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Abstract
Many studies provide insights into students’ conceptions of various linear algebra topics and difficulties they face with 
multiple modes of thinking needed for conceptualization. While it is important to understand students’ initial conceptions, 
students’ transfer of learning of these conceptions to subsequent courses can provide additional information to structure mean-
ingful curricular materials. This study explores physics students’ transfer of learning of eigenvalues and eigenvectors from 
prerequisite experiences to quantum mechanics. Data analysis focused on three task-based interviews with undergraduate 
students, observations of physics courses, and students’ course artifacts. Existing studies on students’ conceptions of linear 
algebra topics indicate the necessity of developing flexible shifts between different modes of thinking in order to grasp linear 
algebra. This study’s participants, who had initial learning experiences of linear algebra, were also observed to struggle with 
such shifts prior to quantum courses. It seems that various contexts in quantum courses, and explicit instructional methods, 
provided opportunities for students to enhance this initial learning of eigenvalues and eigenvectors. In particular, the explicit 
reasoning of one of the quantum courses’ instructors concerning the choice of certain representations during problem solving 
in class, seemed to facilitate students’ construction of similarities, thus providing evidence for actor-oriented transfer. Results 
of this study align with goals for recently developed instructional materials and interventions that emphasize opportunities 
for students to inquire and connect multiple modes of thinking.

Keywords Actor-oriented transfer · Eigentheory · Linear algebra · Transfer of learning

1 Introduction

There is a rich body of research from various fields including 
education and psychology on transfer of learning with a his-
tory of over 100 years. One key reason for this research is its 
direct relation to an important goal of education: providing 
learning experiences that can be generalized and used by 
the learner outside the initial learning situation (Bransford 
et al. 1999).

The generalization of knowledge and understanding of 
how to enhance transfer are essential in all educational set-
tings as many course designs rely on prerequisite knowledge. 
For example, students are required to take a linear algebra 
course prior to studying quantum mechanics. Eigentheory is 
important prerequisite knowledge for quantum theory. The 

study discussed here focuses on this area and addresses the 
following question: what do physics students transfer from 
various learning experiences of eigenvalues and eigenvec-
tors to interviews?

There are various theoretical frameworks for exploring 
transfer of learning of knowledge. In this qualitative study, 
transfer of learning was explored by utilizing one of the 
contemporary frameworks, namely, actor-oriented transfer 
(AOT) (Lobato 2003). By focusing on participants’ perspec-
tives, rather than those of experts, the AOT helped explore 
participants’ construction of similarities between various 
learning experiences during interviews.

2  Background and theoretical framing

2.1  Conception of linear algebra topics

Students’ conceptualization and sources of difficul-
ties in linear algebra topics, including eigenvalues and 
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eigenvectors, are captured in many existing studies. Dorier 
and Sierpinska (2001) describe two stages in construction 
of concepts in linear algebra. The first stage, “recognition 
of similarities between objects, tools and methods brings 
the unifying and generalizing concept into being” and the 
other stage is “making the unifying and generalizing con-
cept explicit” (p. 257), in order to form an object through 
restructuring of prior knowledge. Sierpinska (2000) fur-
ther describes this construction through three modes of 
thinking and highlights the need of flexible shifts between 
them for construction.

Sierpinska (2000) introduces three modes of thinking: 
synthetic-geometric, analytic-arithmetic, and analytic-struc-
tural and states that they are “equally useful, each in its own 
context, and for specific purposes, and especially when they 
are in interaction” (p. 233). The synthetic-geometric mode 
of thinking uses geometrical language and descriptions to 
visualize mathematical objects. For example, a synthetic-
geometric mode of thinking of an eigenvalue could involve 
treating it as a value describing how much a vector stretches 
or shrinks under a certain transformation. And, in this mode 
of thinking, an eigenvector could be viewed as a vector 
which is not moving when a transformation is applied. In this 
mode of thinking both eigenvalue and eigenvector descrip-
tions use geometrical language. The analytic-arithmetic 
mode of thinking refers to using the language of arithmetic, 
descriptions to carry out certain computations, and linking 
mathematical objects to a formula. Eigenvalues in this mode 
of thinking can be described computationally as the values 
that satisfy the characteristic equation, det (A − �I) = 0 and 
eigenvectors then satisfy the eigenvalue equation, Av⃗ = 𝜆v⃗ . 
In other words, analytic-arithmetic modes of thinking for 
both eigenvalues and eigenvectors invoke the use of arith-
metic procedures with given formulas.

The analytic-structural mode of thinking uses abstract 
language to indicate the underlying structures of a math-
ematical object through its properties. This mode of think-
ing could describe an eigenvector as a special non-zero vec-
tor that gets mapped into a scalar multiple of itself under 
a linear operator (which extends to vector spaces beyond 
Rn ). In other words, it is affected only up to scaling by this 
operator. In this mode of thinking, an eigenvalue could be 
viewed as a particular scalar that describes the ‘impact’ of 
the linear operator on the associated eigenvector. Sierpinska 
(2000) states that the main difference between the synthetic 
and analytic modes of thinking concerning a mathematical 
object centers on how it is treated by “the mind”. In the 
synthetic case, the object is “given directly to the mind” (p. 
233) whereas in analytic modes the object is constructed 
using its properties, “given indirectly” (p. 233). Sierpinska 
also states that the synthetic mode is an indication of more 
practical thinking and the analytic mode is an indication of 
a theoretical one.

Sierpinska’s (2000) study results show students’ difficul-
ties in shifts between these three modes of thinking. Stu-
dents had challenges “going beyond the appearance of the 
graphical and dynamic representations” (Dorier and Sier-
pinska 2001, p. 263) that they observed and manipulated 
in activities. Students based their thinking on prototypical 
examples (i.e., practical thinking) rather than using defini-
tions from the analytic mode. Similar results on students’ 
difficulties with different modes of thinking and representa-
tions are reported on the topic of eigenvalues and eigenvec-
tors (e.g., Larson and Zandieh 2013; Stewart and Thomas 
2010). Based on the studies they conducted, Stewart and 
Thomas (2009) report that students could not reason about 
relationships between a diagram and an eigenvector, lack-
ing a geometric interpretation, but they seemed confident 
with algebraic and matrix procedures. Thomas and Stewart 
(2011) state that students employed symbolic manipulation 
of algebraic representation, which in turn did not help them 
to develop formal, conceptual thinking concerning these 
concepts.

