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Abstract
We explore 11–12-year-old students’ emerging ideas of models and modelling as they engage in a data-modelling task involv-
ing inquiry based on data obtained from an experiment. We report on a design-based study in which students identified what 
and how to measure, decided how to structure and represent data, and made inferences and predictions based on data. Our 
focus was on the following: (1) the nature of the student-generated models and (2) how students evaluated the models. Data 
from written work generated by groups and transcripts of interviews were analysed using progressive focussing. The results 
showed that groups constructed models of actual data by paying attention to various aspects of distributions. We found a 
tendency to use differing criteria for evaluating the success of models. This data modelling process also fostered students’ 
making sense of key ideas, tools and procedures in statistics that are usually treated in isolation and without context in school 
mathematics. In particular, we identified how some students appeared to gain insights into how a ‘good’ statistical model 
might incorporate some properties that are invariant when the simulation is repeated for small and large sample sizes (signal) 
and other properties that are not sustained in the same way (noise).
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1 Introduction

In today’s society, an abundance of information is available 
through media and technology. To be effective in such an 
environment in the twenty-first century, citizens need to be 
prepared for utilizing information, media and technology 
effectively (see framework for twenty-first century learning, 
http://www.p21.org). Hence twenty-first century learning 
skills emphasize the importance of equipping young people 
with competencies for working collaboratively and for think-
ing critically and creatively about real-world problems and 
using data to deal with them. A significant source of such 
activity is the use of models in statistics, since it bridges the 
real world where the problems reside and the theoretical 
world in which analyses are done of the data emerging from 

the problem context. Our aim in this study is to engage stu-
dents in a data-rich task which will necessitate critical and 
creative thinking while we research the nature of the models 
constructed and how the students evaluate them.

2  Models and modelling in mathematics 
and statistics

Mathematical models have been a key element in the histori-
cal development of both the disciplines of mathematics and 
statistics. Lesh and Doerr (2003) describe models as follows:

conceptual systems (consisting of elements, relations, 
operations, and rules governing interactions) that are 
expressed using external notation systems, and that are 
used to construct, describe, or explain the behaviours 
of other system(s)–perhaps so that the other system 
can be manipulated or predicted intelligently. (p. 10)

So, modelling refers to this process of designing, describ-
ing or explaining another system for a particular purpose.

In statistics, modelling and reasoning with models are 
considered as essential components of statistical thinking 
when analysing data (Wild and Pfannkuch 1999). Moore 
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(1990) describes the role of statistical models in “moving 
from particular observations to an idealized description 
of all observations” (p. 109). For example, the normal or 
uniform distributions are such models for describing the 
overall pattern in data. According to Garfield and Ben-Zvi 
(2008), one of the main uses of models in statistics is fitting 
a statistical model, such as normal distribution, to data that 
already exist or are collected through survey or experiment 
in order to explain and describe the variation in the data. 
The role of statistical graphs is also important in statistical 
modelling since they enable us “to look for the shape, center, 
and spread of the displayed distribution, to weigh the five-
number summary against x̄ and s as a description of center 
and spread, and to consider standard density curves as possi-
ble compact models” (Moore 1999, p. 251). In other words, 
data representations can be seen as models for describing 
the overall pattern in sample data to make predictions about 
a population or phenomenon with a degree of uncertainty.

3  Models and modelling in pedagogy

Given the importance of models in mathematics and sta-
tistics, it is not surprising that school curricula over many 
decades have been peppered with the requirement that stu-
dents are able to make use of given models such as New-
ton’s laws of motion in applied mathematics and the normal 
distribution in statistics. Such models have played a key 
role in transmission models of teaching and learning where 
the models appear as representations. The challenge for the 
student experiencing the transmission model of teaching is 
one of recognising the nature of the set problem and trans-
lating (a term coined in this context by Gravemeijer 2002) 
the problem into one of the various models that would have 
been previously introduced in the curriculum. These models/
representations in themselves contain no intrinsic meaning 
and students often struggle to make sense of them.

More recently, the Common Core Standards Writing 
Team (2013) pointed out that, although there was no single 
definition of mathematical modelling that was agreed upon, 
its various descriptions tended to have the following com-
mon features:

mathematical modeling authentically connects to the 
real world; it is used to explain phenomena in the real 
world and/or make predictions about future behavior 
of a system in the real world; it requires creativity and 
making choices, assumptions, and decisions; it is an 
iterative process; and there can be multiple approaches 
and answers. (p. 8)

It seems then that it is not enough to simply manipulate 
and calculate with given statistical representations. A more 
holistic approach to teaching statistical concepts, ideas and 

tools within a broader context of data enquiry with emphasis 
on reasoning and inference is needed. One way of doing this 
is to adapt a teaching perspective that focusses on informal 
statistical inference (ISI) (Bakker and Derry 2011). This 
increasingly recognized approach entails the following 
essential components: (1) making a generalization beyond 
the data; (2) using the data as evidence for the generaliza-
tion; and (3) acknowledging uncertainty in describing the 
generalization (Makar and Rubin 2009). A generalization 
beyond the data might, for example, involve identifying a 
signal in the data, that is to say a feature or trend in the data 
that might be explained by an associated or causal factor. 
Acknowledging uncertainty requires recognising the noise in 
the system which cannot be explained but could be regarded 
as random error. As more attention has been paid to innova-
tive ways of connecting chance and data and to reasoning 
about uncertainty in the context of ISI, the role of statistical 
models and modelling has come into prominence in devel-
oping students’ statistical understanding and reasoning at 
different levels of statistics teaching (e.g. Fielding-Wells and 
Makar 2015; Noll and Kirin 2017).

