994; Dunlosky et al. 2016), little systematic 
research on the characteristics and possible shortcomings 
of different measures of metacognitive monitoring has been 
conducted in the domain of mathematics. Consequently, this 
study aims to examine the effects of methodological issues 
on monitoring assessment in mathematics education.

1.1  Monitoring in the domain of mathematics

In mathematics, Garofalo and Lester (1985) provided a 
seminal conceptualization of metacognitive monitoring 
during mathematical problem solving. Integrating ideas of 
Polya (1949) and Schoenfeld (1985), they differentiated four 
phases: (1) orientation assessing and understanding a prob-
lem in the orientation phase, (2) planning of solution behav-
ior and choice of actions during the organization phase, (3) 
regulation of solution behavior during the execution phase, 
(4) evaluation of planning decisions and outcomes during 
the verification phase. Monitoring occurs in all four phases 
and refers to an ongoing evaluation of one’s own cognitive 
activities, with the goal of initiating regulation processes 
(Schoenfeld 1985).

Typically, monitoring is assessed prospectively in the 
orientation phase, immediately preceding the execution of 
a cognitive task, or retrospectively in the verification phase, 
immediately following the execution of a cognitive task. 
Prospective judgments require an activation of knowledge 
about the task, about one’s own abilities, as well as about 
adequate strategies and enable the individual to adapt time 
and effort. Retrospective judgments in mathematics require 
reflections on processes and outcomes, or more specifically, 
self-assessments of task understanding, of appropriateness 
of planning, executing and regulating the solution process 
(Garofalo and Lester 1985).

Thus, monitoring is a critical activity in mathemati-
cal problem solving. Erroneous monitoring, regardless of 
whether the judgments are over- or underconfident, may lead 
to deficiencies in the activation of relevant content knowl-
edge and the regulation of cognitive processes (Hacker et al. 
2008). As a consequence, the quality of monitoring affects in 
the short term the performance in the task at hand, and in the 
long term the accumulation of cognitive and metacognitive 
knowledge on mathematical problem solving.

Several studies have shown substantial relations between 
monitoring ability and mathematical performance in pri-
mary school children (e.g., Desoete and Roeyers 2006; 
Desoete et al. 2001; Lucangeli and Cornoldi 1997; Özsoy 
2011) as well as in secondary school children (e.g., Chen 
2003; Roderer and Roebers 2013; Tobias and Everson 2000). 
However, in some instances, only low (Desoete 2008) or 

no associations between judgments and performance were 
found (e.g., Lucangeli and Cornoldi 1997). Since tasks differ 
regarding their demand on metacognitive monitoring and 
regulation processes, with highly routinized tasks requiring 
only little metacognitive regulation, this is not surprising. 
However, as will become apparent below, differences in the 
measurement of monitoring abilities that were used may also 
have caused the variability in findings.

1.2  Measurement of monitoring

A classic monitoring measure is calibration, which assesses 
the accuracy of metacognitive monitoring judgments by 
evaluating the fit between judgment and performance (Keren 
1991). Thus, calibration combines two variables, namely, a 
judgment that predicts or postdicts performance in a cogni-
tive task as well as the actual performance on this task.

Task performance is commonly measured categorically, 
being either correct or incorrect. Similarly, metacognitive 
judgments are often measured in a dichotomized form, judg-
ing task performance as correct or incorrect (Schraw et al. 
2014). Aggregated across all items of a given test, judgment 
and performance data can be arranged in a 2 × 2 contingency 
table (see Table 1).

In Table 1, cell A contains the number of items that are 
judged as correct and solved correctly; Cell B contains items 
that are judged as correct, but solved incorrectly; Cell C 
contains items judged as incorrect, but solved correctly; 
Cell D contains items judged as incorrect and solved incor-
rectly. Consequently, cells A and D represent good calibra-
tion, whereas cells C and B indicate poor calibration. Cell 
C informs about the frequency of underconfidence, and cell 
B indicates the frequency of overconfidence.

As noted by Schraw et al. (2014), different statistical 
measures have been used to combine information contained 
in the four cells of the contingency table. Table 2 gives an 
overview of relevant constructs and statistical measures 
that are typically calculated based on the contingency table. 
While relative accuracy represents the ability of an individ-
ual to discriminate between items solved correctly and items 
solved incorrectly, absolute accuracy matches the judgments 

Table 1  A 2 × 2 contingency table illustrating the performance-judg-
ment array for monitoring accuracy (after Schraw et al. 2014)

Performance Row marginals

Correct Incorrect

Judgment
 Correct A B A + B
 Incorrect C D C + D

Column marginals A + C B + D A + B + C + D
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against the actual performance, representing an individual’s 
ability to estimate performance on individual items.

In addition, Schraw et al. (2014) recommend indicators 
of diagnostic accuracy. Drawing on signal detection theory, 
they proposed sensitivity and specificity as measures of 
metacognitive monitoring. These measures discriminate 
between one’s ability to judge items solved correctly (sen-
sitivity) and items solved incorrectly (specificity). That is, 
they represent two complementary aspects of metacogni-
tive monitoring, namely the identification of correct and of 
incorrect performance.

The variety of monitoring constructs evolved from the 
assumption that monitoring processes consist of different 
facets. Research testing this assumption is rare and incon-
clusive. Schraw et al. (2014) found substantial correlations 
between absolute, relative, and diagnostic accuracy meas-
ures. In particular, the correlation between absolute and 
relative accuracy measures was close to perfect (r’s > .90). 
However, the correlation between sensitivity and specific-
ity was close to zero. The authors concluded that measures 
of absolute and relative accuracy are indicators of the same 
monitoring processes, whereas sensitivity and specificity 
capture different processes. In contrast, Maki et al. (2005) 
reported low and nonsignificant correlations between abso-
lute and relative accuracy measures (all r’s < .15). According 
to Maki et al. (2005), this finding suggests that relative and 

absolute metacognitive accuracy measures tap into different 
processes.