Students’ practical or intuitive thinking, nevertheless, 
can help in developing instructional tools to move students’ 
thinking forward to an abstraction. Wawro et al. (2011), for 
example, showed that students’ intuitive ideas about span 
and linear independence could be leveraged to build formal 
thinking. Similarly, in studies regarding students’ interpre-
tation of the equation Ax⃗ = 𝜆x⃗ prior to studying eigenthe-
ory, students were observed to use symbolic, numeric and 
geometric interpretations to make sense of this equation. 
Students employed these interpretations within their exist-
ing three views: a linear combinations view, a system of 
equations view, and a linear transformation view (Larson 
and Zandieh 2013). Researchers (e.g., Zandieh et al. 2017) 
then developed an instructional sequence that focused on 
multiple interpretations of eigenvalues and eigenvectors, to 
assist students’ shifting among them. (For more examples 
of instructional materials, see http://iola.math.vt.edu/ and 
Stewart et al. 2018.)

Students from various disciplines are required to take lin-
ear algebra as a prerequisite course. Understanding of linear 
algebra plays an important role in developing new concepts 
in subsequent courses. Thus, it is important to know stu-
dents’ conceptions and difficulties with linear algebra. How-
ever, focusing only on whether a student has (or does not 
have) particular content knowledge is not a sufficient model 
for knowing what students can do and act on in a subsequent 
course. Investigation of students’ conceptions and processes 
in subsequent courses, with a framework that privileges the 
students’ perspective, could enhance the existing body of 
research in this area. There is a need to explore what stu-
dents do know when they enter a subsequent course, stu-
dents’ processes such as how they utilize and progress with 
such knowledge, and what pedagogies afford opportunities 
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for development of conceptions and processes. As discussed 
in the next section, transfer of learning frameworks, particu-
larly the contemporary ones, provide opportunities for such 
explorations.

2.2  Transfer and actor‑oriented transfer framework

Transfer of learning has traditionally been defined as the 
ability to apply knowledge learned in one context to new 
contexts (Mestre 2003). Earlier research studies utilizing this 
broad definition explored whether or not a learner transfers 
knowledge from one setting to another. Studies with tra-
ditional transfer research designs report conflicting results 
(summarized in Karakok 2009) and do not necessarily pro-
vide insights on the mechanisms of transfer. Given that in 
everyday experiences learners can perform successfully in 
new situations by finding similarities from previous situa-
tions, understanding how such ‘transfer’ happen needs fur-
ther exploration. The actor-oriented transfer (AOT) frame-
work (Lobato 2003) aims to address this need by leveraging 
the learners’ perspective.

The AOT views transfer as “the personal construction of 
relations of similarity between activities, or how ‘actors’ see 
situations as similar” (Lobato and Siebert 2002, p. 89). The 
main focus of this framework is the learner (actor) and how 
the learner sees the target situation in relation to the initial 
learning situation. Obtaining evidence for actor-oriented 
transfer differs from traditional transfer approaches. In tra-
ditional perspectives, successful application of knowledge on 
a transfer task after the initial one is considered as evidence. 
Meanwhile, in the AOT framework, regardless of successful 
performance, any influence of prior learning experiences is 
considered as evidence for transfer. More specifically, the 
AOT analysis focuses on participants’ processes, what they 
do and what they ‘use’ in target situations. In AOT studies, 
the evidence is gathered “by scrutinizing a given activity 
for any indication of influence from previous activities and 
by examining how people construe situations as similar” 
(p. 89).

One example provided by Lobato and colleagues is find-
ing the steepness of a wheelchair ramp (target task) after 
participants were introduced to finding the slope of a line 
(initial task). These tasks, according to experts (or research-
ers) share the same structural features and can be solved 
using a similar approach of rise over run. These tasks’ 
surface features (contexts) however are different. When 
Lobato and Siebert (2002) examined one student’s reason-
ing through such tasks, they observed that this student did 
not transfer (in the traditional sense) the slope formula (rise 
over run) from the initial learning. However, examination 
of the student’s reasoning on the wheelchair task revealed 
his progress that included identifying the related two quan-
tities (height and length) contributing to steepness and 

developing a multiplicative relationship between them, all of 
which were directly linked to finding the slope. Researchers 
then explored the student’s experience in a ten-day teaching 
intervention prior to an interview. They noticed the student 
was most probably using reasoning in the interview that he 
created for an in-class task. They postulated that the stu-
dent demonstrated transfer between these two situations by 
creating his own similarities between these two situations—
rather than what researchers expected the student to transfer. 
Examination of in-class activities together with the student’s 
reasoning process during the transfer task provided insight 
into the mechanisms (e.g., building similarities) of this par-
ticular student’s actor-oriented transfer.

The current study utilizes the AOT framework to under-
stand undergraduate physics students’ transfer of learn-
ing of eigenvalues and eigenvectors from various learning 
experiences to tasks in interviews. The AOT framework, 
in particular, provides a lens to gain insight into students’ 
construction of similarities between these learning expe-
riences. Students’ conceptions of and difficulties in linear 
algebra topics in general and eigenvalues and eigenvectors 
in particular are reported by other researchers, as noted in 
the previous section. In their description of two stages of 
construction of concepts in linear algebra (see Sect. 2.1), 
Dorier and Sierpinska (2001) refer to actions such as “rec-
ognition of similarities,” “making the unifying and gener-
alizing concept explicit,” and “reorganization” (p. 257) of 
prior knowledge. The AOT framework has the potential to 
unpack actions of recognition of similarities, making con-
nections, and reorganizing prerequisite knowledge from stu-
dents’ perspectives, by examining their processes in transfer 
tasks. This examination is particularly important as linear 
algebra serves as prerequisite to many other courses both 
in mathematics and other fields. Understanding students’ 
processes of building similarities (i.e., what they ‘see’ as 
similar) in learning experiences and what they choose to 
connect from learning experiences, could help us not only 
to build more student-oriented and student-related learning 
experiences but it would also help us to re-assess what is 
important in prerequisite learning experiences.

3  Methods

This section provides a brief outline of the setting, the data 
sources, and analysis. The study in this paper is from a larger 
phenomenological study that was designed to explore trans-
fer from students’ perspectives (Karakok 2009). A phenom-
enological study design was suitable for this investigation as 
it is “particularly effective at bringing to the fore the experi-
ences and perceptions of individuals from their own perspec-
tives, and, therefore, at challenging structural or normative 
assumptions” (Lester 1999, p. 1).
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Participants in the study were third year undergraduate 
students enrolled in third-year physics courses at a large, 
public university in the United States. The third-year physics 
courses considered in the study were Symmetries (S) during 
fall term, Quantum Measurements and Spin (QMS), Waves 
(W), and Central Forces (CF) during winter term. The study 
started at the beginning of the fall term with students who 
were in the Symmetries course and planned to take QMS, 
W, and CF courses in the winter term. Starting the study in 
fall provided the opportunity to interview students prior to 
their taking quantum courses (QMS, W, CF) in the winter 
term, and also to observe both fall and winter term physics 
courses. Prior to QMS, W, and CF, students were required to 
take a one-week linear algebra review course [referred to as 
Linear Algebra Week (LAW)] at the beginning of the winter 
term. The schedules of the courses and three interviews are 
summarized in Table 1.