Yet, mathematical or statistical modelling within ISI con-
trasts with the transmission model of teaching and learning. 
Students do not translate problems into a given model. On 
the contrary, in ISI the expectation is that students impose a 
structure upon the real world problem. Gravemeijer (2002) 
calls this process ‘organising’. The students select or gener-
ate data which might inform their investigation and then they 
seek to make sense of the data by representing it in many 
different forms, typically supported by the use of technol-
ogy. Gravemeijer (2002) describes a process of emergent 
modelling in which students move from making a specific 
‘model-of’ a situation to seeing the model as an entity in 
itself, a ‘model for’ more formal mathematical reasoning.

To assist understanding of Gravemeijer’s ideas, let us 
point to similarities with notions of reification developed by 
Sfard (1991) and others (Tall and Gray 1991), insofar as the 
movement towards model-for as an entity in itself parallels 
the learner’s facility to recognise a concept such as function 
as an object with its own attributes and properties, rather 
than being only a part of a process. Returning to statistics 
education, Pratt and Noss (2010) proposed a pedagogic tool 
in which learners would edit the configuration of a random 
generator, such as that of a digital version of a die, to control 
its behaviour until the configuration becomes so familiar it 
is recognised as a model for the concept of distribution with 
predictive power even without the need to run the process. 
In Gravemeijer’s terminology, Sfard’s students and those of 
Pratt and Noss progress from a model-of a situation to a 
model-for function or distribution.

The notions of emergent modelling and ISI are relatively 
recent developments in statistics education research. Even 
so, there has been some recognition of the importance of 
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modelling in standard curricula. For example, in the USA 
Common Core State Standards for Mathematics at high 
school, there is a tendency to include statistics when describ-
ing mathematical modelling in school mathematics as “using 
mathematics or statistics to describe (i.e. model) a real world 
situation and deduce additional information about the situa-
tion by mathematical or statistical computation and analysis” 
(Common Core Standards Writing Team 2013, p. 5). Focus-
sing on statistical models and modelling in school math-
ematics can provide opportunities to connect data, chance 
and context, but the use of modelling in these curriculum 
statements might be interpreted according to the traditional 
transmission model or in terms of emergent modelling. In 
this study, we sought to explore the challenges that students 
might find when working within the emergent modelling 
paradigm.

4  Research on the teaching and learning 
of modelling and distribution

4.1  Models and modelling

In mathematics education, Lesh and Doerr’s (2003) per-
spective on models and modelling focuses on designing 
instruction that promotes mathematical problem solving, 
learning and teaching of mathematics. In alignment with 
the ISI approach, they typically present students with data-
rich situations that might be elaborated by the construction 
of models.

Lehrer and Romberg (1996) refer to this approach as data 
modelling: the construction (i.e. collecting certain types of 
information based on research questions) and use of data 
to solve a problem, a process closely linked to the develop-
ment of mathematical models. They argue that “data require 
construction of a structure to represent the world; different 
structures entail different conceptions of the world” and thus 
“thinking about data involves modeling practices” (p. 70). 
Data modelling is a cyclic activity in which one begins 
with posing questions to solve a problem using a statistical 
investigation and identifying variables and their measures; 
moves to an analysis phase in which decisions are made for 
structuring and representing data; then makes inferences in 
relation to knowledge about the world (Lehrer and Schauble 
2004).

Using their data-modelling approach, Lehrer and Schau-
ble (2004) conducted a design study in a fifth grade class-
room and focused on the development of students’ modelling 
variation through their understanding about distributions in 
a context. Students investigated questions about the nature 
of plant growth over time, such as height change and the 
effects of fertilizer and light. Through student-invented dis-
plays of data in small groups, changes in the distributions 

of plant height measures were discussed and interpreted in 
relation to the overall shape of data in whole class discus-
sions. Students also compared distributions of heights of the 
plants grown under different conditions. In addition, pos-
ing a question such as “what if we grow the plants again?” 
provided opportunities to make inferences and reason about 
uncertainty which were not usually part of the curriculum 
at elementary grades. Researchers argued that generating, 
evaluating and revising models of data collected helped stu-
dents to reason about natural variability. They emphasised 
the value of student-generated data representations in this 
data modelling process. After Gravemeijer, it would be rea-
sonable to say that these students developed a ‘model-for’ 
natural variability, insofar as the students were able to rec-
ognise natural variability as a phenomenon evident across 
different situations.

English and Watson (2017) developed a framework of 
four components to examine sixth grade (age 11) students’ 
modelling with data as students were required to construct a 
model for selecting a national swimming team for the 2016 
Olympics using the data sets of swimmers’ previous perfor-
mances. The first component was called ‘working in shared 
problem spaces between mathematics and statistics’. There 
is clearly a resonance here with our interest in the potential 
for emergent modelling to connect statistics and probabil-
ity. The following three components were closely aligned to 
ISI: ‘interpreting and re-interpreting problem contexts and 
questions’; ‘interpreting, organising and operating on data 
in model construction’; and ‘drawing informal inferences’.

