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Abstract
An important use of statistical models and modeling in education stems from the potential to involve students more deeply 
with conceptions of distribution, variation and center. As models are key to statistical thinking, introducing students to 
modeling early in their schooling will likely support the statistical thinking that underpins later, more advanced work with 
increasingly sophisticated statistical models. In this case study, a class of 10–11 year-old students are engaged in an authentic 
task designed to elicit modeling. Multiple data sources were used to develop insights into student learning: lesson videotape, 
work samples and field notes. Through the use of dot plots and hat plots as data models, students made comparisons of the 
data sets, articulated the sources of variability in the data, sought to minimize the variability, and then used their models to 
both address the initial problem and to justify the effectiveness of their attempts to reduce induced variation. This research 
has implications for statistics curriculum in the early formal years of schooling.

Keywords Statistical model · Statistical modeling · Statistical inquiry · Distribution · Variability · Model eliciting activities

1 Introduction

Statistics at the primary/elementary school level largely 
consists of constructing and reading variations of column 
and bar graphs developed from data that is either provided 
or collected from simple pre-populated options. The major-
ity of student time is spent in constructing and coloring a 
graph type before reading the graph to provide descriptive 
responses to simple questions. After a time, students move 
on to learn calculations such as mean, median and mode 
through tasks that are again procedural, resulting in students 
having little opportunity to develop understanding of these 
measures beyond that of the algorithm (Watson and Moritz 
2000). A distinction between population and sample is not 
raised, and thus no consideration is given to the difference 
between descriptive and inferential statistics.

This approach may harm students’ developing statis-
tical understanding as it facilitates a view of graphs as 

illustrations, rather than as reasoning tools, and of all data 
as being able to be addressed using procedural, descriptive 
techniques, thereby masking the existence and uncertainty 
of sample data. Although a procedural, population-based 
approach is easier to teach, it neglects conceptual under-
standings critical for inference—distribution, center and 
variability.

Statistics education research highlights two current 
approaches to developing inferential reasoning in students: 
exploratory data modeling approaches (EDA) and probabil-
ity modeling approaches. EDA was developed to shift data 
analysis from procedural based approaches towards investi-
gative approaches that rely on visualization without assign-
ing probabilities to findings (Makar and Rubin 2018). With 
EDA, students are introduced to making inferences through 
experiential activities in which they can see and experience 
variability and uncertainty; for example, growing samples 
or comparison of samples and groups (e.g., Ben-Zvi et al. 
2012). The EDA approach somewhat weakens the relation-
ship between probability and data analysis (e.g., Pratt 2011). 
This has given rise to probability modeling approaches that 
incorporate a stronger probabilistic focus through activities 
that simulate events and make more apparent the role of 
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chance variation, such as building statistical models (see 
Konold and Kazak 2008).

Informal statistical inference (ISI) sits somewhere 
between the two approaches: an EDA foundation with an 
element of probability incorporated (Makar and Rubin 
2018). Makar and Rubin (2018) have identified five princi-
pal components of ISI:

1. making claims that extend beyond the data at hand;
2. acknowledging the uncertainty inherent in the claim;
3. using data as evidence for the claim;
4. considering the aggregate (focusing on signal and noise); 

and,
5. consideration of the context.

ISI has been conceptualized as a means for affording nov-
ice students opportunities to be engaged in the more authen-
tic practices of statistics and to engage with the key statisti-
cal ideas (Watson 2006) as well as enhancing inferential 
reasoning and personal meaning making (Doerr et al. 2017).

This study focuses on introducing the underpinnings of 
an ISI approach to a class of Year 5 students accustomed to 
a procedural approach. The study described here takes an 
inquiry approach to focus on key ISI components as identi-
fied by Makar and Rubin (2018). The topic of the inquiry 
was to ascertain the best paper size for building a catapult 
plane. The paper focuses particularly on students initial mod-
eling of the context and interpretation of the results before 
moving to their use of the model to make decisions, begin 
to infer possible outcomes and predict extended outcomes.

This paper commences with an overview of key under-
standings of distribution, center and variation before dis-
cussing relevant existing literature on models and modeling 
in mathematics and more specifically statistics. After pro-
viding the methodology and research context, the results are 
provided in a chronological format to facilitate an apprecia-
tion of the development of the lesson sequence in conjunc-
tion with pivotal moments in student learning. Implications 
for curriculum and statistical learning are addressed along 
with limitations of the study.

2  Literature

2.1  Key statistical concepts in early statistical 
reasoning

A fundamental concept for students is the realization that 
data are needed, can help in making decisions and solving 
problems, can be collected or generated, and that there are 
ways of maximizing the quality of data collected. There are 
also several key statistical ideas that all students need to 

understand at a deep conceptual level: distribution, center, 
and variation (Garfield and Ben-Zvi 2008; Watson 2006).

2.1.1  Distribution

Conceptualization of distribution is quite difficult (Garfield 
and Ben-Zvi 2007) as reasoning about distributions involves 
interpreting a complex structure that not only includes rea-
soning about features such as center, spread, density, skew-
ness and outliers but also involves appreciation of related 
concepts of sampling, population, causality and chance 
(Pfannkuch and Reading 2006, p. 4).

Specific problems that students encounter in conceptual-
izing distribution include tendencies to focus on individual 
data scores rather than viewing data as aggregate (Wild 
2006) and viewing graphs as illustrations rather than as 
reasoning tools (Wild and Pfannkuch 1999). Ben-Zvi and 
Arcavi (2001) make the distinction in EDA between stu-
dents having a local understanding of data and data repre-
sentations as distinct from a global understanding. In the 
former, students focus on an individual or small number of 
values within a data set or representation. In the latter, they 
recognize an aggregate view of data and are able to search 
for, describe, and explain more general patterns by either 
visual observation of the distribution or through statistical 
techniques.