The winter term started with reviewing prerequisite linear 
algebra topics in LAW that met for 7 h in total over a week. 
Some of the topics were matrix operations, determinants, 
symmetric matrices, linear transformations, eigenvalues and 
eigenvectors, properties of Hermitian matrices, and vector 
spaces. Students had two assignments and two quizzes this 
week. A pre-quiz was given on the first day and a post-quiz 
was given on the last day of LAW. These quizzes tested stu-
dents’ computational skills concerning matrix operations, 
determinants and eigenvalues and eigenvectors. Students 
were also asked to describe eigenvalues and eigenvectors 
for the purpose of this study.

After LAW, students took the QMS, W, and CF courses 
all of which focused on quantum theory and met for 7-h 
a week for 3  weeks. Topics discussed in these courses 
included postulates of quantum mechanics with demon-
strations for the simple spin ½ Stern-Gerlach experiment 
(QMS), Schrödinger’s equation (QMS), the terminology 
to describe waves in different contexts including electrical 
circuits, waves on ropes and the matter waves of quantum 
mechanics (W), central forces in classical mechanics, the 
separation of variables in Schrödinger’s equation and related 
equations (CF).

Professor Clay (pseudonym) taught the Symmetries 
in the fall term, LAW and CF courses, and two other 

professors taught the QMS and W courses in the winter 
term. Prof. Clay was one of the faculty who was involved 
in the redesign of these three junior level quantum courses 
and others that students were required to take before and 
after QMS, W, and CF.

12 students out of 20 volunteered in the fall term and 
seven of them completed all three interviews. In this paper, 
I discuss results of the larger study by providing examples 
from Gus’s and Milo’s (pseudonyms) data analysis. Gus, a 
junior engineering physics major, did not take any required 
linear algebra course as his engineering courses satisfied 
this requirement. Milo, a junior physics major, took two 
courses focusing on linear algebra topics. He took Math X 
prior to his junior year, and was also enrolled in Math Y, 
a linear algebra course, in the fall term. Math X covered 
many topics including complex numbers, matrices and lin-
ear systems, linear transformations, eigenvalue problems, 
infinite and power series, and convergence tests. Math Y 
was designed to be the first course in linear algebra and 
was a course required by many client disciplines, and was 
compulsory for mathematics majors. It covered matrix-
oriented topics including matrix operations, systems of 
linear equations, determinants, eigenvalues and eigenvec-
tors, and diagonalization.

Gus and Milo were chosen for this paper for the following 
reasons: (1) they had different prerequisite linear algebra 
experiences which exemplified the range of initial learning 
experiences of students in the QM courses; and (2) even 
though Gus did not have a traditional prerequisite linear 
algebra course, his case demonstrates compelling and some-
what similar AOT experiences to those of Milo.

Data sources were three audio- and video-recorded inter-
views, video recordings of the physics courses (S, LAW, 
QMS, W and CF), the researcher’s observation notes from 
these courses, and participants’ course artifacts. All inter-
views were semi-structured and task-based and were at most 
90 min. The interviews were transcribed in their entirety, 
serving as the main data source. In the first interview, stu-
dents were asked questions regarding their background 
knowledge of linear algebra topics including eigenvalue and 
eigenvector. In the second and third interviews, questions 
were mostly on eigenvalues and eigenvectors.

Table 1  Course and interview schedules

Fall term (September–December) Winter term (January–March) Spring term (April–June)

Observed courses Symmetries LAW (week 1) No course observation
QMS (weeks 2–4)
W (weeks 5–7)
CF (weeks 8–10)

Data Interview 1 (in November) Pre- and post-quizzes in LAW (week 1) Interview 3 (weeks 2 and 3)
Interview 2 (weeks 2 and 3)
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Methods of data analysis, as summarized in Fig. 1, were 
chosen to fit the phenomenological study design, in order 
to capture themes that emerged from data aiming to under-
stand the phenomenon of students’ transfer of learning. Spe-
cifically, analyses in this study design focused on capturing 
“descriptions of what [students] experience and how it is 
that they experience what they experience” (Patton 2002, 
p. 107), which align with the theoretical perspective of the 
AOT framework that emphasizes “the personal construction 
of relations of similarity between activities” and how stu-
dents “see situations as similar” (Lobato and Siebert 2002, 
p. 89).

Data analysis was an ongoing process in which a the-
matic analysis method (Auerbach and Silverstein 2003) 
was utilized first in phase 1 (Fig. 1). To create themes, the 
initial coding focused on identifying relevant texts which 
were excerpts from transcripts when students talked about 
eigenvalues and eigenvectors. These relevant texts were then 
coded to capture students’ processes and thinking. Some 
codes were formula use, visual representation, geometrical 
language, computation, physics example, etc. These codes 
were further organized into repeating ideas (i.e., repeated 
actions such as using a formula), which was a process simi-
lar to axial coding. Codes and repeated ideas from all par-
ticipants were used to create themes to describe students’ 
conceptions. Some themes were algebraic reasoning, geo-
metric reasoning, and context-depended reasoning. In the 
second iteration of analysis in phase 1, these themes were 
refined by utilizing the existing research studies on students’ 
conceptions. In particular, Sierpinska’s (2000) three modes 
of thinking were instrumental as an analytical tool.

This phase was followed by identifying episodes in which 
more than one mode of thinking was used to describe stu-
dents’ thinking, and shifts were observed in students’ utter-
ances or written work. These episodes were crucial for the 

AOT analysis in phase 2 (Fig. 1). Students’ processes in 
these episodes were explored by checking what they were 
doing against physics-course data “for any indication of 
influence from previous activities” (Lobato and Siebert 
2002, p. 89). For example, at first glance it may seem nor-
mative that a student uses two different modes of thinking to 
describe an eigenvector. However, the process in which such 
modes of thinking are used can reveal the student’s construc-
tion of similarities between activities (e.g., see Gus’s case in 
Sect. 4.1.3). Such episodes were compiled and categorized 
according to different types of potential sources, included 
instructor interactions, classroom interactions (e.g., what 
students were doing), course activities and notes. Episodes 
within these categorizations for each participant constituted 
evidence of their actor-oriented transfer.