During the task, students were able to use both statisti-
cal and mathematical reasoning/procedures in solving the 
problem as they were constructing their models based on 
given data. They also showed acknowledgement of key 
statistical ideas, such as calculating means (as a variable) 
as a way to account for variability in data, the limitation 
of using only one performance variable, and referring to 
uncertainty in team selections. In fact, English and Wat-
son’s students, while being engaged in data modelling in the 
sense of Lehrer and Schauble, were developing models-for 
the mean (after Gravemeijer). That is to say, the students 
began not only to calculate means as part of the model-of 
the swimmers’ performance, they also began to appreciate 
how they could calculate the mean to find which data set of 
swimming times contained smaller numbers overall, imbu-
ing mean with a certain utility in its own right. Moreover, 
students tended to consider both problem context and data 
variation in connection with selecting variables when con-
structing models. A consideration of problem context along 
with purpose of selecting a swimming team with the highest 
chance of winning in the Olympics also appeared in student 
responses. This framework clearly has potential to inform 
our first research focus on the nature of the student-generated 
models. However, we needed to look elsewhere in order to 
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elaborate our second focus on how students evaluate their 
models.

With recent developments in technology, such as Tinker-
Plots 2.0 (Konold and Miller 2011), research on data mod-
elling has begun to focus on combining exploratory data 
analysis with probability through computer simulations. 
Konold et al. (2007) reported on how middle school stu-
dents built models of real-world objects using the random 
data generator devices in TinkerPlots to produce data, called 
data factories, and how they tested and refined their mod-
els through simulations and looking at graphs of their data. 
Building on this idea of a data factory, Ainley and Pratt 
(2017) developed a pedagogic approach, called purposeful 
computational modelling, which enabled 11-year-old stu-
dents to build models for generating data that were repre-
sented in tables and graphs, and to revise them using model-
ling and simulation features of TinkerPlots. Their research 
findings suggested some possible issues about how children 
might judge the success of a model: (1) evaluating whether 
the model was working as they expected by comparing the 
outcomes to the structure of the model built in TinkerPlots; 
(2) comparing the simulation results with the original data to 
see if the model was generating data resembling the original 
data; (3) evaluating whether the model worked in terms of 
generating realistic data.

4.2  Distribution

Our research will focus on the emergence of a model-for 
the notion of model through data modelling by challenging 
the students to make sense of a distribution of data about 
the distances jumped by paper frogs. Konold and Kazak 
(2008) see distribution as the emergent, aggregate properties 
of data. This perspective on distribution fits well with the 
notion of emergent modelling since we wish to view statisti-
cal modelling as developing a model of data to move from 
individual cases or observations to describe a global pattern 
in data and then moving from data to context in which one 
makes sense of the data. We believe that reasoning about 
distributions to make inferences and predictions is a key 
aspect in this modelling process, as argued by English and 
Watson (2017). Reasoning about distributions on the other 
hand requires an aggregate thinking about data, which is 
beyond simply reasoning about a form of visual represen-
tations of data (Konold et al. 2015). According to Konold 
et al., aggregate is defined as “the way in which that form is 
perceived, as indicated by the sorts of questions it is used to 
address” (p. 307). Although students can intuitively gener-
ate data representations to organize data to answer certain 
statistical questions (Lehrer and Schauble 2002), previous 
research highlights young students’ difficulty in perceiving 
data as an aggregate (e.g. Cobb 2009; Hancock et al. 1992). 
In these studies, students tended to see data as individual 

cases rather than to focus on the global features of distribu-
tion, such as what the distribution of data looks like (shape), 
where the data values cluster and how spread-out they are. 
However, Konold et al. (2002) reported on how seventh and 
nineth grade students used a central range of values to refer 
to what was typical, called a modal clump, when describing 
distributions. In addition, these modal clumps can in some 
ways indicate how the data are distributed. Thus, it was sug-
gested that “the idea of modal clump may provide a more 
useful beginning point for learning to summarize variable 
data” (p. 6).

According to the previous studies described above, the 
idea of data modelling has a potential to connect data, 
chance and context through emergent modelling. The prac-
tices of data modelling could also provide a means of devel-
oping students’ understanding of key statistical ideas and 
tools, such as distribution, measures of central tendency and 
variability, data representations and inference. Even so, our 
research focus is to investigate young students’ emergent 
ideas about models and modelling as they engage in reason-
ing about distributions during a data-modelling task. We 
have two research questions, both of which relate to how 
a ‘model-for’ model might emerge as the students engage 
in data modelling: As students identify what and how to 
measure, decide how to structure and represent data, and 
make inferences and predictions based on data: (1) what is 
the nature of the student-generated models? and (2) how do 
students evaluate their models?

5  Methodology

5.1  Research setting

Our study took place in Turkey, where the National School 
Mathematics Curriculum (MEB 2018a, b) includes data top-
ics from the first to nineth grades and probability topics from 
eigth to 12th grades. The data topics do include the statisti-
cal investigation cycle (formulating research questions, data 
collection, data structuring and representation, data analysis 
and interpretation) at grades 5–8 (ages 11–14). This aspect 
of the curriculum offers a gateway for ISI; in our study we 
sought to engage the students in ISI through data model-
ling. At the same time, the Turkish curriculum places great 
emphasis on calculations and graphing and almost none on 
making inferences based on data at all grade levels. Moreo-
ver, probability topics are treated as completely separate 
from data. We intended that our approach in this study would 
construct a learning path that bridges data, chance and con-
text in order to help learners develop competencies for using 
data to solve real-world problems. In this respect we see 
ourselves as aligned with English (2010) who argues that 
modelling can be used as a vehicle to provide an authentic 
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problem situation for students to develop an understanding 
of important statistical ideas and tools. In fact, one such key 
idea is that of ‘model’ itself. In effect, we invite students to 
develop a ‘model-for’ model by evaluating their models that 
begin to emerge through their data modelling activity. That 
is to say, we intend that the student begin to gain a sense 
of ‘model’ as an entity in its own right which has power 
to allow prediction of outcomes from the situation being 
modelled, even prior to data collection or the running of a 
simulation.

