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Abstract
Although there is no generally accepted list of criteria for the acceptance of proofs in mathematical practice, judging the 
acceptability of purported proofs is an essential aspect of handling proofs in daily mathematical work. For this reason, school 
students, university students, and mathematicians need to hold certain acceptance criteria for proofs, which are closely tied to 
their epistemology, notion of proof, and concept of evidence. However, acceptance criteria have so far received little academic 
attention and results have often been related to mathematicians’ acceptance criteria in a research context. Still, as the role of 
proof changes during mathematical education and differs from research, it can be assumed that acceptance criteria differ sub-
stantially between educational levels and different communities. Thus, we analyzed and compared acceptance criteria by school 
students, university students, and mathematicians in the context of teaching. The results obtained reveal substantial cross-
sectional differences in the frequency and choice of acceptance criteria, as well as major differences from those acceptance 
criteria reported by prior studies in research contexts. Structure-oriented criteria, regarding the logical structure of a proof or 
individual inferences, are most often referred to by all groups. In comparison, meaning-oriented criteria, such as understanding, 
play a minor role. Finally, social criteria were not mentioned in the context of teaching. From an educational perspective, the 
results obtained underline university students’ need for support in implementing acceptance criteria and suggest that a more 
explicit discussion of the functions of proof, their evidential value, and the criteria for their acceptance may be beneficial.

Keywords  Mathematical proof · Acceptance criteria · Enculturation · Argumentation · Proof validation · Socio-
mathematical norms

1  Introduction

Mathematical proof can be considered a key method of 
mathematics as a scientific discipline, particularly with 
regard to its function as bearer of mathematical knowledge 
and evidence (Mariotti 2006). Proof and argumentation in 
general play a central role in mathematics education (e.g., 
Hanna and Jahnke 1996; Heinze and Reiss 2009) and are 
implemented in standard documents worldwide (e.g., CCSSI 
2010). Typically, these emphasize informal mathematical 
reasoning and argumentation in lower grades, focusing 

on understanding and explanation as underlying functions 
(Hanna 2000). With increasing educational level, arguments 
are systematized, formalized, and directed towards underlin-
ing the validity of a given claim, resulting in the concept of 
mathematical proof (e.g., Heinze and Reiss 2009). Further-
more, the idea of axioms, an emphasis on the role of deduc-
tive inferences, and the use of symbolic notation extend the 
concept of proof with respect to its systematization and vali-
dation functions. Overall, the concept of proof, its functions, 
and the according norms and values change substantially 
over time and differ between contexts and communities.

Empirical studies have repeatedly shown that handling 
proof is difficult for learners (e.g., Healy and Hoyles 2000), 
yet proof appears to be particularly demanding at the transition 
from school to university (e.g., Clark and Lovric 2009; Cor-
riveau and Bednarz 2017; Moore 1994; Selden 2011; Selden 
and Selden 2003; Tall 2008; Weber 2003). This difficulty is 
often attributed to a shift in the role of mathematical proof 
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between school and university, when for example validity 
becomes the main function (e.g., Tall 2008). Moreover, these 
studies have underlined that the adaptation and enculturation to 
the new norms and values is particularly difficult for students.

To examine students’ difficulties at the transition to uni-
versity and the differences regarding proof related norms 
and values in school and university communities, school stu-
dents’, university students’, and mathematicians’ acceptance 
criteria for proofs can be analyzed. These are individual 
criteria used to decide if a purported proof is acceptable or 
not. They can be assumed to reflect the social norms and 
values regarding mathematical proof. Acceptance criteria 
are necessary for validating and constructing proofs and can 
thus be ascribed a central role for handling proofs success-
fully. They can also be seen as important indicators for stu-
dents’ understanding of mathematics, its epistemology as a 
science, and their understanding of mathematical evidence 
(e.g., Mariotti and Balacheff 2008). However, so far there 
are few quantitative studies regarding the use of acceptance 
criteria for mathematical proofs, in particular, neither cross-
sectional studies nor those comparing teaching and research 
contexts. Previous research has either focused on concep-
tions of proof more generally (e.g., Harel and Sowder 1998; 
Hemmi 2006) or on criteria used by mathematicians within 
a research context. However, based on theoretical considera-
tions and first qualitative analyses (e.g., Weber 2008) these 
are unlikely to mirror the acceptance criteria in a teaching 
context or those held by school or university students.

As indicated above, there appears to be a shift in the 
acceptability of proof, both at the transition from school to 
university and from university to research, which has yet to 
be addressed by research. The presented study thus evaluated 
whether school students (at the end of their school studies) 
and university students detect violations of central norms 
for mathematical proofs when validating proofs and whether 
they can provide according justifications. Furthermore, the 
acceptance criteria used by school and university students 
were systematically compared to analyze differences in 
the local norms regarding proof between both contexts. 
This comparison is complemented with the investigation 
of research mathematicians’ use of acceptance criteria in 
the context of undergraduate university teaching. Finally, 
acceptance criteria used by mathematicians in the context 
of teaching were compared with those reported from the 
context of research (e.g., Hanna 1989; Heinze 2010).

2 � Acceptance criteria for mathematical 
proofs in different communities

The terms mathematical reasoning, arguing, and proving, 
respectively reason, argument(ation), and proof, are often 
vaguely defined and possess multiple interpretations (e.g., 

Reid and Knipping 2010). In particular, they are still widely 
discussed (e.g., Aberdein 2009; Balacheff 2008; Manin 2010), 
and perspectives of what constitutes an argument or proof 
vary both in practice and research. Still, most authors agree 
that (of these terms) mathematical proof represents the nar-
rowest concept, often interpreted as referring to mathemati-
cal arguments that meet certain socio-mathematical norms 
(Yackel and Cobb 1996), for example regarding their formal 
representation. However, Hanna and Jahnke (1996, p. 878) 
asserted that there are no “generally accepted criteria for the 
validity of a mathematical proof” (in mathematical practice).