4  Results

This section first outlines the results on students’ concep-
tions of eigenvalues and eigenvectors before and after LAW 
experiences. Descriptions of students’ conceptions, through 
the lens of Sierpinska’s (2000) three modes of thinking, 
align the results within the realm of existing linear algebra 
studies on students’ conceptions (Sect. 4.1). The results from 
the actor-oriented transfer analysis provide more insights on 
potential influences of prior activities on students’ processes, 
and their possible constructions of similarities between 
interview tasks and prior activities. Prior activities include 
LAW, QMS, W and CF course experiences. Examination of 
students’ processes (e.g., how they communicate, how they 
approach questions) as shifts in modes of thinking observed 
(i.e., episodes) reveals students’ constructions of similarities 
between observed learning experiences in the study. In other 
words, the action of integrating of and shifting in modes 
seems to be the process of construction with reference to 
the observed learning experiences. Some examples from the 
analysis of episodes are provided in Sect. 4.2.

4.1  Modes of thinking

The refined themes helped to describe students’ conceptions 
through and expansion of Sierpinska’s (2000) three modes 
of thinking. This analysis suggested two new subcatego-
ries, synthetic-arithmetic and analytic-geometric modes, to 
describe students’ thinking further. Briefly, the subcategory 
of synthetic-arithmetic mode of thinking encapsulates think-
ing in which arithmetic language is used but in a synthetic 
manner. Specifically, the mathematical objects are described 
as they are “given directly to the mind” (Sierpinska 2000, 
p. 233) in a formula, rather than computed or constructed 
through their properties. The subcategory of analytic-geo-
metric describes thinking in which more visual-geometric Fig. 1  Framework of the study
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language is used not only to describe mathematical objects 
but also to construct them from their properties. Table 2 
summarizes Gus’s and Milo’s initial modes of thinking and 
the shifts to the others, where the category QM-Courses 
refers to LAW, QMS, W and CF experiences.

4.1.1  Before LAW: synthetic‑ and analytic‑arithmetic 
modes

Gus was the only participant who did not take a required 
linear algebra course but had other learning experiences in 
which eigenvalues and eigenvectors were discussed. When 
asked, “what is an eigenvalue and an eigenvector?” in the 
first interview, he mentioned that eigenvalues and eigenvec-
tors were briefly covered in an engineering course he took 
prior to fall; however, he did not recall how to find them nor 
what they meant, other than that the variable λ was “used 
somewhere.” Identifying the variable λ was coded as part of 
the synthetic-arithmetic mode of thinking.

On the pre-quiz of LAW, Gus was able to find eigenvalues 

of the matrix 
(
0 2

2 0

)
 correctly and wrote 

(
0 − � 2

2 0 − �

)
, 

and the equation �2 − 4 = 0, followed it by � = ±2. It seemed 
that prior to the winter term (after the first interview), Gus 
learned how to find eigenvalues. However, his answers to the 
other questions on the pre-quiz indicated that he still did not 
know what they meant. For “What is an eigenvalue?” he 
again wrote � , and for “What is an eigenvector?” he wrote 𝜆. 
His responses indicated the synthetic mode with recognition 
of arithmetic procedures demonstrating a ‘practical’ 
approach with computation. For these reasons, Gus’s initial 
conception of eigenvalues and eigenvectors were coded as 
part of the synthetic-arithmetic mode of thinking.

Milo was enrolled in Math Y at the time of the first inter-
view. Eigenvalues and eigenvectors had not been discussed 
yet, but they were covered in Math X that he took prior to 
fall. At the first interview when asked, “What is an eigen-
value and an eigenvector?” Milo said, “if we have a matrix 
A, eigenvalues are such that Ax = �x, where λ is the eigen-
value.” He could not remember what eigenvectors were. 
When asked to elaborate, Milo said that he thought x was 
“maybe” a vector and decided to look at an example where 

A was a specific two-by-two matrix and x was a generic two-
by-one vector. While working on his example, he noticed 
that scalar multiples of the vectors he used were the same 
as the ones he obtained from the matrix multiplication. He 
said, “Huh, I never put that together during class, I just now 
taught myself that.”

To understand his thinking, Milo was asked, “if you have 
a linear transformation that reflects the vectors over x-axis, 
what are the eigenvalues and eigenvectors of this transforma-
tion?” He first drew some vectors and applied the linear trans-
formation to draw the transformed vectors. After checking 
his work, he represented the linear transformation with the 

correct matrix 
(
1 0

0 −1

)
 . Then, to find eigenvalues and eigen-

vectors, he tried to implement his previous, self-taught idea, 
stating that the eigenvalue “would have to be some type of a 
constant that I could multiply this vector to get this outcome [
pointing to the expression he wrote

(
1 0

0 −1

)(
x

y

)]
. ” He 

claimed that there would be no such values, as he was focus-
ing only on specific vectors he picked prior to forming the 
matrix. Hence, I, the researcher, asked if there were vectors 
other than the ones he used that would satisfy his self-taught 
idea. He explored his drawings of transformed vectors and 
stated, “Well, if there was no x component, so if you have the 

vector 
(
0

1

)
 , this transformation would be the same thing as 

multiplying this 
[
pointing to

(
0

1

)]
 by negative one.”

He explained further by stating that vectors along the 
x axis would not be affected by this linear transformation. 
However, throughout his explanation he did not utter the 
word eigenvector nor claim that the vectors on the x axis 
were eigenvectors. He summarized his thinking, “Well, I 
guess you can say that an eigenvalue is somehow a con-
densed version of a matrix, or a transformation… So you are 
finding a way to transform or alter a vector using a constant 
instead of a matrix.”

Milo’s reasoning process about eigenvalues in this first 
interview seemed to include aspects of the synthetic-arith-
metic mode as he reasoned with the operational aspect of his 
equation, and the mathematical object, eigenvalue, appeared 

Table 2  Participants’ modes of 
thinking

Participants Synthetic Analytic

Geometric Arithmetic Geometric Arithmetic Structural

Gus
 Before QM-courses X
 During & after X X X

Milo
 Before QM-courses X X
 During & after X X X X
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as it was “given directly to the mind” (Sierpinska 2000, p. 
233). Even though his visual representation showed syn-
thetic-geometric thinking for eigenvectors, he did not explic-
itly state that vectors he observed were eigenvectors.