In this report we describe a possible learning trajectory 
for developing young students’ emergent ideas about sta-
tistical models and modelling. This learning trajectory was 
tested in two different sixth grade classrooms where students 
(ages 11–12) working in small groups, engaged in a data-
modelling task in the context of selecting one of the origami 
frog designs for the Olympics jumping race.

5.2  Research design and participants

In order to address the research questions stated above, we 
used a design study method (Cobb et al. 2003) as we had an 
iterative process to design, test and revise a learning trajec-
tory about developing and supporting young students’ ideas 
about models and modelling through data-modelling activi-
ties. The retrospective analysis of the first cycle provided the 
basis for the new design phase in the second cycle.

We conducted teaching experiments in two different 
sixth grade classrooms in a large urban middle school (with 
approximate enrolment of 1600 students from fifth to eighth 
grades) in Denizli, Turkey. While 30 students (13 boys, 17 
girls) of ages 11–12 participated in the first teaching experi-
ment in April–May 2017, 16 students took part in the second 
teaching experiment in June 2017. Participants were familiar 
with formulating research questions, collecting data, making 
frequency tables and bar graphs to structure and represent 
data, computing and interpreting the mean and the range of 
a data set and using them to compare two data sets, but had 
no experience with using computer simulation tools, such as 
TinkerPlots, and were usually required to work with small 
data sets. They were familiar with conducting experiments 
in science where they take measurements and record data.

5.3  Task description and procedure

The data modelling task, called the Frog Olympics, is 
designed to engage young students in experiences of data 
modelling that involves what and how to measure, deciding 
how to structure and represent data, and making inferences 
and predictions based on data. The purpose of the task was 
to determine which of the given two different frog designs 
made by origami (Fig. 1) to choose for a 100-m ‘jumping’ 
race in the Frog Olympics.

We designed and tested a learning trajectory (Table 1) to 
support young students’ data modelling. This learning tra-
jectory addressed reasoning with key statistical ideas, such 
as distributions, central tendency, variability and predictions 
with uncertainty, and developing ideas about statistical mod-
els and modelling. Students worked in small groups (4–5 
students). The teacher and researcher acted as facilitators 
as students worked together on the task. Each small group 
discussion was followed by a whole-class discussion. Due to 
the nature of design study, as the classroom implementation 
of the task proceeded, the research team negotiated revisions 
to reshape the next teaching session throughout the study.

To introduce the context of the task, the teacher initi-
ated a class discussion about Olympics in real life and then 
explained the 100-m ‘jumping’ race rules in the Frog Olym-
pics: “One of the games in the Frog Olympics is a 100-m 
jumping race. In this race, each frog begins to jump at the 
start line and keeps jumping to finish the race. The frog 
arriving at the finish line first wins the game. When any part 
of the frog crosses the finish line, it wins the race”. After 
each group discussed how they could decide which frog 
design to choose for the Frog Olympics, a mutual decision 
for collecting repeated measures of a single jump distance 
was made as a whole class. Each group was asked to discuss 
and write down how they would collect data after playing 
with the two origami frogs. After a whole class discussion 
of various ways of collecting data, each group marked a start 
line and fixed the measuring tape perpendicularly (starting 
from 0) on their desk to measure how far the frog jumped 
and repeated this 15 times for each frog design. In the next 
class, students were asked to make a graphical representa-
tion of the jump distances of each frog design on the given 
graph papers in a way to help them decide which frog to 
choose for the Olympics. Using their representations, stu-
dents were encouraged to make informal inferences. During 
the first iteration of the task, Group E spontaneously created 

Fig. 1  Two different frog designs used in the Frog Olympics task 
(the smaller one is referred to as “pink frog” and the bigger one as 
“orange frog” throughout the paper)
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a physical dot plot using stickers even though this had not 
been taught. So we encouraged the other groups to make dot 
plots of their data and interpret them.

In order to foster students’ ideas about models and model-
ling, we combined the experimental data from all groups in 
the dot plots for each frog design in TinkerPlots that were 
displayed on the classroom interactive board and asked 
students to predict what the two frogs might do in many 
repeated jumps in the future. The following scenario was 
introduced:

A mobile game developer wants to make a digital ver-
sion of each frog design for a game. Your task is to 
help the developer, using the data you collected from 
flipping paper frogs. By looking at the dot plots of 
jump distances of pink and orange frogs, what might 
the distribution of jump distances for each frog design 
look like if we were to collect more data?

We did not raise issues about sample size as we wanted to 
know whether the students would decide if this was relevant, 
and how. We introduced sketching as a way to generate a 
model of expected results. When instructing students on 
how to sketch a distribution shape using a curve, we dem-
onstrated quick sketching and emphasised paying attention 
only to the overall shape. Then each group sketched their 
prediction on the worksheet, including a horizontal axis for 
the jump distances scaled from 0 to 100 for each frog design, 
and explained how they made the prediction.

Building and testing the groups’ models (the sketches) 
using TinkerPlots did not work in the class as we planned 
due to technical difficulties using the software on the inter-
active board. Then the research team decided to conduct 
interviews with specific groups to examine their ideas 

about evaluating models more closely after the last class. 
As seen in Table 2, five groups were asked to evaluate 3–4 
sketches, including their own, where their model sketch has 
the same nomenclature as their group. Note Group D was not 
interviewed but their model sketch was used in the student 
evaluation.