Novice students often approach interpreting data dis-
tributions locally, by locating their contributed data point, 
identifying high/low values, and/or looking for frequently 
occurring outcomes (Konold et al. 2015). It is important 
that students learn to see a data distribution as an aggregate, 
observing the pattern and shape, rather than considering 
individual cases (Rubin et al. 2006).

2.1.2  Center

Introducing the notion of ‘center’ is often done through sin-
gle procedural scores, such as mean, without the develop-
ment of the conceptual understanding of ‘center’ or spread. 
Students thus learn to calculate measures of center without 
knowing what they tell us about the data (Garfield and Ben-
Zvi 2007, 2008). Mokros and Russell argue that

until a data set can be thought of as a unit, not simply 
as a series of values, it cannot be described and sum-
marized as something that is more than the sum of 
its parts. An average is a measure of the center of the 
data, a value that represents aspects of the data set as a 
whole. An average makes no sense until data sets make 
sense as real entities (1995, p. 35).

One way to enhance visualization of center is through the 
metaphor of ‘signal among the noise’, with argument that 
signal and noise, or center and variation, be taught together 



1127Dot plots and hat plots: supporting young students emerging understandings of distribution,…

1 3

to enhance student understanding (Konold and Pollatsek 
2002). Another method is to maintain a constant focus on 
distributions and their shape which, along with use of infor-
mal language such as clumps and hills, can also be useful 
in drawing young students’ attention to the key features of 
‘center’ and in enabling them to visualize data sets. Later, 
this visualization assists students to appreciate possible dif-
ficulties in using the mean for non-normal distributions.

2.1.3  Variation

The key understanding that students need to develop is that 
variation is an inherent part of a data set and is able to be 
categorized as ‘real’ (that which is characteristic of the phe-
nomenon) or ‘induced’ (that which comes about through 
collection methods) (Wild 2006). Often, statisticians seek to 
minimize the latter to more accurately identify the former. 
Distribution serves as the ‘lens’ through which variation can 
be viewed (Wild 2006).

Garfield and Ben-Zvi (2007) argue variation is key to 
statistical reasoning and a necessary focus from the earliest 
grades. As students develop their appreciation of variation, 
their early knowledge should be enhanced through oppor-
tunities for students to “explore ways of presenting data, 
especially visually, and to begin making decisions about 
reasonable and unreasonable variation, and about large and 
small differences within and between data sets” (Watson 
2006, p. 218).

2.2  Models and Modeling

Mathematical models are tools used to make sense of a phe-
nomenon we want to understand (Larson et al. 2013). A 
model is a construct that represents, for example, structural 
characteristics or general patterns with a degree of abstract-
ness (Lesh and Harel 2003). Statistical models share com-
monalities with mathematical models, but with a specifi-
cally stochastic focus and function. A statistical model can 
be considered that which enables the location, explanation or 
extraction of underlying patterns in data (Graham 2006) and 
which adopts statistical ways of representing and thinking 
about the real-world (Wild and Pfannkuch 1999). Through 
opportunities to generate models and to use them to identify 
and explain variability, young students can be introduced to, 
and encouraged to explore, initial conceptions of distribu-
tion, center and variation. Having students develop their own 
models from a problem question with identifiable outcomes 
may assist in guiding students to use the process of mod-
eling to focus on the signal whereas conducting simulation 
and trialing may serve to focus the students towards noise 
(Konold and Pollatsek 2002).

Modeling can be considered the entire process of 
using such models. This might include: identifying and 

deconstructing the problem, designing an approach to 
gathering information about the problem, mathematising 
the problem, building a model, refining a model, using the 
model to address the problem, predicting from the model, 
and so forth (Lehrer and Schauble 2010).

The complexities of ‘real’ statistics and statistical mod-
eling are not realistically within the grasp of young children, 
and this may explain the avoidance of significant statistical 
practice in many school curricula (e.g., Australian Curricu-
lum, Assessment and Reporting Authority 2017; Common 
Core Standards 2010). To facilitate students’ access to mod-
eling frameworks that imitate the complexity of statistical 
practice, researchers are making advances in developing like 
frameworks that are developmentally appropriate. One such 
example is that of Lehrer and English (2018) as reproduced 
in Fig. 1. This framework draws on two essential compo-
nents of data modeling: the statistical investigation process 
and the modeling of the variability inherent in the sample 
generated by that process (Lehrer and English 2018).

The statistical investigation process was described by 
Wild and Pfannkuch (1999) in their widely adopted PPDAC 
cycle. The cycle is named for the stages of the statistical 
investigation:

1. Problem defining;
2. Planning the statistical investigation;
3. Data collection and management;
4. Analysis of data; and,
5. Conclusions.

In working through the PPDAC cycle, students can be 
engaged with in the authentic statistical investigations rather 
than what Shaughnessy (2007) describes as impoverished 
views of statistics that emanate from dealing with provided 
data sets from which the complexity has been removed. In 
addition to the investigative approach, Lehrer and English 
(2018) incorporate a specific focus on statistical modeling, 
using the data generated from the investigation or inquiry, 
and the making of inferences to address the original problem.

English (2010, 2012, 2013) has demonstrated that young 
children have the facility to work with mathematical and 
statistical models at the earliest ages of formal schooling, 
including developing and applying skills and understand-
ings required to rank and aggregate data, calculate and rank 
means, and create and work with weighted scores. McPhee 
and Makar (2014) have shown that key understandings or 
the “big ideas” of statistics are within the grasp of even very 
young students.