Regarding prospective and retrospective judgments, most 
investigations focused on postdiction measures (e.g., Maki 
et al. 2005; Schraw et al. 2014), which, according to Bol and 
Hacker (2012), seem to be more accurate than predictions. 
In the field of mathematics, Boekaerts and Rozendaal (2010) 
confirmed this finding for arithmetic problems. However, 
retrospective monitoring accuracy decreased when students 
had to deal with word problems. Thus, current research on 
prospective and retrospective judgments is no more con-
clusive than research on the interrelations among absolute, 
relative and diagnostic accuracy measures.

1.3  Influence of response format on monitoring 
measures

1.3.1  Response format of the criterion

There is evidence that the format in which the criterion (i.e., 
the performance indicator) is answered affects the accuracy 
of metacognitive monitoring. For instance, Schwartz and 
Metcalfe (1994) reported higher accuracy scores for free 
recall (open-ended response format) than for recognition 
(closed response format). Their explanation is based on the 
impact of guessing. For example, suppose a student cannot 

Table 2  Constructs and measures of metacognitive monitoring (adapted from Schraw 2009 and Schraw et al. 2014)

n number of items judged

Construct Measure Formula Description Range Interpretation

Absolute accuracy/calibration
Absolute Accuracy index 

(AAI)
(A + C) − (A + B) Difference between actual 

correctly solved problems 
and problems judged as 
correct

− n–n Perfect accuracy: 0

Hamann coefficient (HAC) ((A + D) − (B + C))/
(A + B + C + D)

Difference between the pro-
portion of concordant and 
discordant judgments

− 1–1 Perfect accuracy: 1

Relative accuracy/resolution
Gamma (GMA) (AD − BC)/(AD + BC) Difference between product 

of concordant and discord-
ant judgments

− 1–1 Perfect accuracy: 1

d´ (DIS) z (A/(A + C)) − z (B/(B + D)) Difference between standard-
ized hit rate and false-alarm 
rate

− ∞–∞ Negative values: more false 
alarms than hits; positive 
values: more hits than 
false alarms

Diagnostic accuracy
Sensitivity (SEN) A/(A + C) Proportion of “I can solve” 

judgments when item is 
solved correctly (hit rate)

0–1 Perfect accuracy: 1

Specifity (SPE) D/(B + D) Proportion of “I cannot 
solve” judgments when 
item is not solved correctly 
(correct-rejection rate)

0–1 Perfect accuracy: 1
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solve a specific problem and knows it. In the case of an open-
ended response format, his or her judgment should result in 
a correspondence between prediction and performance. In a 
closed format (e.g., multiple choice), however, the student 
most likely will guess, selecting one of the given alterna-
tives. If he or she, by chance, guesses the correct solution, 
his or her actually appropriate judgment becomes incorrect.

Although such an explanation is tempting, it does not 
seem to apply to mathematics. Pajares and Miller (1997) 
presented the same word problems in an open- and in a 
closed-response format to middle-school students. Given 
the guessing option, multiple-choice items were easier than 
open-ended response items. However, contrary to Schwartz 
and Metcalfe’s (1994) assumption, guessing did not cor-
rupt the accuracy of the monitoring judgments. Students’ 
judgments were actually more inaccurate in the open-ended 
response format than in the closed format. As students dis-
played a general overconfidence, lucky guesses increased 
calibration accuracy instead of decreasing it.

1.3.2  Response format of the judgment

Another factor that can influence monitoring accuracy is the 
scaling of the judgment, which determines the grain size 
of self-assessment. Typically, measurements of confidence 
include binary ratings (e.g., Tobias and Everson 2009), 
ordered categorical ratings (such as Likert scales; e.g., De 
Clercq et al. 2000) or, which is less common, continuous 
ratings (as visual analogue scales; e.g., Schraw et al. 1993).

An advantage of binary ratings (yes vs. no) is their direct 
correspondence to the binary performance scaling (correct 
vs. incorrect solution). As a result, calculation and interpre-
tation of calibration measures are convenient. However, a 
disadvantage of binary ratings concerns the loss of infor-
mation, as students may use more fine-grained internal cat-
egories for their confidence judgments than just yes or no 
(Higham et al. 2016).

Categorical and continuous scales show two advantages 
in comparison to binary scales: first, they can map nuances 
of confidence better; second, their distributional properties 
permit more sophisticated analysis options (e.g., structural 
equation modeling). Unfortunately, a crucial disadvantage of 
these judgment types concerns the divergence between con-
fidence and performance scaling. There are three possible 
solutions to this problem: (a) dichotomizing the confidence 
rating scale and calculating a measure based on the con-
tingency table, (b) modifying the performance rating scale 
and calculating a continuous calibration measure (Schraw 
2009), or (c) calculating relative accuracy measures only. 
Whereas the first option discards information, the second 
option severely disregards the properties of the performance 
scale, and the third option constitutes a substantial restric-
tion of analysis.

1.4  Influence of individual differences 
on monitoring measures

Regarding the influence of individual differences on mon-
itoring indices, Bol and Hacker (2012) point out that “in 
general, higher-achieving students tend to be more accurate 
but more underconfident when compared to their lower-
achieving counterparts” (p. 1). Two concurring processes 
may explain this phenomenon. On the one hand, abilities 
enabling a correct solution may be identical with those to 
predict or postdict the appropriateness of a solution. Thus, 
lower-achieving students may lack the knowledge required 
for appropriate metacognitive judgments as well as for 
adequate cognitive performance (“unskilled but unaware 
of it” as stated Kruger and Dunning 1999). Accordingly, 
higher-achieving individuals are more likely to judge their 
performance accurately. On the other hand, higher-achiev-
ing individuals tend to overestimate the mean solution rate, 
which leads them to underestimate their own capabilities 
(e.g., Dunning et al. 2003).

In the domain of mathematics, this effect has been only 
partially confirmed: comparisons between groups of dif-
fering achievement levels (García et al. 2016; Pajares and 
Miller 1997) as well as comparisons between problems of 
differing difficulty (Chen 2003) showed a general pervasive 
overconfidence. The degree of overconfidence, however, 
seemed to be a function of ability or task difficulty, with 
more accurate calibration for higher-achieving individuals 
or easier problems. Thus, in mathematics, accuracy seems to 
depend on performance in the criterion. However, in contrast 
to other domains there is little evidence for students display-
ing underconfidence.