After the evaluations, the interviewer showed the students 
the TinkerPlots model created based on their sketch. Since 
they did not have a prior experience of using the software, 
the interviewer explained how the TinkerPlots model was 
created and how the simulation worked. Then to make sure 
they understood the process, the interviewer asked them to 
describe what would happen when they ran the simulation. 
When everyone was happy with this model, the interviewer 
ran the model and asked the group whether the results turned 
out the way they expected and how so. After a few more 
runs, the interviewer asked whether they wanted to change 
anything in the model and why. By simulating the agreed 
model for distances jumped by each frog design using a 
moderate sample size, such as n = 500, we intended to reveal 
different behaviours between models with a hump and mod-
els that were wavy with spikes in places where there were 
comparatively large frequencies of distances jumped. In the 

Table 1  Learning trajectory for the Frog Olympics task (one class period = 40 min)

Stages of the task Concepts/ideas Duration

1. Introducing the game and planning how to choose between 
two frog designs (group work and a whole class discussion)

Context, variables One class period

2. Planning experiment (group work and a whole class discus-
sion) and collecting data (group work) (Materials: two different 
frog designs, a measuring tape, a ruler)

Defining and measuring variables, structuring data One class period

3. Representing data (group work) (materials: a ruler and two 
graph papers)

Data representations, distribution Two class periods

4. Analysing data and making inferences (group work and a 
whole class discussion)

Context, informal inference, distribution, shape, central 
tendency, variability

One class period

5. Introducing dot plot representation, creating dot plots of data 
(group work), analysing data and making inferences (group 
work and a whole class discussion) (materials: graph paper)

Context, informal inference, data representations, distri-
bution, shape, central tendency, variability

Two class periods

6. Sketching a model for prediction: introducing a follow-up 
scenario, sketching a model to make a prediction (group work)

Context, distribution, models and modelling, predicting 
outcomes beyond experimental results

One class period

7. Testing the models in TP and evaluating them (a whole class 
discussion)

Context, testing and evaluating models One class period

Table 2  Groups interviewed for evaluating models

Group Participants Models evaluated

B Two girls; two boys B, D, F, G
C Two girls; three boys C, D, F, G
E Two girls; two boys E, B, C
F Four girls F, B, C, E
G Two girls; two boys G, B, C
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case of a model with a hump, the outcomes when running 
the model would show a similar hump, suggesting an invari-
ant feature. In contrast, in the case of the wavy models, there 
would be no such invariance unless the model was run for a 
very large sample. Then the students were shown the given 
models again to evaluate to see if they changed their ideas 
about their initial evaluations after testing their model. In the 
end, groups were asked again which frog design they would 
choose for the Olympics.

5.4  Data collection and analysis

Teaching sessions and interviews were co-conducted by the 
first author as the teacher–researcher, and the third author 
who was the classroom teacher. The interviews with selected 
groups were 20–30 min long to discuss how they produced 
their model and evaluated the given models generated in 
the last class by sketching. The data consisted of written 
artefacts, including responses on the worksheets and rep-
resentations generated by group work, audio-recordings of 
interviews and field notes. Since the second teaching experi-
ment was conducted towards the end of spring semester, 
there was a high absenteeism among the participants in the 
last teaching sessions. Therefore, in this article we focus 
mainly on the data from the first teaching experiment and 
mention the results from the second teaching experiment 
only in passing.

Documents including written artefacts from each group 
work and transcripts of audio recordings of group interviews 
were analysed qualitatively. In our analysis we used pro-
gressive focussing (Parlett and Hamilton 1972) to describe 
and interpret the data throughout the teaching sessions by 
concentrating on the emerging features of the practices of 
data modelling in the classroom. In progressive focussing, 
the researcher commits to multiple stages of analysis dur-
ing which insights can gradually emerge allowing the data 
to be compacted around those insights. For our progressive 
focussing, in the first stage, the data captured by audio of 
the interactions was transcribed into Turkish. In the second 
stage, the students’ written responses along with the pic-
tures of student-generated representations and models and 
the researchers’ field notes about each session were trans-
lated from Turkish into English. In addition, the following 
two foci were used to select excerpts of the transcribed data, 
which were also translated: (1) how students explained con-
struction of their own model; and (2) how they evaluated 
the given models and their interpretation of simulation data. 
In the third stage, the authors independently analysed the 
content of these documents and transcripts using the follow-
ing six foci: (1) What the student-generated sketches tell us 
about their ideas about models of real data distributions; (2) 
what were the distinguishing features in the students’ mod-
els; (3) what made some students pay attention to the overall 

trend in the data while others were influenced by the ups and 
downs in the data; (4) how students judged what was a good 
model; (5) what sorts of criteria they used when evaluating 
the models; and (6) how simulating the models in Tinker-
Plots affected their model evaluations. In the fourth stage, 
the first and second authors compared and discussed their 
analyses, through which process themes began to emerge. In 
the fifth stage, further detailed discussion between these two 
authors focussed on interpreting and re-interpreting these 
foci.

6  Results

The presentation of findings is divided into two subsec-
tions corresponding to the research questions addressed in 
the study: (1) what was the nature of the student-generated 
models? (2) How did students evaluate their models?