Still, judging the acceptability of mathematical proofs is 
an essential aspect of engaging with proofs. Accordingly, 
school students, university students, and mathematicians 
must hold certain individual criteria that they use locally to 
judge and justify the acceptability of proofs. In the follow-
ing, these will be referred to as acceptance criteria for math-
ematical proofs, and these entail all criteria that are used in 
mathematical practice to judge whether a proof is accept-
able or not. In particular, criteria for accepting or rejecting 
a proof are partially intrinsically linked, as some criteria 
can be regarded as logically ‘necessary’ or ‘sufficient’: For 
example, the use of circular reasoning is sufficient in order to 
reject a proof. At the same time, the absence of circular rea-
soning is a necessary condition for accepting a proof. Thus 
circular reasoning may be used as a criterion for accepting 
and for rejecting a proof.

2.1 � The local proof culture and enculturation

That there is no generally accepted list of criteria for the 
acceptability of mathematical proofs is plausible from a 
perspective that sees proof as embedded in a social prac-
tice. For example, Manin (2010) claimed that “a proof only 
becomes a proof after the social act of ‘accepting it as a 
proof’” (p. 45). Accordingly, acceptance criteria for mathe-
matical proofs have to be seen as socio-mathematical norms 
(Reid and Knipping 2010; Yackel and Cobb 1996). That 
is, these criteria are, often implicitly, negotiated socially 
within certain communities of practicing mathematicians. 
Thus, acceptance criteria may vary between communities, 
as illustrated by discussions about the acceptability of com-
puter-assisted proofs.

It is certainly possible to distinguish a multitude of math-
ematical communities, that is, groups of people jointly prac-
ticing mathematics (see further Lave and Wenger 1991). Still, 
looking at the usual trajectories when learning to prove, three 
types of communities can be distinguished (Fig. 1): school 
communities, university (education) communities, and 
research communities. Usually, students pass through these 
sequentially, yet reaching a mathematical research community 
happens neither necessarily nor particularly often.
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Within school communities, first proofs are often intro-
duced in 7th–9th grade in the context of geometry (e.g., Bal-
acheff 2010), for example as a specific kind of argumenta-
tion. In school, proofs are used locally and are not part of a 
global deductive, axiom-driven theory. Moreover, didactical 
proof conceptions, such as empirical-inductive arguments are 
often accepted in school, especially in lower grades, and are 
stressed as valuable for school learning (Hanna and Jahnke 
1996). Within university communities, however, mathematics 
is understood as a proof-based, axiomatic-deductive system 
that is “recreated” in first-year lectures (Tall 2008). This sys-
tematic approach requires proofs focusing on validity. Finally, 
research communities operate inside the axiomatic-deductive 
system created at university, for example when formulating 
and proving novel theorems. This regularly involves complex 
and highly-specialized proofs, whose epistemic status may be 
unclear for some time and which is also often not verifiable 
by all practicing mathematicians (cf. Devlin 2003).

Overall, becoming a member of one of the three substan-
tially different types of mathematical communities requires 
an enculturation process (see further Schoenfeld 1992), that 
is, a process in which an individual acquires cultural goods 
such as acceptance criteria for mathematical proofs, by being 
exposed to and interacting with a community.

Today, little is known about learning to prove as an encul-
turation process. There appears to be no specific model to 
describe this process, and only very first evidence on encul-
turation processes regarding the norms and values underly-
ing mathematical proofs exists. A longitudinal study (Bieda 
et al. 2006) showed that enculturation in school is an ongo-
ing process happening over years. The surveyed students 
used general arguments increasingly often from 6th to 9th 
grade and appeared to have an increasing understanding of 
the value of arguments for justifying general mathematical 
statements. A study by Perrenet and Taconis (2009), focus-
ing on enculturation effects upon entering university in the 

context of problem solving, found significant shifts in stu-
dents’ beliefs and behavior towards those of the local com-
munity, represented by their teachers. Accordingly, it can be 
assumed that enculturation processes not only are happening 
when changing communities, but they may be especially 
profound at these transitions. Furthermore, empirical data by 
Perrenet and Taconis (2009), theoretical considerations, and 
qualitative data (e.g., Lave and Wenger 1991) suggest that 
enculturation processes aim at an increasing adaptation of 
newcomers (students) to the established norms and values in 
the particular community and, in the context of mathemati-
cal proofs, ultimately to those from a research context.

Regarding the three adjacent mathematical communities, 
mathematicians can be seen as intermediary persons: They 
are part of a community of university mathematics teach-
ers and learners and part of a community of mathematics 
researchers (Fig. 1). These communities may differ, both in 
terms of their members and their norms and values regarding 
mathematical proofs. An important aspect of mathemati-
cians’ work is thus to mediate between both communities, as 
research practice informs and constrains classroom practice 
(Dawkins and Weber 2017).

2.2 � Research on acceptance criteria1

Acceptance criteria can be seen as more or less pragmatic 
instantiations of certain norms and values regarding math-
ematical proof, which are held by the (local) mathematical 

Fig. 1   Illustration of three 
communities in a ‘learning 
to prove’-trajectory, students’ 
transitions, and mathematicians’ 
mediating role between com-
munities

1  Assuming a social nature of acceptance criteria for proof, relevant 
research naturally has to be seen as specific to the associated context 
(e.g., country, community, classroom,…). Thus, interpreting, trans-
ferring, and generalizing research results has to be done carefully 
and ideally requires empirical underpinning. Therefore, references 
to results from multiple communities and countries are given in this 
paper.
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community (e.g., the members of a school or university; see 
also Dawkins and Weber 2017), for the daily mathematical 
work with proofs (see Fig. 1, vertical direction).

However, it is still a philosophical debate, how ‘local’ 
these norms, values, and according criteria are (or should 
be) and whether what constitutes a proof depends on abso-
lute (global) (e.g., Azzouni 2004; Hilbert 1931) or on local, 
social criteria within a specific mathematical community 
(e.g., Reid and Knipping 2010; Yackel and Cobb 1996). 
Both sides have a point: it is a reasonable question, which 
global criteria could be defined (normatively) for every 
ideal, complete proof (derivation). Still, given that deriva-
tions are rarely produced in mathematical practice (and the 
connection of a real proof text to a corresponding derivation 
is far from trivial to describe; see below and Tanswell 2015), 
it is also reasonable to investigate which (socially formed, 
local) criteria students and mathematicians use in their own 
practice to accept or reject a proof.