1.5  Distributional effects on monitoring measures

Schwartz and Metcalfe (1994) pointed to the effect of 
restricted range in performance data. Given the fact that 
measures of calibration integrate judgments on correct as 
well as incorrect items, the range of difficulty in criterion 
tasks influences accuracy measures.

This phenomenon has been well illustrated in the special 
cases of ceiling or floor effects. For example, an overly diffi-
cult test leads to a reduced rate of correct criterion tasks (col-
umn marginal A + C in Table 1). Therefore—independently 
of monitoring competency—frequencies in cell A (correctly 
solved, judged as correct) and in cell C (correctly solved, 
judged as incorrect) are reduced. That is, all measures con-
taining these two cells are biased. Due to the difficulty of 
the test, students do not have any chance to discriminate 
among these items, and the likelihood of observing a corre-
spondence between judgments and performance is reduced. 
Therefore, comparing calibration scores between groups of 
different ability may confound monitoring proficiency and 
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performance, even when the same test is used (Dunlosky 
et al. 2016; Schwartz and Metcalfe 1994).

Different calibration measures extract different informa-
tion from the 2 × 2 table (see Table 2). Thereby, if cells in 
the table are empty, computational problems will emerge 
for some monitoring indices (Rutherford 2017). In short, 
empty cells can cause two problems, as follows. (1) Bound-
ary values: quotients can result in a score of 1. Empirically, 
ceiling effects restrict variance. (2) Undefined values: the 
product of cell frequencies is 0, if one factor equals zero. 
In the case of the denominator this results in an undefined 
quotient. For example, gamma is not defined, if cells C or D 
are empty. Different features such as an insufficient number 
of items, extreme item difficulty, or extreme (in-) accuracy 
of judgments can lead to empty cells (Rutherford 2017).

1.6  Present study and research questions

It is obvious from the review of literature that methodologi-
cal decisions influence monitoring accuracy scores. Due to 
the lack of systematic studies in the domain of mathematics, 
the impact of these methodological decisions on measure-
ment results remains unclear. Our study aims at filling this 
gap by examining the effects of response and judgment for-
mat, ability level, and different calibration constructs in an 
ecologically valid mathematics education setting.

More precisely, we address seven questions: (1) Does 
response format influence performance? (2) Does type of 
judgment scale influence judgments and monitoring accu-
racy? (3) Does response format influence judgments? (4) 
Does calibration vary as a function of achievement level? (5) 
How does calibration inaccuracy affect the calculability and 
distribution characteristics of common calibration measures? 
(6) Do judgment scale and response format affect calibra-
tion measures in pre- and in postdiction? (7) Do calibration 
measures represent the same construct? Considering these 
questions may help researchers and practitioners to under-
stand monitoring processes, to plan studies or evaluations, 
and to compare and integrate the literature in the field.

2  Methods

2.1  Participants and procedure

The sample consisted of 109 seventh-grade students (58% 
female students, mean age 148.7  months (SD = 4.7)), 
enrolled in five classes in the higher educational track 
(Gymnasium) of one school located in Germany. Research 
assistants administered instruments during two consecutive 
instruction periods (approximately 90 min) in the class-
room. Within each class, research assistants assigned stu-
dents randomly to one of four groups. Although the same 

mathematical tasks were administered in all groups, they 
differed with regard to solution formats (open-ended vs. 
multiple-choice, varied within each group) and judgment 
formats (Likert scale vs. visual analogue scale, varied 
between groups).

2.2  Instruments

Mathematics performance: The performance test consisted 
of 20 mathematical problems and was developed by the 
authors. The problems were based on the joint curricu-
lum for secondary schools. The test contained 10 algebraic 
problems (terms and equations) and 10 word problems. Two 
examples are presented in the following. Algebraic prob-
lem: “− 2× = 3, × = ”; Word problem: “Marlene loves playing 
computer games. On Monday, she played for 2 h; on Tues-
day, she played 1 h less. On Wednesday, she played twice 
as much as she played on Monday and Tuesday together. 
How many hours did she play overall?” Each student had 
to solve all 20 items, 10 of which were given in open- and 
10 in closed-response format. Missings or indecipherable 
solutions were coded as incorrect. Cronbach’s alpha of the 
performance test was .68, and the correlation with grades in 
mathematics amounted to r = − .61, indicating a sufficient 
criterion-based as well as curricular validity of the test.

Confidence ratings: Prediction was assessed by asking 
students to judge whether they would solve the problems 
correctly. Children were asked: “What do you think? Will 
you be able to solve the following problem?” Participants in 
two groups gave their ratings using either a 4-point Likert 
scale (LS) (no, surely not—likely not—likely yes—yes, most 
certainly) or using a visual analogue scale (VAS) with the 
poles “no, surely not” and “yes, most certainly”. Ratings 
on VAS were measured in millimeters and transformed to 
a scale from 0 to 100. Cronbach’s alphas for LS and VAS 
were .83 and .91, respectively. Postdictions were assessed 
immediately after having solved a problem. The questions 
were as follows: “What do you think? Did you solve the 
problem correctly?” As in the prediction situation, students 
delivered their ratings on a 4-point Likert scale (LS) (no, 
surely not—likely not—likely yes—yes, most certainly) or 
on a visual analogue scale (VAS) with the poles “no, surely 
not” and “yes, most certainly”. Ratings on VAS were meas-
ured in millimeters and transformed to a scale from 0 to 
100. Cronbach’s alphas for LS and VAS were .88 and .82, 
respectively.

Grades in Mathematics: To obtain an achievement indi-
cator that was independent of our metacognitive moni-
toring assessment, we asked students to provide for their 
grade in mathematics as stated in their last biennual report. 
In Germany, grades range from 1 to 6, with 1 indicating 
a very good achievement, and 6 indicating an insufficient 
achievement.
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2.3  Design and analysis

The experimental design included two between-subject 
conditions (judgment scale and test configuration) and two 
within-subject conditions (item set and response format). 
Judgments of two subgroups were based on a Likert scale, 
and those of the other two groups on a visual analogue scale 
(judgment scale). Groups judging on the same scale either 
solved item set 1 in a closed-response format and item set 
2 in an open-response format, or vice versa (test configura-
tion; Table 3). 