One aspect of modeling with which students do expe-
rience difficulty, is that of making the transition from 
real-world to statistical model (Crouch and Haines 2004), 
prompting Noll and Kirin (2017) to express a need for fur-
ther research that explores students transitioning between 
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real world and model with both novice and experienced 
learners.

2.3  Research question

This difficulty in transitioning between ‘worlds’ has led in 
part to the research question being addressed in this study: 
How can 10–11 year-old students reason about distribution, 
center and variation when first introduced to dot plots and 
hat plots to model an authentic problem?

3  Method

The purpose of this case study was to investigate how 
young children reason about distribution, center and vari-
ation through a modeling context. The study does not aim 
to assess the instructional design but rather study children’s 
emerging understandings in their usual classroom setting. 
This research was undertaken in collaboration with the class-
room teacher to implement a statistical inquiry with a single 
class of children. Case study serves empirical investigation 
into contemporary phenomena in real-life contexts through 
the use of multiple sources of evidence (Stake 2006; Yin 
2014) as detailed in the following sections.

3.1  Participants

The class involved in the study comprised 26, 10–11 year-
old students from a suburban, government school in Aus-
tralia. The teacher, Ms Thompson, is experienced both as a 
classroom teacher and in inquiry-based learning in mathe-
matics. Ms Thompson had expressed keen interest in explor-
ing alternatives for teaching statistics and this made her an 

ideal choice for this study. She had no preparation for teach-
ing statistics beyond the traditional procedural focus incor-
porated in her pre-service teaching qualification. Through-
out these lessons, the teacher is learning and exploring with 
the students, developing her own statistical understandings 
alongside the students.

3.2  Context

This was the third inquiry problem the students had 
addressed during the year and so the class had developed a 
culture of inquiry; that is, they were accustomed to dealing 
with ill-structured problems, providing evidence to support 
conclusions, and working with uncertainty for extended peri-
ods (see Makar et al. 2015).

To provide an authentic context, an arrangement was 
made with an Air Museum to sell low cost catapult plane 
kits (a catapult plane is a paper dart plane that is launched 
using a rubber band) to museum visitors. To achieve this, the 
students needed to design and package the required materials 
and calculate costings. In the section of the unit addressed in 
this paper, students were determining the best-sized piece of 
paper for making the plane.

In preparation for teaching, an initial lesson was planned 
to introduce the task. At the end of each lesson, a focus 
for subsequent lessons was identified. The nature of inquiry 
as taught by this teacher was to follow on naturally from 
the students’ lines of thinking, so these foci were broad and 
responsive. Virtually all during-lesson decisions were made 
autonomously by the teacher.

As an example, an agreed focus for one lesson was to 
have students consider ways they could reduce variation that 
resulted from testing. The teacher addressed that focus by 
choosing to draw the students’ attention to the data displays 

Fig. 1  Data modeling frame-
work (Lehrer and English 2018)
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and asking the students why not all the planes had flown the 
same exact distance. This she did to establish discussion on 
variation and link variation back to the context.

The class teacher was unfamiliar with statistical modeling 
and found the Lehrer and English framework (2018) useful 
to consider key experiences with which the students needed 
to engage. The students were not introduced to the frame-
work, but the processes described by Lehrer and English 
progressed naturally. As such, the framework has been used 
for reporting the progress of the lessons in the Sect. 4.

3.3  Data collection and analysis

Multiple sources of data were collected and analyzed to 
provide rich detail of the student activities and outcomes, 
including a classroom observation/field research log, video 
of the entire sequence, and collection of student artifacts.

The researcher maintained a field research log through-
out, incorporating classroom observations. The research log 
included: general observations; identification of related stu-
dent and teacher artifacts; and ideas for later discussion with 
the teacher. On occasion, the log was supplemented retro-
spectively as the researcher was periodically called upon by 
the teacher to engage in the lesson, in particular in the use of 
TinkerPlots™ software (Konold and Miller 2005). Finally, 
notes of informal pre- and post-lesson discussions with the 
teacher were recorded as soon as practical after the event 
to capture concerns, ideas and ‘excitements’ of the teacher.

Each lesson was videotaped in its entirety. During group 
work, video was obtained of a single group pragmatically 
selected for the purpose. This was done by eliminating all 
groups containing a student member from whom video 
permission was not obtained and then, from the remaining 
groups, selecting a group on the periphery of the class in 
order to minimize group noise interference: a constraint of 
working in an authentic class context. Video analysis was 
carried out following a process adapted from Powell et al. 
(2003). The videos were viewed and logged initially by a 
research assistant, and then reviewed in full by the researcher 
to develop an overall record of the unit and its progression. 
Video sections in which the students were engaged with the 
concepts of center, variation, or distribution were identified 
and later transcribed. These included both teacher presenta-
tion of the identified concepts and student and/or teacher 
engagement in discussing or representing these concepts. 
These sections were linked to relevant representations/mod-
els in use.

All artifacts associated with the lesson sequence were 
collected, providing consent to do so had been given by both 
parent and student. This resulted in a total of 17 sets of stu-
dent work that were able to be linked to student discussions 
for cross referencing student understandings.

A typical instruction pattern for this classroom incorpo-
rated a problem being posed to the children (for example, 
Why didn’t the planes all fly the same distance?), followed 
by small group and then whole class discussion, after which 
students recorded their responses independently. An excep-
tion to this was related to two children in the class with very 
low literacy levels. These students worked with a partner to 
record a joint response for the pair. In each instance, students 
were asked to provide a claim along with statistical evidence 
and reasoning for the claim. Student work was analyzed by 
recording all responses for each activity and developing 
common clusters. These clusters were categorized as fol-
lows: (1) no or incomprehensible response, (2) limited claim 
that draws on tangential or non-desired evidence, (3) claim 
only, (4) claim with partial supporting statistical evidence, 
(5) claim with sufficient supporting statistical evidence, (6) 
claim with sufficient supporting statistical evidence and rea-
soning. More specific details are included with the relevant 
results.