Both perspectives can be used to create a list of possible 
acceptance criteria for mathematical proofs: a deductive, 
logical-structural perspective emanating from the concept 
of proof as an ideal proof, or a social-descriptive perspec-
tive examining mathematical practice and the acceptance 
criteria, norms, and values reported or used within.

A starting point to describe acceptance criteria from a 
logical-structural perspective is the notion of formal proofs 
or derivations, that is finite sequences of sentences, each 
of which are either axioms, given premises, consequences 
from the preceding sentences by valid rules of inference, or 
assumptions that are justified subsequently (e.g., Azzouni 
2004; Hilbert 1931, p. 489). Derivations have been consid-
ered the ideal standard for proof for some time, but were 
critiqued and discussed heavily in the literature (e.g., Hanna 
2000). Aberdein (2009) underlined that “not all—indeed 
hardly any—mathematical proofs are strict formally valid 
logical derivations” (p. 1), especially not within mathemati-
cal practice and teaching. Some authors thus propose an in-
principle formalizability as a characteristic of acceptable 
proofs (e.g., Alama and Kahle 2013). That is, an acceptable 
proof may contain gaps, as long as it can be transformed 
into a corresponding formal proof. Still, this view has also 
been challenged on plausible grounds (Tanswell 2015). If 
accepted as a characteristic, however, it would imply that 
a proof should (a) only use axioms or premises, already 
proven arguments, or arguments that are easy to prove, (b) 
only use allowed rules of inference, and (c) have a logical 
structure that ends at the claim to be proved. These criteria 
correspond to the three categories of knowledge about the 
role of mathematical proofs and their acceptance (methodo-
logical knowledge; Heinze and Reiss 2003), which can be 
interpreted as acceptance criteria, as follows. Proof scheme 
refers to the types of inference that are acceptable in math-
ematical proofs. Logical chain refers to the local validity of 

each individual step of a proof, in particular, that warrants 
have been shown in previous steps or are part of the shared 
knowledge (e.g., Lakatos 1963). While the latter criteria 
focus on local aspects of a proof, proof structure focuses on 
the overall structure of a proof and the question of whether 
it reduces the claim completely to axioms, prerequisites and 
proved statements, and does not, for example, contain circu-
lar reasoning (petitio principii).

A social-descriptive approach to acceptance criteria for 
proofs has been taken by Hanna (1989), claiming that “math-
ematicians accept a new theorem only when some combina-
tion of the following holds” (p. 879): they understand the 
theorem; the theorem is significant enough; the theorem 
is consistent with the body of accepted results; the author 
has an unimpeachable reputation; there is convincing math-
ematical argument for it. Partially based on these findings, 
Heinze (2010) conducted an online-study with 40 mathema-
ticians and provided evidence that the three most frequently 
reported reasons for mathematicians to accept a proof in a 
research context are that they checked it themselves, that it 
was produced by colleagues with high standards, and that it 
was published long ago without contradiction.

Another social-descriptive approach has been taken by 
Dawkins and Weber (2017), who identified four values that 
they perceived as held by the mathematical community, 
relating to the following: (a) use of a priori arguments, (b) 
the a-contextuality of knowledge and justifications, (c) a 
desire to increase understanding of mathematics, and (d) 
the desire for a set of consistent proof standards. Based on 
these values, they formulated multiple norms upholding 
these values, for example that justifications are deductive 
and do not admit rebuttals.

Based on these sources, different categories of accept-
ance criteria emerge: First, based on the findings by Hanna 
(1989) and Heinze (2010), there appear to be several social 
acceptance criteria, for example relating to the reputation 
of the author. These can be related to an authoritarian proof 
scheme and underline the social dimension in the acceptance 
of proofs.

Besides social criteria, which base the acceptability of 
proofs on others’ decisions and behavior, two other cat-
egories emerge: Structure-oriented criteria, that is, crite-
ria meant to ensure the formal validity of the proof, and 
meaning-oriented criteria, meant to ensure goals such as 
understanding, the consistency with one’s own prior math-
ematical knowledge, or more aesthetically related goals such 
as beauty or simplicity.

The difference between the latter categories can be 
illustrated based on an argument by Weber and Mejia-
Ramos (2015), who differentiated between relative and 
absolute conviction. Structure-oriented criteria can be 
interpreted as aiming to establish absolute conviction, that 
is, to assert that the given statement is valid. In contrast, 
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meaning-oriented criteria try to establish relative convic-
tion, that is, trust that the statement holds with a high 
probability. For example, an iconic representation may 
establish high relative conviction, yet may not establish 
absolute conviction. Accordingly, the iconic argument may 
be rejected as a proof based on structure-oriented criteria, 
but likely not by meaning-oriented criteria.

Finally, this distinction also aligns with research on the 
functions of mathematical proofs. Whereas structure-ori-
ented criteria relate to the verification function, meaning-
oriented criteria relate to functions such as explanation or 
understanding (de Villiers 1990; Hanna and Jahnke 1996).

Although some research on the notion of proof in gen-
eral (Hemmi 2006) and the acceptance of proofs in par-
ticular (Harel and Sowder 1998; Healy and Hoyles 2000) 
exist, there is little quantitative evidence on acceptance 
criteria held by school and university students, and only a 
bit more regarding mathematicians in a research context. 
In the research context, some acceptance criteria appear 
to relate more to the statement or theorem to prove (e.g., 
‘they understand the theorem’) than to the actual proof. 
It is likely that these criteria are particularly important in 
mathematicians’ research practice, where often statement 
and proof are questioned. However, statements in teach-
ing settings are often either simply accepted as true by the 
students or implied to be true (e.g., ‘Prove that…’-tasks), 
thus creating an epistemologically different situation. 
Accordingly, differences in the acceptance criteria used 
by researchers as contrasted with students or mathemati-
cians in a teaching context can be expected.