Accordingly, all students judged the same two sets of 
problems either as closed-response or as open-response 
problems (within-group variation). Thus, whereas between-
subject comparisons could assess the effects of different 
judgments scales, within-subject comparisons could reveal 
the effects of response format in different item sets. Finally, 
the interaction of test configuration and item set could iden-
tify possible effects of response format in the same item set.

To test the assumed effects of the conditions simultane-
ously, we used two- and three-way ANOVAs with judgment 
scale, test-configuration, and/or item set as independent vari-
ables and performance, judgment, or calibration measure 
as dependent variables. Power analyses with GPower (Faul 
et al. 2007) revealed a power of .84 for between comparisons 
and .99 for within comparisons as well as the interaction 
of between and within factors for a sample size of 109 and 
medium effect sizes (f = .25; η2 = .06). For large effect sizes 
(f = .40; η2 = .14), power was .99 for all comparisons. The 
alpha-level used for these analyses was p < .05. Thus, for all 
comparisons of interest, there was more than adequate power 
to detect medium effect sizes.

2.4  Data preparation and analysis

To assess the calibration of judgments, we related prospec-
tive and retrospective judgments and performance. Since 
performance and judgments were assessed on different scale 
levels (continuous level for pre- and postdictions and cat-
egorical level for performance), we decided to dichotomize 
the judgments (see Sect. 1.3.2). We pooled two categories 
of the Likert scale (“no, surely not” and “likely not” means 
“no” resp. “0”, (“likely yes” and “yes, most certainly” mean 

“yes” resp. “1”). Similarly, we bisected the visual analogue 
scale at 50 mm (judgments below mean “no” resp. “0”, 
judgments above “yes” resp. “1”). To calculate calibration 
measures, we integrated both dichotomous measures in 2 × 2 
contingency tables for pre- and postdictions. Omitted predic-
tions (0.6%) and postdictions (6.8%) were coded as missing 
values. Items with missing pre- or postdiction judgments did 
not contribute to the 2 × 2 contingency table.

3  Results

3.1  Effects of response format on performance

In order to test the effects of response format on perfor-
mance, a 2 × 2 × 2 ANOVA (with the sum of correctly solved 
problems as dependent and response format, configuration, 
and judgment scale as independent variables) was con-
ducted. Judgment scale (F(1, 105) = 0.74, p = .393, η2 = .01) 
and configuration (F(1, 105) = 1.64, p = .203, η2 = .02) did 
not show any impact on performance. The effect of item set 
was also not substantial (F(1, 105) = 5.34, p = .061, η2 = .03). 
However, the interaction between item set and configura-
tion was significant (F(1, 105) = 69.26, p < .001, η2 = .40). 
Thus, the tests were equally difficult, no matter which judg-
ment scale was rated. Given that test configurations were not 
significantly different, the allocation of items and response 
formats can be regarded as balanced. As expected, open-
response items (set 2 in configuration A and set 1 in con-
figuration B) were more difficult than closed-response items 
(see Fig. 1).

3.2  Effects of judgment scale on judgments

To examine the effects of judgment scale on prediction 
and postdiction judgments, judgments on closed- vs. open-
response format (that is, the interaction between item set and 
configuration) were compared for Likert-scaled judgments 
and for visual-analogue-scaled judgments using two 2 × 2 
ANOVAs.

For Likert scales, no differences in the prediction rat-
ings for open and for closed items were found (interaction 
item set × configuration; F(1, 55) = 1.05, p = .310, η2 = .02). 

Table 3  Design of the study

n sample size

Test con-
figuration

Performance response format

Closed response Open response n

Judgment scale  Likert scale   A Item set 1 Item set 2 25
  B Item set 2 Item set 1 28

 Visual analogue scale   A Item set 1 Item set 2 29
  B Item set 2 Item set 1 27
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In contrast, students who rated their confidence on a visual 
analogue scale revealed different judgments for open and 
closed items, reporting less confidence for the open than 
for the closed items (interaction item set × configuration; 
F(1, 50) = 7.78, p = .007, η2 = .14). Apparently, students used 
the fine-grained graduations of the visual analogue scale 
and, thus, discerned between response formats, whereas the 
4-point Likert scale was not fine-grained enough to capture 
potential differences in confidence ratings.

In contrast to prediction, in postdiction students discrimi-
nated between response formats not only in visual analogue 
scaled judgments (interaction item set × configuration; F(1, 
50) = 36.99, p < .001, η2 = .43) but also in Likert-scaled judg-
ments (interaction item set × configuration; F(1, 55) = 36.58, 
p < .001, η2 = .40). For both types of judgments, confidence 
in open-response problems was lower than for closed-
response problems. To compare pre- and postdictive con-
fidence judgments, paired-samples t-tests were computed. 
In both judgment scale conditions, confidence judgments 
decreased from pre- to postdiction to a similar degree: Likert 
scale t(55) = 7.56, p < .001, d = 1.04; visual analogue scale 
t(51) = 7.61, p < .001, d = 0.94.

3.3  Calibration

To calculate commonly used calibration measures that draw 
on the 2 × 2 contingency table, we dichotomized pre- and 
postdiction judgments in the way described above. Tables 4 
and 5 show mean frequencies of prediction and postdiction 
judgments, as well as performance scores. Regarding predic-
tion (cf. Table 4), the majority of judgments is located in cell 
A (47%). Cell B contained 37% of predictions, indicating 
overconfident judgments. By contrast, judgments predict-
ing failure were much more uncommon. Only in 11% of 
judgments failure was predicted correctly (Cell D). Cell C, 
indicating underconfidence, contained only 5% of the judg-
ments and thus constituted the most infrequent category.

A comparison of Tables 4 and 5 reveals that the column 
marginals differ slightly. This is due to different rates of 
omitted pre- (0.6%) and postdictions (6.8%). Whereas the 
rank order of cell frequencies in postdiction remained con-
stant, the relative frequency decreased in cell B (erroneously 
judged as correct, though wrong) and increased in cell D 
(accurately judged as wrong).