4  Results

For clarity, the unit is reported according to the sequenc-
ing of the Lehrer and English (2018) framework in Fig. 1, 
with a privileging of those activities that illustrate students’ 
engagement with distribution, variation and center.

4.1  Posing questions

Ms Thompson introduced the students to the inquiry by 
showing them a catapult plane and demonstrating how they 
fly before explaining the arrangement with the Air Museum. 
The children’s enthusiasm was clear—many already had 
experience in flying paper planes and began spontaneously 
contributing ideas. The teacher asked the students to brain-
storm what would be required to achieve the task. The class 
decided they would need to make the kits and complete a 
budget to price the kits. The kits would need paper, rubber 
bands and a set of instructions for making the plane. Discus-
sion of the kit contents provided the teacher with the oppor-
tunity to ask what size pieces of paper should be included 
in the kits and this led to the inquiry question being posed: 
What is the best-sized piece of paper to make a catapult 
plane from?

4.2  Designing and conducting investigations

The students were tasked to make a plan to determine the 
best-sized piece of paper for making the planes. On being 
queried, the teacher told the students the internet instruc-
tions she had found used a 10 cm × 15 cm rectangle. Work-
ing with the teacher to scale the sizes, the students listed 
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possible planes in the same ratio of 2:3. Their list incorpo-
rated whole number increments from 2 cm × 3 cm, to 30 cm 
× 45 cm. A discussion ensued with students debating how 
many planes should be tested, with many feeling it should be 
all 15 possibilities. Two students proposed trying the 10 cm 
× 15 cm as it had been the recommended size and 20 cm × 
30 cm as it was ‘double the size’ (sic) arguing the answer 
could guide future testing sizes. The class felt this was a 
practical idea. The class decided that each student would 
make one of the two sizes (a total of 13 of each) and that five 
throws of each plane would enable measurement of flight 
distance before planes became damaged. The students com-
menced with building and testing their planes and recording 
their throws on a data sheet provided.

4.3  Generating and selecting attributes 
and measuring attributes

The students had decided that the attribute of interest was 
the distance the plane flew, to be measured from the throw-
ing point to ‘the plane’. They commenced data collection 
and quickly began realized there were a few aspects they had 
not considered, such as what the throwing point actually was 
(the student’s foot, the line they were standing behind or the 
approximate release point of the plane) or what they meant 
by ‘the plane’: where the plane landed initially or where it 
finished after sliding? Should they measure to nose or tail? 
Students were asked to note these for later discussion.

4.4  Sample

Once back in the classroom, the teacher asked the students 
to identify the data they had collected: two sets of data, five 
iterations of each of 13 planes of the same size (10 × 15 cm 
or 20 × 30 cm).

4.5  Organizing and structuring data and measuring 
and representing the data

The teacher elected to use dot plots to record the data. A 
dot plot is a simple histogram used for representing small 
data sets with values that fall into discrete categories (bins). 
The plot illustrates the distribution of numerical variables 
with each dot representing a value. Repeat values are stacked 
above each other so that the height of the column of dots 
indicates the frequency for that bin (see Figs. 2, 3, 4). The 
teacher drew the basis of a dot plot on the whiteboard and 
explained the necessity to bin data across values, setting the 
bin width at 1 m. The students copied the skeleton dot plot 
into their grid books (once for each size plane) and then 
recorded the class data as all students called their five data 
points (Figs. 2, 3). No student had difficulty beyond acciden-
tal recording in the wrong bin.

4.6  Modeling variability

Drawing students’ attention to the dot plots, the teacher 
asked the students what they noted. Student responses 
largely focused on single data points, such as the great-
est distance flown by each plane. The teacher then led a 
discussion that served to focus the students on the overall 
distribution of the data before consideration of variation 
and center. In each instance, the teacher also discussed the 

Fig. 2  Data from first round of flight testing of 10 × 15 cm paper sizes

Fig. 3  Data from first round of flight testing of 20 × 30 cm paper sizes



1131Dot plots and hat plots: supporting young students emerging understandings of distribution,…

1 3

representations in terms of the context to ensure students 
were making the link from the interpretation of the graph to 
the context of the plane flights. These activities are detailed 
below.

4.6.1  Exploring distribution

The teacher had the students examine their constructed dot 
plots while identical plots constructed by the teacher were 
projected onto a whiteboard for display. The teacher asked 
the students to look for patterns in the plots, ‘Each graph 
has a curve or an overall pattern. I want you to look at 
the overall pattern’. Although unfamiliar with the notion of 
‘pattern’ as it related to data, the students quickly observed 
and identified central ‘clumps’ to each graph. The students 
noted that there were points some distance from the clumps 
and a lengthy conversation ensued about the outliers (the 
teacher introduced the term):

Patrice  …you know how we were saying [pause] we were 
talking about [pause] can there be a clump of out-
liers? There actually could. I think I’m correct 
um because see the 13 to 14. … See the 13 to 14 
meters on the 10 by 15 graph, that is an outlier 
but it’s a clump of outliers [the two dots on the far 
right of Fig. 2].

Ms T  Is it far enough away from the general clump to be 
an outlier though?

Patrice  Yeah, probably not.
Ms T  What does outlier mean? Why is it an outlier?
Kala:  Because it’s like out of the clump so it’s like far 

away and it’s like separated from the big clump of 
all the stuff. …

Ms T  What does an outlier give you the impression of? 
So, if you’re looking at data and you see an outlier 

what do you immediately think when you see an 
outlier? Something that is miles away from eve-
rything. What do you think?