2.3 � Proof validation and acceptance criteria

Acceptance criteria for proofs can be regarded as impor-
tant during the construction of proofs (see Ufer et  al. 
2009), as they serve as benchmarks to check whether the 
proof is acceptable or if parts need to be improved. Still, 
the actual acceptance criteria remain mostly implicit. 
Proof validation, in contrast, comprising the reading of 
purported proofs aimed at judging their acceptability (e.g., 
Alcock and Weber 2005; Selden and Selden 2003) explic-
itly requires using and verbalizing acceptance criteria 
when giving a justification for the judgement. Thus, data 
from proof validation may provide important information 
about acceptance criteria. Not only the justifications may 
help to identify the relevant acceptance criteria, but also 
the judgments (accept or reject) may indicate their proper 
implementation. In particular, the conjunction of both 
sources appears most beneficial.

2.4 � School students

In a large study with high-attaining students, Healy and 
Hoyles (2000) showed that students had problems correctly 
validating proofs. Although a majority (between 54 and 
60%) were able to correctly judge the (un)acceptability of 
empirical arguments, about a third failed to do so. Further-
more, students accepted arguments given in symbolic nota-
tion more frequently than narrative proofs. These results are 
partially underlined by an interview study with 22 students 
by Bieda and Lepak (2014), unveiling that besides deduc-
tive reasoning, also understanding and being convincing are 
important acceptance criteria for school students.

2.5 � University students

Based on the prominent role of proof during university 
education, there are several studies focusing on students’ 
proof validation. Analyses by Alcock and Weber (2005) and 
Selden and Selden (2003) reveal mediocre results for stu-
dents’ judgments, which often focused on structure-oriented 
criteria relating to the logical chain, such as the proper use 
of definitions or missing or incorrect warrants. Still, Selden 
and Selden (2003, p. 27) highlighted that although students 
check multiple aspects of the purported proofs, their first 
judgments “yield no better than chance results”, implying 
problems in the implementation of their acceptance crite-
ria. Furthermore, results reveal that undergraduates also 
have problems in justifying their judgments. Multiple stud-
ies suggest that students focus on surface features and local 
properties of proofs such as the individual validity of single 
inferences (e.g., Inglis and Alcock 2012; Selden and Selden 
2003).

2.6 � Mathematicians

In contrast, mathematicians appear to consider local and 
global aspects of proofs (Weber 2008; Weber and Mejía-
Ramos 2011), thus considering structure-oriented criteria 
corresponding to the proof structure and logical chain. 
However, Inglis and Alcock (2012) were not able to confirm 
mathematicians’ attendance to global aspects of proofs using 
eye-movement data (Weber et al. 2013).

A study on proof validation by Inglis et al. (2013) with 
research mathematicians underlined the variance in math-
ematicians’ acceptability judgments of proofs in the context 
of teaching. Mathematicians referred to the logical chain of 
the proof, the overall proof structure, as well as to explicit 
errors; these are acceptance criteria that can be regarded as 
structure-oriented.

Moreover, Weber (2008) and Weber and Mejía-Ramos 
(2011) showed that mathematicians use a variety of modes of 
reasoning during proof validation, some being rather formal 
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corresponding to structure-oriented criteria, others rather 
focusing on meaning-oriented criteria (e.g., understand-
ing why individual examples work; Weber 2008, p. 441ff.). 
Moreover, several authors (e.g., Heinze 2010; Weber 2008; 
Weber and Mejía-Ramos 2011) have argued that the concep-
tion of mathematics as a purely deductive-axiomatic practice 
is idealized and unrealistic and that mathematicians obtain 
conviction from both empirical and authoritative sources. 
Still, it is unclear if this result extends also to the context of 
teaching, or if mathematicians focus on formal aspects when 
teaching proof and proving.

3 � The current study

Handling mathematical proofs is part of school students’, 
university students’, and mathematicians’ practice. For 
this reason, they have to be able to evaluate given or self-
constructed proofs. Their criteria for judging these proofs 
reflect the (implicit) norms and values of the local math-
ematical community. Although acceptance criteria appear 
to be highly important for the successful handling of math-
ematical proofs, there is currently neither a satisfactory theo-
retical description of acceptance criteria for mathematical 
proofs (within mathematical practice) nor is there sufficient 
empirical evidence on the acceptance criteria used by school 
students, university students, and mathematicians in a teach-
ing context.

As the transition from school to university appears to be 
crucial for learning to prove and enculturation into the uni-
versity community, the present study focuses on the accept-
ance criteria used by students at the end of school, university 
mathematics students in their first semesters, and mathemati-
cians in the context of teaching, and compares these groups 
cross-sectionally.

The study was guided by the following main questions:

	(RQ 1)	 Do school and university students detect violations 
of central norms for mathematical proofs when vali-
dating proofs? Do they provide justifications for their 
judgments that match the violations contained in the 
given purported proofs?

Based on prior results, we expected problems by both 
groups when validating proofs. Moreover, we expected pro-
nounced differences in their judgments and justifications 
based on the violated norm.

	(RQ 2)	 Which acceptance criteria do school students, uni-
versity students, and mathematicians refer to when 
accepting or rejecting purported proofs in the context 
of teaching?

As there are currently no quantitative data available for 
these groups, no specific hypotheses were made. Still, based 
on prior research on proof validation, we expected that all 
three groups would refer to structure-oriented criteria as 
well as meaning-oriented criteria. Furthermore, based on 
the reported problems at the transition from school to uni-
versity and the shift in the role of proof, we expected uni-
versity students to refer more to structure-oriented criteria 
than school students do, but also to struggle to implement 
them. Finally, based on the findings by Perrenet and Taconis 
(2009), we expected that the alignment of criteria with those 
of mathematicians would increase from school to university 
students.

	(RQ 3)	 Which acceptance criteria do mathematicians indi-
cate as suitable for ensuring or rejecting the accept-
ability of proofs in the context of university teaching? 
What are differences and commonalities when this 
context is compared with the research context?