Paired-samples t-tests were used to compare pre- and 
postdiction contingency tables. To control for the differing 
total frequency of judged items, relative frequencies were 
compared. In cells A, B, and D significant changes occurred: 
t(108) = 3.82, p < .001, d = 0.20 (A); t(108) = − 10.13, 
p < .001, d = − 0.94 (B); t(108) = 7.69, p < .001, d = 0.79 (D). 
In Cell C, no change was found: t(108) = − 0.43, p = .671, 
d = − 0.05. The shift in cells B and D led to a closer cor-
respondence between judgment and performance. How-
ever, students were still overconfident in their postdiction 
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Fig. 1  Mean differences between groups and conditions

Table 4  2 × 2 contingency table for predictions

Performance

Correct Incorrect Row marginals

Prediction judgment
 Correct 9.32 (47%) 7.39 (37%) 16.71 (84%)
 Incorrect 0.99 (5%) 2.18 (11%) 3.17 (16%)

Column marginals 10.31 (52%) 9.57 (48%) 19.88

Table 5  2 × 2 contingency table for postdictions

Performance

Correct Incorrect Row marginals

Postdiction judgment
 Correct 9.39 (50%) 4.28 (23%) 13.67 (73%)
 Incorrect 0.87 (5%) 4.10 (22%) 4.94 (27%)

Column marginals 10.27 (55%) 8.38 (45%) 18.64
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judgments (73% solution judged as correct vs. merely 55% 
of the solutions actually correct).

3.4  Effects of judgment scale and response format 
on calibration

As expected, the actual performance score was affected by 
response format, whereas the scale of prediction judgments 
did not seem to be relevant for performance. To test the 
pattern of effects for predicted performance, a 2 × 2 × 2 
ANOVA (independent factors: judgment scale, configura-
tion, item set) was calculated, with the row marginal A + B 
(sum of problems judged as solvable) as dependent variable.

Judgment scale (F(1, 105) = 0.35, p = .558, η2 = .00), 
configuration (F(1, 105) = 3.51, p = .064, η2 = .03) and item 
set (F(1, 105) = 0.09, p = .760, η2 = .00) did not signifi-
cantly affect students’ “correct” judgments. The interaction 
between item set and configuration was also not significant, 
F(1, 105) = 2.38, p = .126, η2 = .02. Thus, students did not 
align their prospective “correct” judgments on varying levels 
of difficulty. Rather, they judged open- as well as closed-
response items overly optimistically, about to the same 
degree (see Fig. 1).

An analogous 2 × 2 × 2 ANOVA was computed for 
the retrospective “correct” judgments. Effects of judg-
ment scale (F(1, 105) = 0.00, p = .983, η2 = .00), configu-
ration (F(1, 105) = 0.35, p = .554, η2 = .00), and item set 
(F(1, 105) = 2.30, p = .132, η2 =.02) remained nonsignificant. 
However, the interaction between item set and configuration 
reached significance (F(1, 105) = 34.68, p < .001, η2 = .25). 
Thus, in contrast to prospective judgments, students were 
able to consider the varying levels of difficulty and judged 
their performance retrospectively in closed-response items 
more optimistically than in open-response items (see Fig. 1).

3.5  Calibration and achievement level

The 2 × 2 contingency tables indicate overconfidence for 
both predictions (Table 4) and postdictions (Table 5). Bias, 
that is, mean difference between “correct” judgments (cells 
A + B) and correct solutions (cells A + C), accounted for 
6.4 items in prediction (SD = 4.4, range = − 7–16) and 3.4 
items in postdiction (SD = 3.0, range = − 5–13), respec-
tively. The decrease from pre- to postdiction was signifi-
cant, (t(108) = 7.33, p < .001, d = − 0.72), indicating a trend 
to more realistic judgments. Nonetheless, 84.4% of the 
students still overrated their performance on postdictions 
(predictions: 90.8%).

To explore the relation between bias and achievement 
level, we correlated the absolute values of bias scores and 
grades in mathematics. Grade and prediction bias were sub-
stantially and significantly correlated (r = .426, p < .001). 
The lower the achievement level of a student, the more 

pronounced was his or her prospective bias. For postdictions, 
there was no such relationship (r = .115, p = .234).

For a more detailed understanding of this finding, we 
inspected the degree of bias in different achievement groups. 
For this purpose, we split the sample by achievement level, 
using students’ grades in mathematics as criterion variable. 
While there was no single student with a grade of 6, there 
were 5 students with a grade of 5, and 15 students with 
a grade of 4. We pooled these low achievers into a com-
mon group (grades 4 and 5). The resulting four achieve-
ment groups differed regarding actual performance scores 
(F(3, 105) = 19.78, p < .001, η2 = .36) and mean postdic-
tion scores (F(1, 103) = 10.61, p < .001, η2 = .23). However, 
there was no difference between the groups regarding the 
mean prediction score, (F(1, 103) = 1.37, p = .256, η2 = .04). 
Accordingly, there was a significant effect of achieve-
ment group on prediction bias (F(1, 103) = 6.12, p < .001, 
η2 = .15), but not on postdiction bias (F(1, 103) = 0.28, 
p = .840, η2 = .01).

As can be seen in Fig.  2, the predicted scores were 
approximately equal in all four achievement groups, though 
the actual scores differed across groups. Thus, prospective 
overconfidence increased with decreasing achievement 
level. The degree of retrospective overconfidence did not 
vary as a function of achievement level. Although the post-
dicted scores remained below the predicted scores, they still 
reflected overconfidence.

3.6  Calculability and distribution characteristics 
of calibration measures

Table 6 shows the descriptive statistics of calculated meas-
ures. Due to empty cells, gamma could not be computed 
for 26% (prediction) and 9% (postdiction) of the sample, 
with 46% (prediction) and 51% (postdiction) of scores 
showing a boundary value of − 1 or 1. In prediction, this 
is an effect of empty cells C and D. Students with miss-
ing gamma scores showed higher performance (column 
marginal A + C; t(107) = 2.39; p = .019; d = 0.52) and 
better grades in mathematics (t(107) = − 2.09; p = .039; 
d = − 0.46). For postdiction, this pattern was similar in that 
performance (t(107) = 3.74; p < .001; d = 1.30) and grades 
(t(107) = − 3.10; p < .001; d = − 1.12) was better for students 
with a missing gamma. Thus, missing values were not dis-
tributed at random. Gamma seemed to be systematically 
biased.