On the pre-quiz of LAW, Milo found the eigenvalues and 

eigenvectors of 
(
0 2

2 0

)
 correctly by utilizing the equation 

(A − 𝜆I)x⃗ = 0 . On the second question, Milo described 
eigenvalues as “values of λ that satisfy det (A − �I) = 0 ; they 
take the place of a matrix operation by turning it into a scalar 
multiplication for a given eigenvector.” For an eigenvector 
description, he wrote: “Vectors for which a matrix operation 
may be replaced by a scalar multiplication.” His description 
of eigenvalues on the quiz included a formula, with arithme-
tic language, and his description of eigenvectors was based 
on his arithmetic thinking concerning eigenvalues. Overall, 
his thinking (together with correct computations) seemed to 
indicate an analytic-arithmetic mode of thinking.

4.1.2  End of LAW: inclusion of geometric mode

On the post-quiz of LAW, Gus could not find the eigenvalues 

and eigenvectors of 
(
2i 3

0 −7

)
 . He wrote det(�I − A) and 

used it to find eigenvalues. His error in the characteristics 
polynomial (he wrote, “ (� − 2i)(� + 7) + 3 = 0 ”) yielded 
incorrect roots. However, he wrote a short note for the pro-
cess of finding eigenvectors using the eigenvalue equation, 

Av⃗ = 𝜆v⃗ ∶ “ 
(
2i 3

0 −7

)(
x

y

)
= �

(
x

y

)
; choose an x, then find 

y.”
On the second question of the post-quiz that asked what 

eigenvalues and eigenvectors are, Gus wrote, “ Av1 = �v1, 
[eigenvalues] scalar multiples used to find eigenvectors,” and 
“[Eigenvector is] a vector that has an unchanged direction 
(except in the opposite direction) when operated on by a 
transformation matrix.” In his eigenvalue description, Gus 
seemed to employ synthetic-arithmetic thinking due to his 
language of “scalar multiple” without referring to a geo-
metric object, focusing on the multiplication operation as it 
appears in his equation. On the other hand, Gus seemed to 
use an analytic-geometric mode to describe an eigenvector. 
This description was considered to be part of the analytic 
mode in which the object of thought (in this case eigenvec-
tor) “is seen as conceived or constructed in a language or a 
conceptual system” (Dorier and Sierpinska 2001, p. 264). 
His visual-geometric language usage of “a vector that has 
unchanged direction” indicated geometric thinking and his 
inclusion of “(except in the opposite direction)” hinted that 
his thinking was beyond synthetic mode.

Milo, on the post-quiz, was able to find eigenvalues and 

eigenvector of 
(
2i 3

0 −7

)
 correctly, using the eigenvalue 

equation Ax⃗ = 𝜆x⃗ instead of (A − 𝜆I)x⃗ = 0 . On the second 
question, he again used arithmetic language to describe an 
eigenvalue, stating, “A scalar that accomplishes the same 
thing when multiplied to a specific eigenvector as is accom-
plished by the given matrix operation.” However, it appears 
that his arithmetic language use was coming from synthetic, 
‘practical’, thinking. He described an eigenvector as “A vec-
tor whose ‘direction’ is unchanged by a given matrix oper-
ation-it is merely scaled along its direction by its associated 
eigenvalue.” In his description of eigenvectors, he used more 
visual-geometric language for eigenvectors. It seems that his 
thinking concerning eigenvectors included aspects of ana-
lytic-geometric thinking.

At the end of LAW, Gus’s and Milo’s modes of thinking 
already showed some changes to include additional ways 
to describe eigenvalues and eigenvectors. Specifically, they 
both incorporated aspects of an analytic-geometric mode of 
thinking for eigenvectors.

4.1.3  After LAW: integration of other modes

At the beginning of the second interview, a week after LAW, 
Gus mentioned that the geometric interpretation of eigenvec-
tors was one of the most interesting things he learned in 
LAW. To explain what eigenvalues and eigenvectors meant, 

he wrote the matrix 
(
1 5

2 10

)
 and operated on a variety of 

vectors. Then, he determined that input vectors were all 
mapped on to the line y = 2x . He claimed that the vector (
1

2

)
 was an eigenvector because it was already on the line 

and provided further reasoning that “the slope of the vector 
is the same as this line.” He stated that this meant the vector 
did not change its direction when it was operated on by the 
matrix. His reasoning process seemed to have both analytic-
geometric and analytic-arithmetic modes of thinking.

Similarly to Gus, in the second interview Milo stated 
that the geometric interpretation of eigenvectors was one 
of the interesting ideas he learned in LAW. His descriptions 
of eigenvalues and eigenvectors were very similar to what 
he wrote on the post-quiz. He stated that he could revise 
his description of eigenvectors on the post-quiz to describe 
eigenvalues in a similar manner. He further commented 
about his experience in LAW,

Well, definitely the discussion in class [LAW] that 
showed us the geometric interpretation of the eigen-
vector made it a lot easier to understand this little 
formula here [pointing to Av⃗ = 𝜆v⃗ ] and there is cer-
tainly something concrete now that I have attached in 
my head. I remember [at] that interview [referring to 
the first interview] thinking that this is something I 
should know, and I know I have been taught this. But 



1148 G. Karakok 

1 3

I didn’t remember, and I am pretty sure I am going 
to remember at least the very basic concept of what 
an eigenvector is. Maybe there is a lot more to it; I 
am sure there is, but, yes, I have something to hold 
on to now.

In the third interview, approximately 12 weeks after LAW 
and 3 weeks after the last QM course, participants were 
asked to describe an unknown operator M which had two 
eigenvalues (1 and − 1) and corresponding eigenvectors ((

1

1

)
 and 

(
1

−1

))
 that were associated with these eigen-

values, respectively. Gus first wrote the eigenvalue equation, 
Av⃗ = 𝜆v⃗, and then plugged in the given eigenvalues and 
eigenvectors. After trying a couple of random matrices with 
entries 0 and 1, he stated that M was one of the Pauli spin 
matrices that they had in QMS course. He tried to construct 
M via a couple of Pauli spin matrices. When he got stuck, 
Gus changed his approach and wrote M as a generic two by 

two matrix 
(
a b

c d

)
 and used the eigenvalue equation to solve 

for the entries. After correctly finding M, he further identi-
fied that it was a reflection transformation over the y = x 
line. He checked his claim, once again, using a geometric 
interpretation of eigenvectors. He said the eigenvectors of 

the matrix made sense, because the first eigenvector 
(
1

1

)
 

was on the reflection axis, and if the second eigenvector (
1

−1

)
 was reflected over the line y = x, it would become the 

multiple of itself by − 1, hence the vector 
(

1

−1

)
 was not 

changing its direction. Gus’s reasoning process seemed to 
indicate shifts between analytic-arithmetic to analytic-geo-
metric modes of thinking, as he employed both arithmetic 
and geometric languages.