Proofs by students typically correspond to propositions 
that are presumed to hold. Accordingly, we expected that 
the criteria offered by mathematicians in the teaching con-
text would deviate from those in the research context, where 
the acceptability of the statement and its proof are in ques-
tion. Such differences are also supported by results from 
Weber (2008). Furthermore, we expected that mathemati-
cians would not use social acceptance criteria in the teaching 
context, in contrast to the research context.

4 � Method

To answer these questions, questionnaire data were analyzed 
from all three groups. For school students, data were gath-
ered from future mathematics students (N1 = 114, 59 male, 
47 female, 8 NA) in a voluntary preparation course for their 
university mathematics studies (bachelor, secondary school 
teaching degree). This sample was chosen as these students 
were assumed to be well enculturated into school mathe-
matics, as they had completed the whole length of school 
education and had not started their university mathemat-
ics studies yet. Moreover, participants had decided to study 
mathematics at university, allowing a better comparison 
with the university student sample than a random school 
student sample. The university student group was surveyed 
in the first session of a voluntary course on proving, which 
consisted of mathematics students (N2 = 66, 24 male, 41 
female, 1 NA; bachelor, secondary school teaching degree) 
at the end of their first or third semester. Mathematicians’ 
data were gathered from research mathematicians from Ger-
man universities (N3 = 273, 217 male, 50 female, 6 NA; 170 



723Acceptance criteria for validating mathematical proofs used by school students, university…

1 3

doctoral students, 53 post-docs, 16 lecturers, 31 professors, 
3 NA) using an online questionnaire.

All groups received a questionnaire2 with two sections, 
the first requesting demographic data. In the second sec-
tion, participants were introduced to a proposition from 
elementary number theory (Fig.  2) and four purported 
proofs for this proposition that were presented as proofs by 
fellow students (for school and university students) or by 
university students in their first semester (for mathemati-
cians). The questionnaire contained one acceptable proof as 
well as three unacceptable proofs (according to our socio-
mathematical norms). The unacceptable proofs contained an 
incorrect warrant, circular reasoning, or inductive reasoning. 
Based on the definition of a formal proof, these can be seen 
as violations of core norms with regard to proofs. All three 
groups were asked to specify whether the purported proofs 
could be classified as a “correct mathematical proof” (closed 
format; Fig. 2) and subsequently to provide a justification for 
their judgment (open format).

Mathematicians received a third section that introduced 
the scenario of a student tutor having problems grading 
first-year students’ homework. Mathematicians were asked 
to state what the tutor had to focus on to make sure that a 

purported proof is certainly “correct” or “incorrect” (two 
open items; “What does a student tutor have to look for when 
grading students’ homework to determine if a purported 
proof is definitely (in)correct?”).

4.1 � Verification of the employed purported proofs

As acceptance criteria for mathematical proofs are socially 
negotiated, the acceptance of a proof may differ between 
communities. To ensure that the purported proofs presented 
in this study can be ‘rightfully seen’ as (un)acceptable as 
intended, mathematicians’ judgments were used as refer-
ence. The results obtained (Table 1) indicate that all proofs 
can be seen as (un)acceptable as intended, as there was 
almost unison agreement and variation was often justified 
by comments such as “the proof could be easily changed to 
a correct proof”.

4.2 � Coding of acceptance criteria

The open items from the proof validation section were coded 
in two ways. First, it was analyzed whether they matched 
the errors implemented in the incorrect proofs (dichotomous 
rating), in order to judge whether they were based on the 
intended errors or on other aspects of the proofs.

Second, the justifications were segmented and coded to 
extract the used acceptance criteria. Coding was based on 

Fig. 2   The proposition used in 
the study, an example purported 
proof, and according items

2  The questionnaire can be requested for research purposes from the 
authors.
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a deductively derived coding scheme emanating from the 
theoretical discussion above, complemented by inductively 
derived categories that occurred during the coding process 
(Mayring 2014). The coding scheme (Table 2) comprised 
13 main-categories for acceptance criteria. As inductive cat-
egories, trivializations was added for comments relating to 
the unacceptability of generic justifications such as “this is 
trivial”, unambiguousness for comments requiring proofs to 
be unambiguous, and all premises were used for comments 
mentioning that in a mathematical proof, all premises are 
required to prove the proposition.

The coding scheme further comprised categories for 
responses that were interpreted as non-criterial, that is not 
allowing the determination of the underlying acceptance 
criteria. Here, categories were created for suggestions for 
improvements for general recommendations that could not 
be associated with a specific acceptance criterion, and math-
ematical proof, for claims that the purported proof is (not) 
a “mathematical proof” without further criteria as justifi-
cation. The other non-criterial answers varied substantially 
(e.g., “if identical to the sample solution :D” or “It does 
not harm that tutors also participate in the lecture. Like this 
they stay up to date”)3, yet no additional coherent categories 
could be formed.

The answers from mathematicians’ third section were 
coded analogously to the open items from the proof valida-
tion section. Further, they were additionally analyzed regard-
ing comments on the impossibility of ascertaining the cor-
rectness of a proof, as such comments were noticed during 
the initial coding process.

Coding was carried out by a researcher and a student 
assistant. 20% of the data were double-coded with good 
inter-rater reliabilities (κsegmentation ≥ 0.70; κmatch ≥ 0.93; 
κacc_criteria ≥ 0.85).

5 � Results

5.1 � Proof validation and match of justifications 
(RQ 1)

For each group and each purported proof, descriptive results 
are given in Table 3, displaying (a) the percentage of par-
ticipants providing a correct judgment regarding the accept-
ability of the proof, (b) the percentage of participants pro-
viding a justification, and (c) the percentage of participants 
providing a matching justification (relative to each group or 
the number of participants in each group who provided a jus-
tification). Overall, the three groups differ significantly with 
regard to the distribution of correct judgments for the four 
proofs [χ2(6) = 33.09, p < .001]. Post-hoc pairwise compari-
sons show significant differences between school students 
and mathematicians as well as between university students 
and mathematicians [χ2(3) > 15.10, p < .002] in favor of the 
mathematicians, yet school and university students do not 
differ significantly [χ2(3) = 3.23, p = .358].