Measures of sensitivity indicated a high percentage of 
ceiling effects, with 53% (prediction) and 51% (postdic-
tion) of the sample reaching the maximal value of 1. In the 
case of specificity, a bottom effect was found, especially for 
predictions, with 32% of the scores reaching the minimal 
value of 0. This tendency was also found—though to a lesser 
extent—for postdictions (10%).
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To investigate changes between pre- and postdiction, 
paired-samples t-tests were calculated for various meas-
ures of metacognitive monitoring (see Table  2). AAI 
(transformed in absolute values), HAC, GMA and SPE dif-
fered from pre- to posttest (t(108) = 9.25, p < .001 d = 0.96; 
t(108) = − 10.88, p < .001, d = 1.04; t(108) = − 4.18, 

p < .001, d = 0.71; t(108− 8.29, p < .001 d = 0.94, respec-
tively), indicating an increasing accuracy from pre- to 
posttest. For SEN, no significant change could be found 
(t(108) = 0.31, p = .760). Given that DIS is standardized 
with M = 0 in pre- and in postdiction, a comparison was 
not possible.

Fig. 2  Actual, predicted, and postdicted scores, as a function of achievement group

Table 6  Descriptive results for 
the various calibration measures

N sample of calculable measures, Min minimal score, Max maximal score, M mean, SD standard deviation, 
MD median, MO modus

N Min Max M SD MD MO

Prediction
 AAI 109 − 16 7 − 6.40 4.40 − 6.00 − 6.00
 HAC 109 − 0.6 0.8 0.16 0.31 0.20 0.20
 GMA 81 − 1 1 0.48 0.62 0.64 1.00
 DIS 109 − 3.44 2.91 0.000 0.98 − 0.16 − 0.36
 SEN 109 0.33 1 0.91 0.14 1.00 1.00
 SPE 109 0 0.82 0.23 0.22 0.20 0.00

Postdiction
 AAI 109 − 13 5 − 3.40 3.04 − 4.00 − 4.00
 HAC 109 − 0.3 0.9 0.45 0.24 0.50 0.50
 GMA 99 − 1 1 0.82 0.29 0.97 1.00
 DIS 109 − 2.75 2.13 0.00 0.95 0.06 − 1.06
 SEN 109 0.29 1 0.90 0.14 1.00 1.00
 SPE 109 0 1 0.45 0.26 0.50 0.50
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3.7  Effects of judgment scale and response format 
on calibration measures

In order to test the effects of judgment scale and response 
format on calibration measures, we conducted 2 × 2 × 
2 ANOVAs (judgment scale, configuration, response for-
mat). See Table 7 for a summary of results.

For predictions, we found two significant interactions 
between item set and configuration, indicating sensitivity 
for response format. The values of AAI were higher for 
the open- than for the closed-response version of the prob-
lems (F(1, 105) = 22.80, p < .001, η2 = .18), indicating that 
open items led to a higher degree of bias. In line with this, 
the significant interaction between item set and configura-
tion interaction observed for the HAC (F(1, 105) = 12.28, 
p = .001, η2 = .11) consistently showed less accuracy for 
open items.

Additionally, analyses carried out for the AAI, HAC, 
and DIS indices indicated a small but significant effect 
of scale. The Likert scale led to more bias in the AAI 
(F(1, 105) = 3.95, p = .049, η2 = .04), yielded a lower cor-
respondence between judgment and performance in the 
HAC (F(1, 105) = 6.97, p = .010, η2 = .06) and resulted in 
a smaller hit rate for the DIS (F(1, 105) = 7.52, p = .007, 
η2 = .07).

For postdictions, a significant item set × configuration 
interaction was found for AAI (F(1, 105) = 7.36, p = .008, 
η2 = .07) and HAC (F(1, 105) = 10.09, p = .002, η2 = .09). 
The pattern of findings was roughly comparable to that of 
the predictions, though with reduced effect size. There were 
no significant differences between judgment scales.

3.8  Relations between calibration measures

The correlational pattern of measures shown in Table 8 
indicates close relations among the calibration constructs 
assessing absolute accuracy (AAI and HAC, r = − .82 and 
r = − .70 for pre- and postdictions, respectively), and relative 
accuracy (GMA and DIS, r = .78 and r = − .71 for pre- and 
postdictions, respectively). In comparison, the correlation 
between sensitivity and specificity is lower but still substan-
tial (r = − .52, Kendall’s tau = − .42, p < .001 for predictions 
and r = − 55, Kendall’s tau = − .43, p < .001 for postdictions). 
The moderate but substantial correlations between meas-
ures of absolute, relative, and diagnostic accuracy point to 
common as well as unique psychological processes affecting 
monitoring.

The correlations between pre- and postdictions are either 
moderate (absolute accuracy), small (diagnostic accuracy), 
or nonsignificant (relative accuracy). This pattern of a rather 
low correspondence between pre- and postdictions even in 
the same measures points to different calibration processes.

4  Discussion

Regardless of the increasing number of studies that have 
shown the importance of metacognitive monitoring in 
mathematics education (see Baten et al. 2017 for a current 
review), there is only little empirical research on meth-
odological issues in this domain. However, findings—pre-
dominantly from other domains—reveal that a student’s 
monitoring skill is not only a function of ability but also 
of measurement choices. The experimental design of the 
present study permits researchers to investigate systemati-
cally the consequences of decisions that researchers and 
practitioners have to make before they measure students’ 
monitoring skills.

First, we examined the accuracy of confidence judg-
ments and their variation due to the resolution of judgment 
scale (Likert scale vs. visual analogue scale), the type of 
task response (open-ended vs. closed response), the phase 
of problem solving (pre- vs. postdiction), and the students’ 
ability levels. Second, we analyzed calibration measures 
comparing indicators of absolute, relative, and diagnostic 
accuracy. We focused on issues that are especially relevant 
for research and practice in educational contexts, namely 
the susceptibility of the measures to boundary values 
(e.g., as a consequence of overconfidence), the impact of 
response format and judgment scaling on accuracy esti-
mates, and the construct validity of different calibration 
measures.