Isaac  It’s either a really good thing or a really bad thing.
Ms T  What do you think?
Cindy  I think someone’s done something wrong.
Ms T  You think it’s just so far away from everything it’s 

wrong? It’s a mistake? What do you think Grant?
Grant  It’s unlikely, forget it.
Ms T  What do you think Callum when you see an 

outlier?
Callum  I think that it’s really lonely.

The conversation above highlights the students’ use of 
informal language as they begin to express their emerging 
ideas of distribution, and of any data lying away from the 
center ‘clump’. Students’ emerging appreciation of outliers 
is also made apparent through their use of informal language 
as their own descriptions make their understandings clear. 
Various student views include outliers as: entities away from 
the main clump (Kala); extreme values that may be accurate 
(Isaac); error (Cindy, and Grant); or, simply an isolated score 
(Callum). Although these views are varied, each of them is a 
valid possibility and the students were beginning to see that 
outliers might carry information of interest.

4.6.2  Exploring variation

The teacher introduced the students to a TinkerPlots™ ver-
sion of the same data (Fig. 4) created by the researcher at the 
request of the teacher (who knew of TinkerPlots™ but was 
unfamiliar with the program).

After giving students time to ascertain the generated plot 
was identical to their hand drawn ones, Ms Thompson drew 
students’ attention to the data range and attempted to draw 
out reasoning for the spread of data. She questioned why 
there was not just the same data for every throw of the one 
plane type. In this way, she begins to explore the students’ 
notions of variation.

Ms T  What I want to know is why have you got this 
great big range? … why do I have all this [indicat-
ing the spread], why don’t I have [just] this range 
in the middle? [indication drawing all data to a 
central point]. Why don’t I have one line [data in a 
single bin] so why, if I say OK it’s going to be like 
8 meters, why don’t I just have one line because it 
flies 8 m? What do we call these things that give 
us that great big range?

Janice  Mistakes?
Ms T  They could be mistakes. …
Isaac  Um is it called like human errors?

Fig. 4  TinkerPlots™ comparison of 10 × 15 cm and 20 × 30 cm flight 
test data (binned)
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Ms T  It could be human error. … Like how they make 
the plane or how they throw the plane. Yeah Paul?

Paul  You know like on my one I put a hole punch in 
it to create a drag along it so [voice drops off] … 
And some of them put it [the hole] in the sticky 
tape as well and that would make a little bit of a 
difference.

Ms T  OK. What do we call all of these things? And we 
talk about it in science as well. All these things 
that change all the time. Or that could have created 
change. Starts with ‘v’.

St:  um, variants?
Ms T  Oh, very close.
Callum  Vegetables?
Ms T  These are variables. These are things that hap-

pened that might answer the question of why do 
we have these [indicates outliers] down here?

After this discussion, the student groups brainstormed 
and then shared back as a class a list of variables that could 
have influenced flight testing. These included construction 
of the plane (measurement of the rectangle, folding accu-
racy, amount of tape used in construction), testing of plane 
(throwing method, angle of release), and measurement of 
flight (whether the tape measure was to be shifted to the 
diagonal, the part of the plane to measure to). One of the 
students summed this up by stating that ‘the first time [they 
tested the planes] we did cut down some variables to make 
it a fair test but now we realize it wasn’t really the best fair 
test.’

4.6.3  Exploring centre

In the following lesson, the teacher moved towards dis-
cussions of center. She provided an unbinned distribution 
(Fig. 5) and asked which was the best-sized piece of paper 
from which to make a catapult plane. Janice argued that the 
smaller plane (top plot in Fig. 5) must be the better because 
there is a clump around 7–9 m whereas the larger plane was 

more clumped around 4–6 m. A few students disagreed, 
arguing that the spread of the larger plane (bottom plot in 
Fig. 5) was such that there was not really a clump. Other than 
Janice, the students could not see a clear difference between 
the plane data and the teacher became unsure how to proceed 
and ended the lesson.

In the teacher-researcher discussion following the lesson 
the teacher stated that, like the students, she could not see a 
clear difference either. The teacher was aware that another 
teacher in the school, had used TinkerPlots™ to develop 
hat plots, and asked if this might help the students. The 
researcher provided the hat plot data in TinkerPlotsTM and 
the teacher elected to use the idea of ‘middle 50%’ to move 
forward.

The following lesson commenced with the teacher’s sug-
gestion that finding the ‘middle’ of the data might assist 
students. A student familiar with mean, in the context of a 
cricket batting average, made the suggestion of a mean but 
she redirected the student by suggesting a middle range of 
the data might be more useful. Ms Thompson challenged 
the students to work in groups to see if they could identify 
the middle 50% of the data, handing them printed versions 
of Fig. 5 with which to work. The students found this an 
extremely challenging task, due to largely unformed under-
standings of percentages. Most students commenced by try-
ing to identify halfway to split the data into two lots of 50%, 
linking their knowledge of 50% with ‘half’. Janice was the 
first in her group to work this out (Fig. 6) and then she ver-
bally summarized her conclusion:

Janice  So, I personally think 10 by 15 is better because 
it’s as you can see, the average is closer to the 
higher numbers, so where the average for 20 by 
15 [cm] [she means 20 × 30 cm as this is the data 
she indicates] is a lot lower than the 10 by 15 [cm]. 
Because it is a whole 2 meters further.