For both student groups, solution rates differ significantly 
among the four purported proofs [χ2(3) > 35.51, p < .001]. 
Most school and university students identified the acceptable 
proof as acceptable (> 81.8%) and the proof with inductive 
reasoning as unacceptable (> 84.8%), whereas solution rates 
for the proof with an incorrect warrant (< 57.0%) and circu-
lar reasoning (< 42.1%) are considerably lower.

Table 1   Mathematicians’ 
judgments on the acceptability 
of the purported proofs in the 
validation section

– no missing data

Correct (%) Incorrect (%) Don’t know 
(%)

Missing (%)

Acceptable proof 97.8 1.5 0.7 –
Proof with an incorrect warrant 2.9 88.3 7.3 1.5
Proof with circular reasoning 3.3 95.2 1.1 0.4
Proof with inductive reasoning 1.5 97.8 0.7 –

Table 2   Main-categories used 
in the coding scheme

Deductive categories Inductive categories

Structure-oriented Meaning-oriented Criterial reasoning Non-criterial

Proof structure Understanding Trivializations Suggestions for improvement
Proof scheme Consistency with 

prior knowledge
Unambiguousness Mathematical proof

Logical chain Aesthetics All premises were used Other
Counterexamples

3  All illustrative examples were translated from German to English.
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Focusing on justifications, data show that the percent-
age of justifications given by school and university students 
varied significantly among the different purported proofs 
[28.8–79.8%; χ2(3) > 50.17, p < .001]. School and university 
students provided fewest justifications for the proof with cir-
cular reasoning (46.5% and 28.8% respectively) and most for 
the proof with inductive reasoning (79.8% and 75.8% respec-
tively). For the latter, 80.2% and 82.0% respectively of the 
provided justifications matched the proof’s error, whereas 
only 41.5% and 31.6% respectively of the justifications for 
the proof with circular reasoning could be seen as matching. 
Mathematicians frequently provided justifications (> 83.9%) 
and, in contrast to school and university students, gave few-
est justifications for the inductive reasoning and most for the 
acceptable proof. The justifications given by mathematicians 
matched the purported proofs well (> 88.2%), although some 
provided only meta-comments on the task, notation, or other 
aspects that could not be classified as ‘matching’.

5.2 � Acceptance criteria referred to during proof 
validation (RQ 2)

To capture the used acceptance criteria, each justification 
was coded separately. Overall, justifications contained more 
than 2500 references to acceptance criteria. Combining the 
justifications for all four purported proofs, school students 
on average mentioned 2.8, university students 3.5, and 
mathematicians 7.6 acceptance criteria. Yet, the number of 
acceptance criteria varied from proof to proof as the number 
of justifications also varied considerably.

School students, university students, and mathemati-
cians referred to all deductively derived categories, except 
for consistency with prior knowledge (Fig. 3). Furthermore, 
unambiguousness (e.g., “I’m not sure if the proof is unam-
biguous enough”) was used only by school students, whereas 
all premises were used (e.g., “Were all premises used? If not, 
the proof is either more general than required or wrong”) and 
suggestions for improvements (e.g., “the student should do a 
proof by cases mod 3”) were only used by mathematicians. 
All other categories were used by all three groups. In con-
trast to prior studies in research contexts, no group referred 
to social criteria.

Overall, groups significantly differed in the frequency 
distribution of the acceptance criteria they referred to 
[χ2(14) = 242.12, p < .001]4. Post-hoc pairwise tests also 
indicated significant pairwise differences [χ2(7) > 28.35, 
p < .001].

Out of the thirteen categories, logical chain (e.g., “the 
theorem he refers to is both wrong and unknown”), proof 
scheme (e.g., “the so-called proof consists only of exam-
ples”), and proof structure (e.g., “the assertion to be proved 
is assumed at the beginning”) were used most often (Fig. 3). 
Mathematicians referred to proof structure more frequently 
and to proof scheme less frequently than school and univer-
sity students.

Table 3   Descriptive results for 
the purported proofs

Numbers in brackets are relative to the number of participants in each group who provided a justification. 
All other numbers are relative to the respective group

School students University students Mathematicians

Acceptable proof
 Correct judgment 82.5% 81.8% 97.8%
 Justification given 50.9% 45.5% 100%

Proof with an incorrect warrant
 Correct judgment 57.0% 47.0% 88.3%
 Justification given 70.2% 68.2% 86.1%
 Matching justification 50.9%

(72.5%)
30.3%
(44.4%)

83.5%
(97.0%)

Proof with circular reasoning
 Correct judgment 42.1% 24.2% 95.2%
 Justification given 46.5% 28.8% 85.7%
 Matching justification 19.3%

(41.5%)
9.1%

(31.6%)
76.6%
(89.3%)

Proof with inductive reasoning
 Correct judgment 86.0% 84.8% 97.8%
 Justification given 79.8% 75.8% 83.9%
 Matching justification 64.0%

(80.2%)
62.1%
(82.0%)

74.0%
(88.2%)

4  The categories unambiguousness, all premises were used, and sug-
gestions for improvements were excluded for the test as cell frequen-
cies were zero.
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Interestingly, university students referred to understand-
ing (16.0% of the coded criteria; e.g., “I can’t follow the 
proof”) significantly more often than both other groups 
[5.2% for school students, 3.2% for mathematicians; 
χ2(3) = 68.06, p < .001]. Mathematicians’ high number of 
non-criterial codes is due to answers that included refer-
ences to their educational practice or other aspects (e.g., “I 
would not use this proof in my teaching”), which could not 
be coded as a reference to an acceptance criterion.