4.1  Confidence judgments

Concerning confidence judgments, we first examined the 
impact of scaling. As expected, problems in the open-
response condition were more difficult than in the closed-
response condition. Students may have used the closed 
response format for lucky guesses or for a comparison of 
their own solution with the solution alternatives. Whereas 
judgments on the visual analogue scale mapped the dif-
fering difficulties in pre- as well as in postdictions, Lik-
ert-scaled judgments reflected them only in postdiction. 
Consequently, students are aware of differences in diffi-
culty caused by response format, but a 4-point Likert scale 
seems to be too imprecise to map these differences, at least 
for performance prediction. Thus, researchers and practi-
tioners interested in confidence judgments are advised to 
use visual analogues scales or at least finer grained Likert 
scales.

Second, we examined the overall accuracy of confi-
dence judgments and effects of phase of problem solving. 
Although mean performance amounted to 52% correct 
solutions (ranging from 15 to 90%), judgments indicating 
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Table 7  Results of 2 × 2 × 2 
ANOVAs

df degree of freedom; significant effects are in bold

Measure Factor Error df df F p η2

Prediction AAI Item set 105 1 2.36 .128 .02
Scale 105 1 3.95 .049 .04
Configuration 105 1 2.96 .088 .03
Item set × configuration 105 1 22.80 <.001 .18

HAC Item set 105 1 0.04 .844 .00
Scale 105 1 6.97 .010 .06
Configuration 105 1 1.90 .171 .03
Item set × configuration 105 1 12.28 .001 .11

GMA Item set 105 1 4.15 .046 .07
Scale 105 1 1.31 .257 .02
Configuration 105 1 0.78 .382 .01
Item set × configuration 105 1 2.73 .104 .05

DIS Item set 105 1 0.00 .953 .00
Scale 105 1 7.52 .007 .07
Configuration 105 1 0.12 .725 .01
Item set × configuration 105 1 2.76 .100 .03

SEN Item set 105 1 0.59 .445 .01
Scale 105 1 1.56 .215 .02
Configuration 105 1 2.63 .108 .03
Item set × configuration 105 1 1.47 .229 .01

SPE Item set 105 1 0.25 .616 .00
Scale 105 1 2.51 .116 .02
Configuration 105 1 2.18 .143 .02
Item set × configuration 105 1 0.96 .328 .01

Postdiction AAI Item set 105 1 0.23 .635 .00
Scale 105 1 0.56 .456 .01
Configuration 105 1 0.96 .331 .01
Item set × configuration 105 1 7.36 .008 .07

HAC Item set 105 1 0.47 .497 .00
Scale 105 1 0.55 .460 .01
Configuration 105 1 2.14 .147 .02
Item set × configuration 105 1 10.09 .002 .09

GMA Item set 105 1 0.36 .552 .01
Scale 105 1 0.89 .349 .01
Configuration 105 1 0.00 .970 .00
Item set × configuration 105 1 0.73 .397 .01

DIS Item set 105 1 0.00 .990 .00
Scale 105 1 0.50 .483 .01
Configuration 105 1 0.61 .473 .01
Item set × configuration 105 1 0.70 .792 .00

SEN Item set 105 1 0.37 .547 .00
Scale 105 1 0.05 .819 .00
Configuration 105 1 0.27 .603 .00
Item set × configuration 105 1 0.74 .391 .01

SPE Item set 105 1 1.35 .247 .01
Scale 105 1 0.87 .354 .01
Configuration 105 1 0.32 .574 .00
Item set × configuration 105 1 0.29 .590 .00
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incorrect responses (cells C and D in the 2 × 2 contin-
gency table) were scarce. For the majority of problems, 
students were confident in their ability to find or to have 
found the correct solution (cells A and B), confirming the 
pattern reported by Rutherford (2017). Moreover, students’ 
overconfidence was stronger for prediction than for post-
diction judgments, in which students did also in part align 
their overly optimistic assessment with the varying dif-
ficulty levels of open- and closed-response problems. The 
higher overall accuracy of retrospective judgments is in 
accord with the findings by Bol and Hacker (2012) and 
seems to be a consequence of intensive task experience 
(cf. Efklides 2008; Pressley and Ghatala 1990). Predic-
tions had to be given after a brief exposure to the task, 
being based on a very short assessment of task require-
ments and a brief learning experience, and thereby pos-
sibly stimulating overly optimistic views regarding the 
outcome. Although judgments became more realistic and 
less overconfident from pre- to postdiction, it is impor-
tant to note that overconfidence was dominating in both 
phases of the problem-solving process, confirming a robust 
phenomenon observed across various subject areas (e.g., 
Hacker et  al. 2008; Nelson 1999). One implication of 
these findings is that seventh-graders experience problems 
distinguishing between difficult and easy tasks, or more 
exactly, identifying mathematics problems that they cannot 
solve. Therefore, educators should help students to acquire 
metacognitive knowledge regarding key task features and 
to implement monitoring and evaluation strategies using 
a variety of mathematics problems. To do so, educators 
should point out important task features as well as encour-
age students to check their understanding of a task before 
starting to work on it, and to evaluate the plausibility of 
local and final results.

Third, we examined the relationship between judgment 
accuracy and achievement level. In our sample, all achieve-
ment groups were overconfident. Predicted scores in the 
test were comparable across achievement groups, even 
though actual scores differed considerably. This pattern led 
to increasing overconfidence with decreasing achievement 
level. For postdictions, in contrast, overconfidence was at a 

comparable level for the four achievement groups and was 
generally much lower than for prediction judgments. Inter-
estingly, lower-achieving students were able to evaluate their 
task performance quite accurately, thus showing about the 
same level of monitoring accuracy as higher-achieving stu-
dents. These findings are only partly in accordance with the 
well-known impact of achievement level on confidence, indi-
cating that higher-achieving students tend to show high accu-
racy but underconfidence, whereas lower-achieving students 
tend to show low accuracy but overconfidence (see Hacker 
et al. 2008). That is, at least for postdiction judgments, the 
“unskilled and unaware” effect (Kruger and Dunning 1999) 
may not be generalized to mathematics education. As our 
study indicates that even comparatively low-achieving stu-
dents are able to evaluate their performance quite appropri-
ately, we recommend encouraging students to evaluate their 
task solutions on a regular basis. This encouragement may 
help students to increase knowledge about task features as 
well as about their own strengths and weaknesses.