Fig. 5  TinkerPlots™ comparison of 10 × 15 cm and 20 × 30 cm flight 
test data (unbinned)

Fig. 6  Student identified center. (Original box and range were hand 
drawn by the students onto an existing dot plot print out—this has 
been replicated electronically due to the poor scan quality of the orig-
inal.)
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Most students were now articulating a need to look at the 
center region rather than individual data points. However, 
back in this group, Callum was still focused on a single data 
point. The conversation of the students working with him, as 
they attempted to explain the need for a more central aver-
age, provided some insight into their appreciation of what 
the data points were representing.

Callum  Look at this. Aha! [pointing to the extreme right 
data point on the lower diagram in Fig. 6].

Janice  That’s not an average that’s just how he [Irwin] 
threw it.

Isaac  That’s an average [pointing to the marked 50%].
Janice  That’s an average [also pointing to the marked 

50%]. One person in the whole class did that 
[pointing to the extreme right data point]. That’s 
not an average.

Isaac  That’s the average of Irwin. [laughs]
Callum  Doesn’t matter. It was really good.
Isaac  That’s the average of Irwin’s second last throw. 

[still laughing]
Janice  Yeah, this [pointing to the center 50% on the top 

diagram] is still further though. It’s more typi-
cal to throw further than the 20 by 30 [emphasis 
added].

This conversation illustrates the difficulty Callum experi-
enced in shifting to a global or aggregate perspective of the 
data, even as Janice and Isaac try to focus his attention on 
the center of the data set. Isaac indicates a solid contextual 
appreciation of the data as he laughingly indicates that a 
single point is only an ‘average’ of itself.

The students were shown with TinkerPlots™ generated 
hats and compared these with the location of their hand 
drawn hat. Again, the teacher’s ordering of the activities 
was purposeful in ensuring the students knew the origin of 
the hat rather than simply ‘reading’ the hat procedurally. The 
hat plot derived from TinkerPlots™ can be seen in Fig. 7. 
Not all students had matching plots to those generated by 
TinkerPlots™; although the drawings were virtually identi-
cal, a number of groups demonstrated inaccurate reading. 
These inaccuracies resulted from either ‘guesstimating’ the 
values at the end points of the crown of the hat, or through 
using a ruler at a skewed angle and thus failing to read the 
x-axis at the perpendicular. Some of these were out by as 
much as a meter on the scale.

4.7  Making inferences

To assess the students’ understanding of their hats, and to 
lead the students to begin inferring from data, the teacher 
asked the students to write a conjecture in their books, based 
on the data. They were asked which of two planes, one of 

each size, would likely fly the furthest and to provide evi-
dence to explain their response. Of the 17 sets of data, the 
following responses were noted: three provided no response; 
one provided an undesired response (referring to the single 
flight distance of one plane to make a decision); one pro-
vided insufficient evidence by identifying the 10 × 15 cm 
plane as the better plane but only providing the data for that 
size and not giving other data for comparison; and, 12 stu-
dents provided a statement which identified the better size, 
citing the middle 50% of the flight test results and drawing 
on these results as evidence. Five of these latter 12 students 
further referenced the fact that the middle 50% was some 
form of ‘average’ through the use of language such as ‘typi-
cal range’, ‘middle range’ or ‘middle clump’; for example,

The 10 × 15 catapult plane has a typical range of 4.5 
meters to 9 meters and the 20 × 30 catapult plane has 
a typical range of 3 meters to 7 meters. Therefore the 
10 × 15 catapult plane will probably go further than 
the 20 × 30. [Grant]

Although the students had not had any teaching or discus-
sion of inference, in this response we see the student drawing 
on data, making a generalization about the two planes and 
the probabilistic nature of that conclusion. Students were 
not always this clear but typically there was some form 
of qualifier used to reduce the certainty of their response; 
for example, ‘I think’, or ‘most of the time’. However, it 
is unclear whether the students were deliberately qualify-
ing their statements or whether they were merely figures of 
speech, particularly with ‘I think’.

4.8  Posing questions

The students agreed that the smaller plane (10 × 15 cm) was 
the better plane. The purpose of this initial testing had been 
to narrow the choices for a second round of testing and so 
the students had now to address the question as to what size 
the best plane was based on a new selection of sizes, thus 
recommencing the statistical PPDAC inquiry cycle by draw-
ing on their informal inferences.

Fig. 7  Comparing TinkerPlots™ hats to students’ hat plots
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4.9  Designing and conducting investigations

The students elected to follow the same plan as in their pre-
vious experiment, with a focus on reducing variation due to 
error. They decided to address the variables they had previ-
ously identified and see if they could reduce the potential 
error through more careful design and testing. Each group 
selected variable/s and carefully discussed each, suggesting 
means of reducing variation. For example, it was decided 
that, for each launch, a student would use a ruler to ensure 
that the rubber band was pulled back precisely 20 cm before 
launch.

After significant debate, the students decided that the 
10 × 15 cm plane should be retested to make a fairer com-
parison given the intent to reduce variation. They also 
established that a 6 × 9 cm plane was the smallest that could 
be physically constructed and so decided that 6 × 9 cm, 
8 × 12 cm, 10 × 15 cm and 12 × 18 cm would be the tested 

sizes. The measure of success would again be the flight dis-
tance, now carefully defined as the distance from the lead 
toe of the thrower to the closest part of the plane from its 
final resting place.

4.10  Sample and data organization 
and representation

The results of the second investigation were recorded and 
entered into TinkerPlots™ and the students provided with 
the display in Fig. 8.