Examining differences in the use of acceptance criteria 
between groups, five of the categories (proof structure, 
proof scheme, aesthetics, math. proof, and other) show a 
monotonic increase or decrease in the percentage of refer-
ences to the corresponding acceptance criteria from school 
to university students and from university students to math-
ematicians. Three categories (logical chain, counterexam-
ples, and understanding) show an increase–decrease or a 
decrease-increase pattern. Contrary to our hypothesis, this 
result indicates that there is no universally increasing align-
ment with mathematicians’ use of acceptance criteria, but 
more nuanced changes can be observed.

Overall, the deductively derived acceptance criteria proof 
structure, proof scheme, and logical chain also empirically 
represent main acceptance criteria during proof validation 
as they are the criteria most referred to by each group. Addi-
tionally, understanding appears to be a main acceptance cri-
terion, at least for university students.

5.3 � Mathematicians’ acceptance criteria 
in the general context of teaching (RQ 3)

To complement the acceptance criteria derived from the 
validation of specific proofs, mathematicians were asked to 

provide criteria that a tutor could use to accept or reject 
purported proofs. Two items were used, so that accept-
ance criteria mentioned for accepting and rejecting could 
be separated. Mathematicians’ answers were detailed and 
1537 codes for acceptance criteria were assigned. On aver-
age, mathematicians referred to 2.6 criteria for accepting and 
3.0 for rejecting a proof.

The criteria contained in the answers and their relative fre-
quency (Fig. 4) show a pattern similar to the results from the 
proof validation tasks. Only the category mathematical proof 
was no longer found in mathematicians’ answers, whereas a 
new category trivializations had to be introduced, as the use 
of words such as “obviously” were mentioned as a criterion to 
reject proofs. Vice versa, not using such words was mentioned 
as a criterion to accept a proof, often labeled as a necessary, 
yet not sufficient criterion. Furthermore, criteria relating to the 
proof structure were mentioned less frequently in this section 
as compared to the validation tasks.

The results from this more general section (without a spe-
cific proposition and purported proof) mirror the result from 
the proof validation section, in which the acceptance criteria 
logical chain, proof structure, and proof scheme are referred 
to most.

The distinction between criteria for accepting and rejecting 
a proof further shows significant differences [χ2(9) = 72.72, 
p < .001]. Counterexamples were used more often when reject-
ing a proof [χ2(1) = 67.18, p < .001], whereas understanding 
was referred to more often when accepting a purported proof 
[χ2(1) = 7.87, p = .005]. Thus, in the context of accepting a 
proof, there appears to be a shift towards meaning-oriented 
criteria, although structure-oriented criteria are still mentioned 
more frequently.
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Finally, it should be mentioned that 8.3% of mathemati-
cians’ answers contained an explicit comment that asserting 
the correctness of a proof may be complicated or impossible.

6 � Discussion

The presented study includes two major contributions for 
research on mathematical argumentation, proof, and evi-
dence: First, it systematically compares acceptance crite-
ria between different groups of persons. Although there is 
related prior research (e.g., Harel and Sowder 1998; Hemmi 
2006; Weber 2003), it has so far been hard to disentangle 
task effects from population effects as different tasks were 
used for different populations. Second, it examines math-
ematicians’ acceptance criteria in the context of teaching 
and not in the context of research, which has been the focus 
so far. The results show a considerable discrepancy between 
both contexts, which has yet to be addressed and explained.

6.1 � Problems in validating proofs

The findings are consistent with previous results (e.g., 
Alcock and Weber 2005; Selden and Selden 2003), in which 
school and university students show mixed performances 
when validating proofs, and extends them by showing that 
success significantly depends on the purported proof and 
the error contained in it. In particular, university students’ 
solution rate when validating a proof with circular reasoning 
was merely 24% and only about 10% gave a matching justi-
fication, whereas 68% of the justifications did not match. In 
contrast, school and university students were quite aware that 
inductive reasoning is not acceptable in proofs (> 80%) and 
many students (> 60%) provided a matching justification.

The results obtained show that university students, 
although having finished at least their first semester, do 
not differ significantly from school students in their solu-
tion rates. University students’ performance is even slightly 
worse, both in providing correct judgments and matching 
justifications. Although this may partially be an effect of the 
selected sample, there appears to be a substantial number 
of university students who even after studying one semes-
ter do not show a robust understanding of criteria to judge 
the acceptability of proofs. Since understanding proof as 
a concept and handling proofs successfully are among the 
most important learning goals in early undergraduate math-
ematics (see Selden 2011), results appear to question the 
current definition-theorem-proof-teaching style that often 
only implicitly addresses the concept of proof and accord-
ing norms and values (see also Lakatos 1963).

6.2 � Acceptance criteria and enculturation

Despite school and university students’ problems when vali-
dating proofs, the results obtained show that they refer to 
multiple acceptance criteria and use mostly the same ones as 
mathematicians. Thus, school and university students appear 
to have (at least some) knowledge about different acceptance 
criteria for mathematical proofs. Still, the combination of 
school and university students’ judgments, justifications, and 
their acceptance criteria show that they have severe prob-
lems employing acceptance criteria effectively, as they often 
fail to give matching justifications. This extends the explora-
tory results by Selden and Selden (2003).

Examining the acceptance criteria referred to by all three 
groups (see Fig. 3), proof structure, proof scheme, logical 
chain, and understanding appear to be most important in 
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the context of teaching, showing an emphasis on structure-
oriented criteria. However, there are significant differences: 
Whereas mathematicians focus on proof structure and logi-
cal chain, implying a local and global perspective on proof, 
school and university students refer more often to the proof 
scheme, focusing on a local perspective. This aspect is 
reflected in students’ low solution rates when validating the 
proof with circular reasoning (see Table 3), which is an error 
relating to a global aspect of the proof. Results thus underpin 
qualitative results that students focus on surface features or 
individual inferences and that experts pay more attention to 
the overall structure (Inglis and Alcock 2012; Weber 2008; 
Weber and Mejía-Ramos 2011).