Milo, for this third interview question, said, “I’m trying to 
think if I can get from here to actually building the matrix… 
I mean, these are [pointing to the eigenvectors] linearly inde-
pendent eigenvectors, they have their own eigenvalues.” He 
then continued to explain what linearly independent meant 
and concluded his explanation with, “I think M is not a rota-
tion matrix. I think it would be a flippy guy.” When asked 
how he knew, he said, “Because the only way for both of 
these vectors to be changed only by a scalar, I think every-
thing is flipped around one of them, so that one of them is 
totally unchanged, the other [is] scaled by a negative.” He 
also stated that if M was a rotation then both given vectors 
would change directions, that they would not be eigenvectors 
anymore. His reasoning in this question showed aspects of 
the analytic mode with utterances of visual-geometric and 
arithmetic languages with inclusion of structural properties 
such as linear independence to construct the mathematical 
object of eigenvector.

Similarly to Gus, Milo also wrote a generic two by two 
matrix and then used the eigenvalue equation to find entries 
of the matrix. While working, he said the matrix M looked 
“an awful lot like one of those” Pauli spin matrices, which 
was very similar to Gus’s reaction but unlike Gus, he did not 

proceed with this idea. After finding the matrix M =

(
0 1

1 0

)
 , 

he checked his conjecture of M being a reflection. After cor-
rectly identifying the matrix M, he explicitly mentioned that 
eigenvalues were “stretching or shrinking” factors and they 
were special in physics contexts, representing measurables. 
These spontaneous (i.e., not requested by the researcher) 
thought processes capture Milo’s integration of the analytic-
structural mode of thinking.

The last question on the third interview was: “Give the gen-
eral solution to the differential equation i d

d�
f (�) − af (�) = 0 , 

subject to the condition f (�) = f (� + 2�). ” Gus was stuck at 
the beginning of this problem; as he looked at the equation, he 
pointed to f (�) and whispered “what kind of a beast is this?” 
He said, “I am trying to [inaudible] how to solve a differential 
equation. I just had a whole course on it.” After writing 
cos(x) =

eix+e−ix

2
 and manipulating the given differential equa-

tion, he stated, f (�) = c1e
−ia� is a general solution. However, 

he stated that he was not convinced with his answer because he 
was not certain if his answer would satisfy the given condition. 
Gus tried to reason with several trigonometric functions. Before 
he was about to give up, I asked him if there was a way to 
change the problem into an eigenvalue problem. Gus said,

I believe that—I know that this is an eigenvector, or an 
eigenfunction [pointing to f(�) on the question sheet], 
rather, because when I want to take its derivative times 
i, it is just giving you constant out front. So, f(�) is an 
eigenfunction of that operator. So it is a solution to the 
differential equation, which I think that it would have 
to be, in order for it to be a solution, you could call it 
an eigen-solution. I’m sure you can. It is hopefully part 
of the definition even.

When Gus said “the definition”, he wrote the equation, [
d2

dx2
+

d

dx
+ 1

]
f (x) = cf (x) , and connected the symbols f (x) 

on both sides of the equation with an arrow and draw a box 
around the letter “c” in his equation. His engagement with 
this question provided some insight into the possibility of 
Gus having an early analytic-structural mode of thinking, 
shifting his previous modes of thinking of the eigenvalue 
equation, Av⃗ = 𝜆v⃗, to a theoretical one that focuses on a 
given operator’s properties.

Milo, for this question of the third interview, stated that 
the function f (�) has to be periodic so it can either be sine 
or cosine or an exponential function. He ‘guessed’ the 
answer would be an exponential function because in the 
given equation there was an i and differentiating the 



1149Making connections among representations of eigenvector: what sort of a beast is it?  

1 3

exponential would give him another i to cancel out. His rea-
soning seemed to focus on making sense of the equation, 
rather than focusing on solving a differential equation. He 
used the exponential function e−ia� for f (�) in the equation, 
i
d

d�
f (�) − af (�) = 0 to test his conjecture. While he was 

doing his computation, I asked if this problem could be 
turned into an eigenvalue problem. He seemed to be sur-
prised with this question and replied, “That just blew my 
mind. An eigen—well, we can have eigen-functions, I 
believe. So this [pointing to f (�) ] could somehow be an 
eigen-function.” I asked him to elaborate more.

Yeah, because this [pointing to d
d�

 ] would be the oper-
ator. Ohh, this [equation in the problem] rewritten 
[pointing to what he wrote i d

d�
f (�) = af (�) ], so instead 

of an eigenvector, you have the eigen-function, and this 
would be an eigenvalue [pointing to the constant a] and 
this is the operator [pointing again to d

d�
 ]… and it can 

be represented as a matrix, I think. I think that sort of 
thing happens.

Even though he did not make the connection to eigenvec-
tors on his own, his reaction and further elaboration seemed 
to indicate that his reasoning in the context of this problem 
showed some aspects of analytic-structural thinking.

Overall, synthetic- and analytic-arithmetic modes of 
thinking observed before the LAW experience shifted to oth-
ers to include analytic-geometric and structural ones. Both 
Gus and Milo seemed to integrate analytic-geometric and 
analytic-arithmetic modes of thinking in their processes in 
the second and third interviews. Milo additionally incor-
porated analytic-structural thinking, using abstract prop-
erties in his process of communicating and working with 
eigenvectors.

4.2  AOT analysis

In the previous section, I provided some examples from 
Gus’s and Milo’s data analysis to discuss their incorporation 
of various modes of thinking in the interview tasks. Recall 
Gus’s process of describing an eigenvector with the matrix (
1 5

2 10

)
 : he operated it on some vectors, geometrically rep-

resented the output vectors, and found the projection line. 
Then, he described what he thought eigenvectors were using 
this particular example. Without access to Gus’s prior learn-
ing experience, this projection matrix might seem random. 
Especially, his process of inquiry, just to describe eigenvec-
tors, might seem an idiosyncratic one. Similarly, Milo’s 
switch between the equations (A − 𝜆I)x⃗ = 0 and Ax⃗ = 𝜆x⃗ on 
the pre- and post-quizzes of LAW, respectively, might seem 
to be a minor nuance. However, when such processes and 
shifts were explored together with students’ prior learning 

experiences within the scope of this study, we can gain addi-
tional insights into these processes. Analysis using the AOT 
framework helps identify potential influences of prior learn-
ing experiences on students’ processes and shifts. In other 
words, what constitutes evidence for the actor-oriented trans-
fer is “indication of influence from previous activities” 
(Lobato and Siebert 2002, p. 89) and examples of such evi-
dence from Gus’s and Milo’s data analysis are provided in 
this section.