6.1  Students’ models

Students’ emergent models of actual data distributions for 
predictions arose from several actions in which they con-
structed a graphical representation of empirical results in 
the earlier stages of the task (3–5 in Table 1). Similar to the 
anticipated path described in Gravemeijer (2002), students 
spontaneously began to make sense of their empirical data 
with their choice of representation consisting of value bars 
each of which corresponded to a single measure of distance 
jumped on the vertical axis (Fig. 2). This representation led 
students to talk about the regularity and consistency of the 
jump distances when comparing each frog design, in order to 
make a decision. Then the dot plot representation, introduced 
to the students as part of our learning trajectory, played a key 
role in transitioning from “the magnitude-value-bar graph” 
(Gravemeijer 2002, p. 4) to a graph of a density function that 
is the sketched model constructed by the students to make 
predictions within the scenario described in Sect. 5.3. For 
example, when interpreting dot plots of their actual data, 
students used various ways: groups B and C tended to com-
pare modal clumps and group F compared the piling-up in 
each distribution.

Since the height of the stacked dots at a given range could 
be considered as a measure of the density in that interval, 
the perceived shape of the dot plot through sketching could 
be seen as a qualitative precursor to the visual density func-
tion as argued by Gravemeijer (2002). Our data support this 
argument. For instance, when group B constructed their 
emergent model (Fig. 3b) which was based on a modal 
clump around a broad range of jump distances, as seen in 
the excerpt below, students primarily focussed on a range 
of data where the most frequent values were clustered and 
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how the data were distributed in the combined experimental 
results (Fig. 3a):

Taha: We tried to make the curve higher where the 
most of the jumps are in the class data.
Berk: We determined the range of values where the 
most are.
Taha: For example between 10 and 65 for the orange 
frog.
Mina: Here (the orange frog) jumped mostly around 
this area. Here (the pink frog) scattered but jumped still 
more around a certain area. We paid attention to that.

Similarly, in their written explanation, group G stated, 
“Based on the data of the orange and pink frogs (Fig. 3a), 
we decided that if we made them jump more, they could 
jump to the same places (the same distances) more”. During 
the interviews they also commented on the several smaller 
humps for the pink frog in their emergent model, which was 
based on several small ranges of jump distances (Fig. 3g). 
They argued that those were because of the “waviness” in 
the actual data and they made some of them taller since 
there were more dots stacked up. In addition to the overall 
shape, the emergent models took the minimum and maxi-
mum value of distances jumped into account. For example, 
one of the students, Seda, in group G, expressed a concern 
that, although they paid attention to the start point (the mini-
mum distance jumped) in sketching their model, they made a 
“mistake” in the end point (the maximum distance jumped) 
which was extended to 100. Sevil, in reply to that, suggested, 
“Actually if we were to flip the frog more times, it could have 
these jump distances”, which indicated an acknowledgment 
of uncertainty in the long run for their emergent model.

As a result, we found the following tendencies to generate 
models of real data distributions as seen in Fig. 3b–g:

• Matching ‘ups and downs’ in the actual data but not the 
jump distance values on the horizontal axis;

• Matching the minimum and maximum values or only the 
minimum values of the model and actual distributions;

• Going a bit lower/higher than the actual range of data;
• Drawing the curve higher than the maximum height of 

the actual clusters.

Then two categories of models were identified from these 
analyses. In the first category, students tended to use their 
idea of a modal clump around a broad range of jump dis-
tances (Fig. 3b, c). Two groups (groups B and C) created a 
model of this nature. In the second category, students chose 
to have several small ranges of jump distances, which led 
to a series of ‘ups and downs’ (Fig. 3d–g). The other four 
groups (groups D, E, F and G) created such a model.

6.2  Students’ model evaluation criteria

Above we presented how the features of emergent mod-
els across the groups differed. In evaluating these models, 
although all groups (note Group D was not interviewed) 
believed that the model distribution should look like the 
real distribution, their ideas about what made a good resem-
blance varied too. Table 3 gives a summary of the crite-
ria the students used to evaluate their and others’ models. 
We now present examples of how each group evaluated the 
various models, including how they tended to use the same 
criteria for evaluating the models of others as they used for 
creating their own.

Fig. 2  Value-bar graphs (show-
ing the order of trials on the 
horizontal axis, i.e. trial 1, trial 
2 etc., and jump distances on 
the vertical axis) made for pink 
frog (on the left) and orange 
frog (on the right) by group G
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6.2.1  Examples of groups’ evaluation of emergent models

Group B This group created a more holistic model and 
examined the models B, D, F and G in Fig. 3. They agreed 
that the model G was “good” because it was “well thought 
out” and looked like the actual results. They thought their 
model (B) was “OK” since it showed which jump distances 

were the most common (criterion a in Table 3) but was a 
“rough sketch” compared to the model G. They rated the 
models D and F as “bad” using the shape criteria c and d in 
Table 3. However, students switched their ratings for model 
G to “OK” and theirs (B) to “good” after seeing the simula-
tion results of these models (Figs. 4, 5) for a large number of 
trials. They reasoned that the simulated results for the orange 

Fig. 3  a Dot plots of combined data showing the distance jumped on 
the horizontal axis for orange frog (at the top) and pink frog (at the 
bottom); b, c models based on a modal clump around a broad range 

of jump distances (by groups B and C respectively); d–g models 
based on several small ranges of jump distances (by groups D, E, F 
and G respectively)

Table 3  Summary of criteria 
used to evaluate emergent 
models

Match between the model and real distributions

Shape Start/end points

a. Overall shape based on modal clumps (group B)
b. The number of ‘ups and downs’ (groups E and F)
c. The height of the curve (groups B and C)

d. The minimum and maximum values at which the 
model data and real data start and end (groups B 
and G)



1160 S. Kazak et al.

1 3

frog in Fig. 5 did not look like the actual data because there 
were ‘ups and downs’ where there was a cluster of most 
jump distances in the actual distribution. For this group, a 
‘good model’ seems to have a general shape based on where 
the cluster of data is located in the actual distribution.