The data that resulted from the second round of the inves-
tigation were almost disappointing in the extent to which 
the students were easily able to make a clear-cut response 
and identify the plane with the overall farthest average flight 
distance. To ensure that the students were individually inter-
preting the dot/hat plots, the teacher posed the following two 
questions to the students:

1. Which was the best [farthest flying] plane? Why?
2. Which was the most consistent plane? Why?

Student responses (Table 1) suggested that many of the 
students could interpret the hat plots both in terms of iden-
tifying the highest average (middle 50%) and the least vari-
ation and do so relevant to the context. Few students, how-
ever, could explain their reasoning with clarity.

4.11  Making inferences

Two final tasks were given the students to explore further 
their understandings of the data and context. For the first 
task, the students were provided with a copy of the hat plot 

Fig. 8  Data from second round of testing comparing 6 × 9  cm, 
8 × 12 cm, 10 × 15 cm and 12 × 16 cm paper sizes with hat plots

Table 1  Student responses upon being asked to interpret the TinkerPlots™ generated Hat Plots from Round 2 testing to identify the farthest fly-
ing and most consistent planes

Category of response Farthest flying plane? Most consistent plane? Example
No. of responses No. of responses

No response 2 3 Not applicable
Incorrect response 1 1 10:15 and 8:12 [are the most consistent] because they are only 

3 and 2 cm off each other. [Duane]
Answer only 4 3 12 × 18 is best. [Irwin]
Partial support 5 3 The 12 × 18 catapult plane was the best because the middle 

50% has 7 to 10 m. [Grant]
Sufficient support 2 2 I think the 12 × 18 cm paper plane is the best because there 

is a bigger [higher] range from the others with a range from 
5.5 m to 13.5 m. [Darren]

Sufficient support and reasoning 1 2 10 × 15 is the most consistent plane because all of the data is 
clustered in the same spot from 4.5 to 9.5 m. There are no 
outliers. 10 × 15 is the only ratio with one single big clump 
with scores over and over again in the same area. None 
of the data is distant from each other like the other ratios. 
[Janice]
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representation of the Round 2 results (Fig. 8) and asked to 
predict where the hat might be if the data collection were 
to be replicated. The students marked this on the existing 
hat plot sheet. Of the 13 students for whom responses were 
able to be analyzed, only one student suggested no change 
would occur. This response suggested that the student 
was not considering either the real or induced variation 
inherent in sampling. Of the remaining students, approxi-
mately equal numbers suggested: more than ¾ overlap of 
the plots; more than ½ overlap of the plots; and, more than 
¾ overlap of the plots with clearly less variation on the 
10 × 15 plane (the one exhibiting less variation in Round 
2). Noteworthy is that only two students included the full 
data range in their predicted representations by includ-
ing the ‘brim’ of the hat in their response. Both students 
reduced the length of the tails, arguing that variation had 
been reduced from the first to the second trial and thus 
they anticipated further reduction as more care was taken 
to control variation.

The second task was that the students were to decide 
what the best-sized piece of paper was to make a cata-
pult plane and write a justification for their decision. 
Most students merely replicated, or elaborated slightly, 
their response reported in Table 1. Grant felt his previ-
ous answer was not convincing enough and he took it 
upon himself to write the following (unaided). Any writ-
ing errors were retained, and the rounded brackets are the 
work of the student. This has not been included to dem-
onstrate a typical or expected response, but to illustrate 
the possibilities for statistical understanding and informal 
inferencing at a young age.

The best sized piece of paper for a catapult plane 
would be the 12 × 18 plane because it has a middle 
50% of 7.50 m to approximately 10 m. All the other 
planes had a smaller (lower) middle 50% because 
their ranges of distance are between 2 and 4.5 m 
(6 × 9 plane), 4–7 m (8 × 12 plane), and 6–7.50 m. 
We use the middle 50% because it is kind of like an 
average where half of the planes landed in a cluster 
and that is easy to read and easy to figure out. … 
[provision of outliers for each plane]. We tried to cut 
down the variables but sometime there was a outlier 
(measurement of planes dispersed from the cluster). 
Also if the range was smaller there would be less 
variation like 10 × 15 which only has a range of 5 
meters. This shows the 10 × 15 plane was more relia-
ble. The 12 × 18 would be one of the most unreliable.
Overall, with all the things to think about, like vari-
ables, outliers and the middle 50%. This has affected 
my decision, but I still choose the 12 × 18 paper 
plane because even though the 10 × 15 was more con-
sistent, the 12 × 18 middle 50% (which gives you the 

range where the most planes landed) was the largest 
[highest] range and that gave me a good idea of what 
is usually thrown.

Again, we see the nature of the informal inference with a 
generalization made (which is the better plane) the drawing 
upon of data, and the probabilistic nature of inferences made 
with the qualifier ‘usually’.

4.12  A final note

Approximately three months after the completion of this 
unit, the researcher went back to the classroom and asked 
the students to recall the plane unit they had been working 
on. She provided the teacher with the TinkerPlots™ dia-
grams of the first and second trials of the 10 × 15 cm plane 
(Fig. 9), which students had not previously seen side-by-side 
and asked the students if they had any comments to make.

Patrice  It looks like on the second one we have definitely 
cut down a lot more variation. Because it looks 
like there is quite a big clump in the middle, but 
the range is not really wide, not like the first one.

Patrice’s comment suggests that, even 3 months later, at 
least some of the students could interpret the dot plots/hat 
plots within a familiar context.

5  Discussion

The purpose of this paper was to illustrate possible affor-
dances of statistical modeling for developing young stu-
dents’ statistical reasoning about distribution, center and 
variation in the context of an authentic problem.