4.2.1  Instructor’s interactions

As part of the instructor interaction category, I specifically 
focus on Prof. Clay’s instructional moves. The AOT analysis 
of episodes (1) the switch from the equation, (A − 𝜆I)x⃗ = 0 , 
to the eigenvalue equation, Av⃗ = 𝜆v⃗ ; (2) the use of the ques-
tion, “What kind of a beast is this?” (3) Gus’s use of the 

matrix 
(
1 5

2 10

)
 in the second interview; and (4) Gus’s and 

Milo’s processes to find the matrix M in the third interview, 
all indicated that both Gus and Milos could have been 
attempting to construct similarities between the interview 
tasks and their prior learning experience with respect to 
Prof. Clay’s instructional moves.

On the second day of LAW, eigenvalues and eigenvectors 
were introduced with a small-group activity. Each group was 
assigned a different 2 × 2 matrix and asked to “operate on” 
five given vectors on the worksheet, and to graph both initial 
and transformed vectors. They were also asked to find the 
determinant of the matrix and “make note of any differences 
between the initial and transformed vectors. Specifically, 
look for rotations, inversions, length changes, anything that 

is different.” Milo’s group worked on 
(

0 1

−1 0

)
 and Gus’s 

group worked on 
(
1 2

1 2

)
 . Each group presented their 

answers as Prof. Clay facilitated the discussion and posed 
questions.

During this whole-class discussion time, Prof. Clay 
focused students’ attention on different ideas. She explained 
that her reason for using the word “operate on” was to get 
them familiar with the phrase for abstract linear operators 
in QM courses. Use of this phrase was observed in Gus’s 
and Milo’s interviews (e.g., Gus’s post-quiz). She asked 
each group to write the equation Av⃗ = 𝜆v⃗ with their group’s 
matrix and unchanged vectors. She used this moment to 
introduce the terminology of eigenvector for these vectors.

Prof. Clay showed students how to find eigenvalues and 
eigenvectors in a brief lecture with examples on the fourth 
day of LAW. She started with the equation Av⃗ = 𝜆v⃗ on the 
board and asked, “What kind of a beast is this?” while point-
ing at each symbol in the equation. She posed this question 
frequently in the Symmetries course. She explicitly provided 
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her reason for asking this question by stating that before 
solving an equation, identifying elements in the equation 
would help to get an insight into “What’s happening on 
both sides of the equation?” As she demonstrated each step 
of finding eigenvalues and eigenvectors, she made explicit 
suggestions such as using the eigenvalue equation, Av⃗ = 𝜆v⃗, 
instead of the equation, (A − 𝜆I)x⃗ = 0 to find eigenvectors 
after obtaining the eigenvalues. Her reasoning was that this 
latter equation would not be as meaningful in other con-
texts where operators were not matrices. As noted in both 
Gus’s and Milo’s work on pre- and post-quizzes of LAW, 
they seemed to be influenced by this explicit recommen-
dation and made shifts. Furthermore, Gus’s utterance of 
“What kind of a beast is this?” and Milo’s reasoning with 
his “guessed” function during the last question of the third 
interview seemed to indicate that they were both trying to 
make sense of the equation, in their own way, and were influ-
enced by Prof. Clay’s explicit suggestions.

LAW’s fourth day continued with a small-group activity 
in which groups were assigned a matrix and were asked to 
find its eigenvalues and eigenvectors. During group presen-
tation time, Prof. Clay asked the whole class what each 
matrix represented geometrically and to recall their observa-
tions from the second day of LAW on unchanged vectors. 
This seemed to be Prof. Clay’s explicit way of connecting 
geometric and algebraic representations of eigenvectors. She 
further suggested that students could first examine the given 
matrix geometrically and explore unchanged vectors. A 
similar recommendation was also provided during her CF 
course. She wanted students to get a “feel for” the operator 
first, either geometrically or algebraically. In the second 

interview, when Gus provided the example 
(
1 5

2 10

)
 , his 

process of reasoning of what eigenvectors were followed the 
processes suggested by Prof. Clay, using the geometric inter-
pretation of the matrix first.

When both Gus and Milo were trying to find the matrix 
M in the third interview, they both wrote M as a generic two 

by two matrix 
(
a b

c d

)
 and solved for the entries using the 

eigenvalue equation. This approach was again one of Prof. 
Clay’s explicit suggestions. This particular suggestion was 
given on the third and fifth day of LAW; first when students 
were discussing the properties of a rotation matrix A and 
then later when they were asked to find a condition for a 
matrix A to be Hermitian.

4.2.2  Class experiences

For the classroom interactions category of the AOT analy-
sis, I share results from Gus’s and Milo’s processes in 
which indication of inf luences of certain in-class 

activities and discussions were observed. As noted before, 

Gus provided the matrix 
(
1 5

2 10

)
 in the second interview. 

His process of describing eigenvectors not only followed 
Prof. Clay’s explicit suggestion but it also indicated his 
way of constructing similarities between in-class activity 
from the second day of LAW. On that day, more time 
(compared to other group’s presentations) was spent on 

understanding the matrix, 
(
1 2

1 2

)
 , after the group’s pres-

entation, through a whole-class discussion. Prof. Clay 
posed questions to guide the discussion, which was cen-
tered around finding the slope of the projection line and 
the concept of linear dependency. It seems that this par-
ticular classroom experience influenced Gus’s reasoning 
in that he not only implemented the same process of 
inquiry but he also used a matrix that was similar to (
1 2

1 2

)
 , his group’s matrix.

Milo, as shared in previous sections, discussed why M 
cannot be a rotation matrix and suggested that it was a 
“flippy guy,” and gave the meaning of eigenvalues in other 
contexts in the third interview. These utterances of Milo 
and integration of multiple modes of thinking of eigen-
values suggested influences from LAW-class discussions. 
For example, on the second day of LAW, during the group 
presentation time, students decided to use the phrase 
“flippy guy” for the reflection transformation, and this 
phrase was repeated on the fourth day of LAW. Prior to 
each group’s presentation of computations of eigenvalues 
and eigenvectors of their group’s assigned matrix on this 
fourth day, Prof. Clay kept asking the whole class to recall 
what the matrix represented from day two of LAW. At this 
point, students again used the phrase “flippy guy.” In other 
words, this phrase seemed to be part of this community’s 
negotiated word use. Also, concerning Milo’s process of 
integrating of multiple modes of thinking, “stretching or 
shrinking” factors were discussed on the second and fourth 
days of LAW. Students had several QM experiences in 
which eigenvalues represented certain measurements cor-
responding to eigenstates. For example, one of the postu-
lates in QMS course-summary notes from class, “The only 
possible result of a measurement of an observable is one of 
the eigenvalues an of the corresponding operator A,” was 
discussed during the ninth day of the course.