4.2  Accuracy measures

We compared indicators of absolute, relative, and diag-
nostic accuracy that are typically derived from the 2 × 2 
contingency table (Schraw 2009). First, we examined the 
frequency of boundary values in an ecologically valid math-
ematics education context and their impact on calibration 
measures. Whereas measures of absolute accuracy were 
robust, gamma and the measures of diagnostic accuracy 
were sincerely biased. The main reason for boundary values 
(i.e., 0 or 1) and empty cells in the contingency table was the 
widespread overconfidence in our sample. As reported in the 
previous section, overconfidence seems to be a general judg-
ment bias (e.g., see Rutherford 2017 for a similar result). 
Empty cells led to missing gamma values in up to one of four 
students, affecting particularly the higher achieving students. 
Thus, analyses in educational contexts with gamma may be 
biased. In the case of sensitivity and specificity, empty cells 
resulted for up to one of two students in boundary values, 
probably compromising the reliability of the measures. In 
practice, these findings indicate that gamma, sensitivity, and 

Table 8  Correlations among 
calibration measures

Above diagonal: postdiction scores; below diagonal: prediction scores. Diagonal: prediction with postdic-
tion correlation (bold); * p < .05; ** p < .01

AAI HAC GMA DIS SEN SPE

AAI .46** − .70** .17 − .09 .38** − 47.**
HAC − .82** .53** .40** .47** .17 .27**
GMA .12 .25* − .03 .71** .53** .14
DIS − .14 .47** .78** .14 .48** .48**
SEN .42** .12 .47** .49** .28** − .55**
SPE − .56** .34** .40** .49** − .52** .30**
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specificity should be interpreted with caution and may not 
be suitable for the assessment of metacognitive monitoring 
in natural educational contexts.

Second, we explored whether effects of response format 
and judgment scale on the cells of the 2 × 2 contingency 
table also affected calibration measures. We found that 
response format affected measures of absolute accuracy, 
with closed-response items eliciting more accurate moni-
toring than open-response format. Although this finding con-
firms the results of Pajares and Miller (1997) in the domain 
of mathematics, it is not in accord with the results reported 
by Schwartz and Metcalfe (1994) for metamemory. The 
decision to use an open- or closed-response format, which 
in research reports often gets lost in the shuffle of method 
sections, accounts for up to 17.8% of variance in absolute 
accuracy measures. The type of judgment scale affected 
prediction accuracy in absolute measures as well as in dis-
crimination indices. Even after dichotomization, visual ana-
logue scales led to a more accurate calibration, accounting 
for up to 6.7% of variance in prediction accuracy. In other 
words, ceteris paribus, response format as well as judgment 
scale impact calibration accuracy assessment substantially, 
especially in the case of absolute calibration measures. 
Thus, for analyzing and integrating research on monitoring 
accuracy, the measures used to assess monitoring need to 
be considered.

Third, we examined interrelations between measures of 
absolute, relative, and diagnostic accuracy to assess their 
convergent validity. As a main result, we found that correla-
tions among measures reflecting the same type of accuracy 
were both statistically significant and substantial, whereas 
correlations among absolute, relative, and diagnostic accu-
racy scores were comparably low. Although this finding cor-
responds largely with the pattern reported by Schraw et al. 
(2014), our findings deviate from theirs to some extent. For 
instance, whereas Schraw and colleagues found that sen-
sitivity and specificity tended to be uncorrelated, this was 
not true for our study where these two aspects of diagnostic 
accuracy were substantially interrelated. Thus, we could 
not confirm the assumption that sensitivity and specificity 
measure two independent calibration phenomena. However, 
our data confirm the assumption of Schraw et al. (2014) that 
indicators of relative and absolute accuracy may assess the 
same latent construct, albeit the correlations in our sample 
are much more moderate than Schraw’s. A new aspect of our 
research concerns the rather modest correlations between 
the same accuracy measures assessed at different situations 
in the cognitive process (i.e., pre- vs. postdictions). With a 
few exceptions, these correlations were moderate to low, 
suggesting that different calibration processes took place in 
the two judgment conditions.

Given these findings on construct validity, we recommend 
that researchers should explicitly reference the selected 

accuracy construct. Furthermore, to improve the reliability 
of the measurement, we recommend computing and com-
paring at least two measures for each accuracy construct 
analyzed.

4.3  Limitations and directions for future research

Of course, the present study also suffers from some limita-
tions. A first limitation is related to the sample selection. 
Only a small sample of secondary school students was 
recruited, all students were seventh graders, and all students 
attended the higher educational track of the German school 
system. Thus, it remains questionable whether our findings 
are representative for this age group and can be generalized 
to students attending lower educational tracks. Furthermore, 
given that no standardized mathematics test was available 
for seventh-grade students, a self-constructed test had to 
be used. A final limitation concerns the confinement to the 
mathematical domain, which impedes the drawing of con-
clusions regarding other domains such as monitoring of text 
comprehension.

In order to explore the generalizability of our findings, it 
seems important to replicate the study with a larger, more 
representative sample, and to extend the study goals. For 
instance, different age groups and tasks from different 
domains (e.g., mathematics and reading) should be included 
in the design to explore the robustness of findings. In addi-
tion, longitudinal designs and more elaborated statistical 
analyses such as latent growth modeling seem recommend-
able, in order to investigate whether calibration accuracy is 
an important predictor of further performance development. 
Finally, the impact of variables such as intelligence, self-
concept, and motivation on calibration accuracy should be 
carefully assessed in future research. These variables may 
moderate calibration accuracy but may also be relevant when 
the goal is to change inappropriate metacognitive judgments.
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