Fig. 9  A comparison between the first and second trials of the 
10 × 15 cm planes
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Distribution is difficult for children to conceptualize given 
the complexity of the structure (Garfield and Ben-Zvi 2007; 
Pfannkuch and Reading 2006). Although ideally under-
standings of distribution might take a broader focus than 
those described here, this paper serves to address emergent 
concepts of distribution with young learners. Key aspects 
of distribution that were attended to by students included 
outliers and ‘clumps’ and this was accomplished with little 
prompting beyond the teacher’s request to find a pattern. Of 
note was the constant use of informal language throughout 
the unit, which not only enabled students to explain their 
emerging understandings but also served to provide greater 
teacher and researcher insight into students’ developing con-
cepts, as was seen in students’ discussion regarding outliers. 
An anticipated issue, a tendency for students to focus on 
individual data scores rather than viewing data as aggregate 
(Wild 2006), was noted. However, the unwillingness of Cal-
lum to relinquish his focus on a single upper score, despite 
the explanation and persuasion of his classmates, served to 
highlight the tenaciousness of these views.

To counter procedural approaches to center, which do 
not provide students with a conceptual understanding (Gar-
field and Ben-Zvi 2008), the teacher focused the students 
on informal observation before introducing the ‘middle 
50%’. One consideration with using real data, as distinct 
from neatly planned data, is that it is unlikely the teacher 
can anticipate the data. In the first collection round, the data 
scores advantaged the teaching focus, with most of the class 
having difficulty seeing ‘signals’ in the comparison dot plots. 
This created a need for further analysis that led to intro-
duction of ‘middle 50%’. Although the students had initial 
difficulty, it was largely due to unfamiliarity with fractional 
and percentage concepts. Once understood, the ‘middle 
50%’ gave the students a means of identifying the signal in 
the data (Konold and Pollatsek 2002), resulting in students’ 
interpretation of the plots. The drawback is that collected 
data may sometimes be much more clustered which reduces 
the need for further exploration. Perhaps this is one argu-
ment for designing ‘messy’ data sets for students to work 
with.

As students developed an appreciation of distribution, 
they began to make conjectures about causes of induced 
variation (Wild 2006). By attempting to reduce this vari-
ation for the re-test, students were able to see the impact 
of their endeavors on the distribution. This manipulation 
of the data results, seen through the process of modeling, 
served to enhance both the students’ appreciation of varia-
tion induced through data collection, as well as the notion of 
data representations as tools that could provide information 
(model of a phenomenon) as well as serve a given purpose 
(model for observing variation) thus countering data repre-
sentations as illustrations (Wild and Pfannkuch 1999). As an 
aside, it would be wise to ensure that students engage with 

multiple contexts so as not be left thinking that all variation 
is problematic. In this instance, when the students wanted 
to identify, for comparison, the center in the four samples, 
reduction of variation was a legitimate aim as, by doing 
so, the center of the data became more apparent. Such an 
approach served to highlight the center of a distribution as 
being the signal in the noise of variation (Konold and Pollat-
sek 2002), while acknowledging that variation is an inherent 
part of a data set.

A key component of these lessons was the students’ 
engagement with various models; including, multiple dot 
plot representations of the data, both binned and unbinned, 
with and without hats and with different comparisons. These 
models were brought about through the affordances of Tink-
erPlots™, as the students were able to see graphs manipu-
lated quickly to shift between binned and unbinned data, 
see hats added and removed, they were able to see how the 
graphs could be manipulated to give various perspectives of 
the data. These models thus challenged the ‘graph as illus-
tration’ perceptions (Wild and Pfannkuch 1999) and offered 
a ‘graphs as tools’ alternative. Previous research has high-
lighted the potential affordances of technology for offering 
opportunities to emphasize key concepts of inference (Cobb 
2007) and there are many studies that more specifically focus 
on the affordances of TinkerPlots™ than this study (see Ain-
ley and Pratt 2017; Ben-Zvi and Amir 2005; Doerr et al. 
2017; Noll and Kirin 2017).

6  Conclusion

When working with young children, an informal yet concep-
tual approach would appear to offer far greater potential to 
develop statistical reasoning than teaching more procedur-
ally. The students engaged in this modeling activity were 
able to explore and develop some emergent understandings 
of key aspects of statistical literacy—a conceptual under-
standing of distribution, variation and center. This supports 
the contention that young children can address variation and 
center through modeling at early ages (Garfield and Ben-Zvi 
2008) and demonstrates that the capacity to do so is well 
within their reach.

Issues of replicability and magnitude of this study should 
be noted as limitations to the research described. Replicabil-
ity of this study would be problematic as classroom dynamic 
is individual to each class and teacher. If this study were to 
be replicated, even with this teacher but a different class, the 
responses from students may be quite different. This is espe-
cially notable in a class that has a strong inquiry culture in 
which students formulate understandings and ideas collabo-
ratively, and the teacher is responsive to these understand-
ings. However, the goal was not replicability or generaliz-
ability but rather to develop an appreciation for how students 
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might reason about key statistical ideas through modeling 
an authentic problem. To this end, the results suggest that 
modeling through statistical inquiry offers potential that pro-
cedural views have not similarly demonstrated.

A further limitation to this study is its size. The study 
provided insight into the possible development of informal 
and emerging statistical understanding with a single class 
of Year 5 students. However, there was nothing to suggest 
development of these understandings could not be com-
menced earlier, with prior research indicating much younger 
children can develop early informal statistical understand-
ings (McPhee and Makar 2014). More work with a broader 
range of ages, using the affordances of statistical modeling, 
would provide greater insight.

In addition, focused longitudinal studies that result in the 
development of a continuum of learning for ISI are needed in 
order to inform curriculum development. This study brings 
into further question the value of continuing with existing 
curricula that limit learning to a descriptive and procedural 
approach until secondary or tertiary levels because young 
students are not deemed developmentally ready for ‘real’ 
statistics.
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