Both Gus and Milo referred to Pauli-spin matrices dur-
ing the third interview while they were working to find 
the matrix M, but neither one of them continued with this 
line of reasoning. However, this instance of their noticing 
similarity could indicate their attempts to construct simi-
larities between the interview task and their prior experi-
ence in QMS.
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5  Discussion and conclusions

This study explored physics students’ transfer of learn-
ing of eigenvalues and eigenvectors from learning experi-
ences to interviews. The results show that when students 
started the quantum mechanics (QM) courses, after initial 
linear algebra learning experiences, their conceptions of 
eigenvalues and eigenvectors included synthetic-arithmetic 
and analytic-arithmetic modes of thinking (Sect. 4.1.1). As 
students progressed through the QM courses, regardless 
of their differing initial learning experiences, their con-
ceptions showed changes to incorporate other modes of 
thinking such as analytic-geometric and analytic-structural 
(Sects. 4.1.2 and 4.1.3). Analysis with the AOT revealed 
several indications of influence from QM learning expe-
riences for each participant. Overall, each participant 
seemed to construct similarities between his experiences 
and Prof. Clay’s explicit instructional moves, class interac-
tions and activities. Taken together, these results illustrate 
that prerequisite knowledge of a student may not neces-
sarily tell us much about a student’s future process and 
progress, and that explicit instructional moves, in-class 
engagements and activities may help students build simi-
larities and find ways to orient their generalization (trans-
fer) process.

The results of students’ struggles with modes of think-
ing after an initial linear algebra learning experience 
align with the existing linear algebra studies (e.g., Lar-
son and Zandieh 2013; Stewart and Thomas 2010). The 
results contribute to this body of knowledge by exploring 
‘what happens’ to students’ modes of thinking after this 
initial experience. Students incorporated different modes 
of thinking in ways that seemed to be “equally useful,” 
for students’ conception, and “each in its own context, 
and for specific purposes, and especially when they are in 
interaction” (Sierpinska 2000, p. 233). I believe that these 
interactions were afforded by the various, mostly abstract, 
contexts of three quantum courses. This particular obser-
vation supports the claim that physics could ‘bridge’ vari-
ous forms of thinking (Thompson et al. 2016) and align 
with Wawro et al.’s (2017) observation of a student exhib-
iting flexible ways of thinking in different notations, which 
was also afforded by a quantum physics course.

The AOT analysis added more nuance to the analysis of 
students’ conceptions. When the focus of analysis moved 
from the product (i.e., students’ conceptions) to the pro-
cess of students’ reasoning, indications of influences of 
learning experiences were observed. These observations 
provide opportunities for educators to enhance their course 
designs and in-class interactions. For example, both par-
ticipants mentioned that discussion of a geometric inter-
pretation of eigenvectors was the most interesting thing 

that they learned during LAW. As Milo mentioned, this 
interpretation provided him “something concrete” that he 
thought of as “at least the very basic concept of what an 
eigenvector is.” It seems that the LAW experience pro-
vided opportunities for Milo to develop an additional 
mode of thinking for an eigenvector while retaining the 
existing ones.

Both students’ observations and experiences with geo-
metric representation of eigenvectors align with Prof. Clay’s 
careful design of activities. She was purposeful in focusing 
students’ attention on geometric representations on the sec-
ond day of LAW and in revisiting this idea with algebraic 
representations on the fourth day. Furthermore, both Gus 
and Milo started to use the eigenvalue equation, Av⃗ = 𝜆v⃗ as 
they reasoned and even computed eigenvectors. Their pro-
cess indicated the influence of Prof. Clay’s comments on 
the use of the equation Av⃗ = 𝜆v⃗ instead of (A − 𝜆I)v⃗ = 0⃗ , 
her explicit discussion of the appropriateness of the former 
one in other contexts and her consistent usage of Av⃗ = 𝜆v⃗ . 
It is possible that students found this equation more similar 
to others that they worked on in the subsequent quantum 
courses. In the QMS course, for example, students exam-
ined the Schrödinger equation, iℏ d

dt
��(t)⟩ = H(t)��(t)⟩ , 

noticing that d
dt

 represented an operator (i.e., it was similar 
to matrix A) whereas ��(t)⟩ represented the eigenfunction 
of the operator. Even though in previous studies students’ 
progression from Av⃗ = 𝜆v⃗ to (A − 𝜆I)v⃗ = 0⃗ is stated to be 
desired (Thomas and Stewart 2011), in abstract cases (e.g., 
QM courses) the latter equation may not be as meaningful.

This study adapted Lobato’s (2003) actor-oriented trans-
fer framework at a tertiary level by capturing course learning 
experiences, rather than short teaching interventions. This 
process did have some limitations. For example, partici-
pants’ initial learning experiences of linear algebra were not 
accessible as they had taken a prerequisite course prior to 
the start of the study. Also, in-class small group interactions 
were not audio-recorded and these interactions could have 
provided more insights on students’ authentic learning expe-
riences. However, whole class discussions were recorded 
and analyzed. These interactions seemed to influence stu-
dents’ construction of similarities and resonate with the calls 
for active learning in tertiary level courses (CBMS 2016).

In closing, I echo Lobato and Siebert’s (2002) emphasis 
on the importance of carefully designed courses. They stated 
that “simply trying to ‘teach for understanding’ in the hopes 
that students will transfer that understanding is far too gen-
eral a guide to be useful in designing instruction” (p. 113). It 
is as equally important to be explicit during instruction as it 
is to design courses. As educators, we need to explicitly state 
reasons for our language use, example choices, processes 
of thinking, and solving problems. Specifically, we need to 
make the invisible work of experts visible to students, as 
in the case of Prof. Clay. Additionally, it is important to 
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re-evaluate the meaning of prerequisite knowledge or course 
requirements for subsequent courses. Emphasizing and 
exploring process skills such as recognition of similarities, 
connection making and problem solving could open more 
doors for students’ future learning and transfer.
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