Group E Since this group tended to show details in their 
model, they were given the other two more holistic models, 
which were constructed based on a modal clump around a 
broad range of jump distances (b and c in Fig. 3) to evalu-
ate. While the students rated the model B as “good”, they 
considered the model C to be in between “OK” and “bad”. 
The main criterion used in their evaluation was the shape 
of the distribution (criterion b in Table 3). They rated their 
model (E) as “OK” since they thought that the rises and falls 
were good but there was too much detail. After watching the 
simulation results of their model created in TinkerPlots sev-
eral times, the students tried to test the match between their 
model and the actual distribution by superimposing the sheet 
with their model onto the sheet with the actual distributions 

Fig. 4  On the left the Sampler built for group B’s model in TinkerPlots using the curve device, and on the right simulation results from a large 
number of trials that show the distance jumped on the horizontal axis for orange frog (at the top) and pink frog (at the bottom)

Fig. 5  Group G’s model in TinkerPlots using the curve device and simulation results from a large number of trials that show the distance jumped 
on the horizontal axis for orange frog (at the top) and pink frog (at the bottom)

Fig. 6  Members of group E comparing the match between models 
and actual data
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as seen in Fig. 6. After repeating this test for the other mod-
els, they changed their initial ratings based on the match they 
observed: “good” for Model E, “OK” for model B and “bad” 
for model C. For this group, a ‘good model’ is the one that 
has a shape with ‘ups and downs’ similar to the ones seen in 
the actual distribution.

Group F For the evaluation, this group was given the 
other two models which were more holistic (b and c in 
Fig. 3) and another model (E) similar to theirs (F). Initially 
they considered models B and C as “sloppy” because “the 
students did not try hard” while they thought that the mod-
els E and F were more thorough. Similarly to the group E, 
their attempt to superimpose the models on the actual data 
distributions to see the match was a clear indication of their 
attention to the details of rises and falls in the data (crite-
rion b in Table 3). Therefore, they rated the models B and 
C as “bad” and the models E and F as “good”. After seeing 
the simulation results of their model created in TinkerPlots 
several times, they thought that the results were as good as 
they expected and did not need to re-evaluate the models. 
Similarly to group E, this group seems to consider that a 
‘good model’ needs to have a shape matching the ‘ups and 
downs’ in the actual distribution.

Group C This group created a more holistic model and 
evaluated the models C, D, F and G in Fig. 3. The group 
rated the model F as “good”. Nadide reasoned “because 
they made the increases and decreases well” and Yaman 
added “they made them proportional, very similar to [the 
experimental results]”. They considered model G and their 
model (C) were “OK” using the shape criterion c (Table 3). 
Similarly, they rated model D as “bad” because according 
to Meltem “the zigzags are too high, they could be lower”. 
After running the group’s model created in TinkerPlots sev-
eral times, the group members re-evaluated each model but 
their ratings did not change. According to this group a ‘good 
model’ seems to show the waviness of the actual distribution 
to some degree, with a proportional curve height.

Group G The students evaluated the two models which 
were more holistic (b and c in Fig. 3) and their model (G). 
They rated the model C as “good”, the model G as “OK” and 
the model B as “bad”. The main criterion in their decision 
seemed to be the match between the start and end points of 
the model and the actual data (criterion d in Table 3). Fur-
thermore, in model B the students were concerned about the 
curve starting at 0 for the orange frog because they thought 
that would not be possible. After seeing the simulated results 
in TinkerPlots, students switched their rating for the model 
C to “OK” and theirs (G) to “good” because they thought, 
“The jump distance of 100 could occur with 500 or 1000 
jumps”. However, they insisted that the jump distance of 
0, as seen in model B, could not occur. This group seems 
to value where the curve starts and ends and thinks that a 

‘good model’ needs to start and end at a ‘reasonable’ value 
in the data context.

In summary, the students tended to pay more attention to 
the shape than the start and end points when evaluating the 
models. The inclination to match the ‘ups and downs’ in the 
actual distribution with a proportional curve height appeared 
to be strong in these evaluations.

7  Discussion and conclusion

In this paper, we presented a possible learning trajectory 
for developing sixth grade students’ ideas about models 
and modelling as they engaged in reasoning about distri-
butions during a data-modelling task. We focussed on the 
following research questions: (1) What was the nature of the 
student-generated models? and (2) How did they evaluate 
the models?

7.1  Emergent modelling

As we reflect on the findings of our study in relation to our 
two research questions, we turn to Gravemeijer’s (2002) 
emergent modelling view (as opposed to modelling as trans-
lation) in which we observe students’ ideas about models as 
a result of an organising activity during a data-modelling 
task.

Initially students structured the empirical data collected 
as part of the problem situation in order to make a deci-
sion. Using their value-bar graphs and dot plot representa-
tions, they began to see patterns in the distributions (where 
the data were clustered and how they were spread out) 
and in turn they made a decision about selecting one of 
the frog designs for the Olympics. Introduced to a new 
scenario in which they were required to predict the future 
distributions of jump distances of each frog design if more 
data were collected, students then proceeded to create a 
model based on empirical distributions through a sketch-
ing activity (as seen in Fig. 3). In Gravemeijer’s terms, we 
can describe these sketched distributions as a ‘model-of’ a 
set of measures (jump distances in the given problem con-
text) since they tended to represent rather too literally the 
data themselves without expressing a sense of how random 
effects might be a model-for variation and signal a model-
for invariant features of the system. At this stage, students 
were primarily concerned with the ‘ups and down’ and 
the minimum and maximum values in the real data when 
constructing their models.