In contrast to mathematicians, school and university 
students seem to refer to understanding more often. This 
may reflect a focus on understanding and explanation as 
functions of proof within the school community. From an 
enculturation perspective, it is particularly interesting to see 
that university students used understanding more often than 
school students, as one might have expected the opposite 
as university students should be more familiar with valid-
ity as a function of proof. This result might be interpreted 
as failed enculturation, as university students do not align 
more with mathematicians’ use of the acceptance criterion 
than school students do. However, this could be interpreted 
more favorably: School students transitioning from school 
to university enter a new mathematical community with new 
(at least for them) socio-mathematical norms and acceptance 
criteria. It may be normal that new university students are 
insecure in applying the new acceptance criteria properly 
(matching this study’s and prior results), and thus may refer 
to meaning-oriented criteria such as understanding, as they 
perceive the proof’s error, but cannot frame it using the new 
structure-oriented criteria.

Overall, the results show that structure-oriented criteria 
appear to be the most important acceptance criteria for all 
three groups in this context, with university students also 
using meaning-oriented criteria from time to time.

6.3 � Mathematicians’ double role: teaching 
and research

Prior research on acceptance criteria in the context of 
research (Hanna 1989; Heinze 2010; Weber 2008; Weber 
and Mejía-Ramos 2011) have shown that meaning-ori-
ented criteria are used frequently by mathematicians, 
which could not be replicated in our study for the context 
of teaching. This can possibly be interpreted in the sense 
of weak and strong problem-solving strategies (e.g., Chin-
nappan and Lawson 1996): proofs in the context of teach-
ing can be assumed to be relatively easy for mathemati-
cians. They may thus be able to apply structure-oriented 

criteria (as strong problem-solving strategies, which can 
be used to ensure absolute conviction) more easily than in 
the context of research, where proofs are generally more 
difficult. There, they may not always be able to use these 
strong criteria, but have to use weaker social or meaning-
oriented criteria. For students, on the other hand, proofs 
in the context of teaching are mostly difficult, thus using 
more meaning-oriented criteria as reflected in the data.

Mathematicians’ answers to the open questions regard-
ing acceptance criteria for proof may provide further 
evidence for this interpretation. The meaning-oriented 
acceptance criterion understanding is used more often 
when showing the acceptability of a proof, a generally 
more difficult task than rejecting it, which is done rather 
with structure-oriented criteria (see Fig. 4).

Finally, the difference between research and teach-
ing contexts is underlined by the fact that not a single 
social acceptance criterion was used, whereas these are 
mentioned as important in the context of research (Hanna 
1989; Heinze 2010).

6.4 � Limitations

The results from this study align with prior results in mul-
tiple ways and new results appear plausible. Still, they have 
to be handled with care. Firstly, the school student sample 
consists of future mathematics students and it could be 
argued that it is not representative for all school students. 
However, the emphasis of this paper was a cross-sectional 
comparison in a quasi-longitudinal way, which makes this 
choice more reasonable than a comparison with a general 
school student sample. Secondly, the student sample may 
be selective, as it was based on a voluntary course. Still, 
the size of the course equals a third of all students enrolled 
in the first semester, so that a large proportion of the stu-
dents was included in this study.

Furthermore, two methodological limitations should 
be mentioned: In their online survey, mathematicians 
received proof validation tasks first and the general ques-
tions regarding acceptance criteria afterwards. As both 
parts were clearly separated and put in different contexts, 
severe priming effects were neither assumed nor observed. 
Still, the sequence should be counterbalanced in future 
research. Moreover, the study used one proposition with 
four purported proofs. Data from other propositions and 
proofs, including those from different content areas, would 
be beneficial to underpin the results. In particular, propo-
sitions and proofs of varying difficulty could be used to 
examine the dependency of the use of structure- and mean-
ing-oriented acceptance criteria on the difficulty.

Finally, all three samples are from Germany. Although 
it seems likely that results generalize to other countries, 
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the generalizability of results in the context of proofs are 
always questionable, as they rely on local socio-mathemat-
ical norms. International replication studies would thus be 
advantageous.

6.5 � Implications

The presented study gives essential insights into school 
students’, university students’, and mathematicians’ use of 
acceptance criteria. Results show that school and univer-
sity students have difficulties correctly validating proofs 
and, in particular, in giving matching justifications under-
pinned by appropriate acceptance criteria. Accordingly, 
school and university students appear to have problems 
implementing known acceptance criteria and thus may 
benefit from interventions focusing on the use of accept-
ance criteria. Here, future research is needed to analyze 
the effectiveness of such approaches and to find out more 
about school and university students’ difficulties with 
implementing acceptance criteria.

Importantly, results confirm significant differences 
between the use of acceptance criteria in different commu-
nities. Not only could differences between all three groups 
be found, but results also highlight differences for math-
ematicians in teaching as contrasted with research. Appar-
ently, there is not only a shift in the acceptance of proof 
from school to university, but a second shift from univer-
sity teaching to research that has not yet received attention 
in the mathematics education community. In particular, 
mathematicians may intentionally focus on an idealized, 
structure-oriented picture of mathematics and according 
structure-oriented criteria in their teaching. However, it 
is unclear if this seeming detour has a positive effect on 
students’ learning and enculturation, and if this empha-
sis is actually made deliberately. Educationally, the focus 
on structure-oriented criteria may be acceptable, but it 
appears unclear how students can learn to use acceptance 
criteria, if they are at least partially unauthentic, and how 
students can learn to use the criteria from mathematicians’ 
research practice if they are not enculturated accordingly.

Based on the data and discussion, three main goals are 
seen for further research: to find effective ways to support 
university students in implementing the appropriate local 
acceptance criteria; to analyze the shift between accept-
ance criteria in teaching and research; and to use the data 
on acceptance criteria to inform ongoing discussions about 
the acceptance of proof.

Concluding, acceptance criteria for proofs are important 
both in understanding the concept of proof in mathemati-
cal practice as well as in supporting school and university 
students in handling proof, and thus also in their encul-
turation into local mathematical communities. Although 
there is little consensus about general acceptance criteria 

for mathematical proofs so far, studying local criteria may 
prove helpful for mathematics, philosophy of mathemati-
cal practice, and mathematics education, and may help in 
gaining further insights into what is counted as evidence 
in mathematical arguments.
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