Our findings suggest that there is an ongoing process 
in developing a ‘model-for’ the notion of a statistical 
model, incorporating a signal (explained variation) in the 
presence of noise (unexplained variation). We do see the 
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beginning of the shift from ‘model of’ to ‘model for’ when 
we examine the change in how some students applied cri-
teria for evaluating other students’ models. Thus, in the 
first instance, one group (B) argued that the other group 
(G) had a better model because it looked like the actual 
data, whereas they had a different criterion when judging 
their own model earlier—“it shows which jump distances 
were most common (between 10 and 65)”. Yet, after see-
ing the simulated data in TinkerPlots for both models, the 
same group decided their own model was in fact better. 
They appeared to have a sense of how further data (as the 
sample size increased) would not necessarily match the 
‘ups and downs’ in the original small set of data whereas 
the overall trend would continue to match. In this example 
we see how the model this group of students constructed 
becomes part of their thinking about models in general as 
they evaluated the other group’s model. Their evaluation 
involves insights into properties of models, such as the 
unchanging aspects of the population or process (i.e. sig-
nal), when they expected a modal clump within the range 
of 65 and 100 in 500 flips.

7.2  The role of data‑modelling activity

The data modelling activity presented in this paper was 
designed on the premise of reasoning about distributions. 
As seen in previous studies (e.g. Cobb 2009; Konold et al. 
2015; Lehrer and Schauble 2002; English and Watson 2017), 
focussing on the idea of distribution and reasoning about 
distributions to make inferences and predictions helped our 
students make sense of key statistical ideas and procedures 
(e.g. mean, range, variability, data representations, etc.) that 
are usually treated in isolation and without context in school 
mathematics. Throughout the task students engaged in inter-
preting value-bar graphs and dot plots each of which was a 
representation of the distribution (Gravemeijer 2002) while 
using the notions of centre, spread, consistency and variabil-
ity to talk about the patterns in the data. Then through the 
sketching activity students eventually constructed models of 
empirical distributions to make predictions. While students 
in previous studies developed a ‘model for’ natural variabil-
ity (Lehrer and Schauble 2002) and a ‘model for’ the mean 
(English and Watson 2017) through reasoning about distri-
butions, our study particularly focussed on development of 
the key idea of ‘model’ itself through students evaluations 
of models that began to emerge from comparing the models 
and real distributions.

However, we observed some challenges that students 
might encounter when working within the emergent model-
ling paradigm. When sketching a model of jump distances 
of pink and orange frogs to predict a future distribution, 
most groups were strongly influenced by the ups and downs 
from one cluster to another in the original combined data of 

jump distances. In this tendency of matching the generated 
distribution to the original distribution, several small ranges 
of jump lengths in the model look almost similar to the more 
naive focus on individual cases (Cobb 2009; Hancock et al. 
1992). Only two groups (B and C) seemed better able to 
look through the data and see a more general trend as seen in 
statistical models (Moore 1990). These were the two groups 
that used modal clumps (Konold et al. 2015) when compar-
ing their dot plots earlier in the task. Their models seemed 
to have a sense of ‘signal’ as describing a range of values 
repeated most often.

Although the tendency to draw the curve higher where 
there is a pile of data and to go a bit higher/lower than the 
actual range of data in sketching models appeared to be a 
common intuition to acknowledge the likelihood and vari-
ability under uncertainty, one group (G) particularly was 
concerned about the ‘reasonableness’ of a model starting 
from 0 rather than 5 or 10 as in the actual data during their 
evaluation. This finding suggests a tendency to evaluate 
whether the model is the realistic representation of the actual 
situation (Ainley and Pratt 2017). In general, use of different 
criteria for judging what is a good model (Ainley and Pratt 
2017) was evident in groups’ evaluations of models. For 
instance, some groups seemed to compare the model with 
the original dot plot of data to match start and end points of 
the distributions. While most groups paid a lot of attention to 
the several ‘ups and downs’ in their model evaluations, they 
did not worry about the actual lengths of the jumps, except 
the match between the start points and endpoints.

7.3  Implications

This study extends previous research on modelling with 
young students as it examines the emergence of a ‘model-
for’ the notion of model through data modelling, in which 
the students are required to compare and reason about dis-
tributions of their experimental data. The learning trajectory 
we described here provided the students with an opportunity 
to experience the practice of data modelling in an engaging 
context. This data-modelling process also fostered making 
sense of key ideas, tools and procedures in statistics that are 
usually treated in isolation in school mathematics. Sketch-
ing models of distances jumped by origami frogs enabled 
students to make predictions beyond the data. Evaluating 
different models offered insights into different criteria that 
might be used by students for judging what a good model 
is. It was through this process of emergent modelling that 
students began to develop a ‘model-for’ a notion of model 
in statistics. However, findings would have been enhanced 
by further exploration of this process with more support 
from the use of computational modelling (Ainley and Pratt 
2017). Although we attempted to use the simulation features 
of TinkerPlots in testing and evaluating models during the 
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interviews, its use was limited in this study. The students 
could benefit more if they had an experience of building 
‘data factories’ (Konold et al. 2007) prior to this task, and 
were then allowed to create their own models and test them 
in TinkerPlots. Moreover, the learning trajectory compo-
nent of this study has the potential to suggest a learning 
environment that broadens data analysis activities in schools 
through modelling.
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