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Abstract
To contribute to the sparse educational research on student understanding of eigenspace, we investigated how students reason 
about linear combinations of eigenvectors. We present results from student reasoning on two written multiple-choice ques-
tions with open-ended justifications involving linear combinations of eigenvectors in which the resultant vector is or is not 
an eigenvector of the matrix. We detail seven themes that analysis of our data revealed regarding student responses. These 
themes include: determining if a linear combination of eigenvectors satisfies the equation Ax = �x ; reasoning about a linear 
combination of eigenvectors belonging to a set of eigenvectors; conflating scalars in a linear combination with eigenvalues; 
thinking eigenvectors must be linearly independent; and reasoning about the number of eigenspace dimensions for a matrix. 
In the discussion, we explore how themes sometimes cut across questions and how looking across questions gives insight 
into individuals’ conceptions of eigenspace. Implications for teaching and future research are also offered.

Keywords Linear algebra · Student reasoning · Eigenspace · Linear combination

1 Introduction

Linear algebra is particularly useful to science, technol-
ogy, engineering and mathematics (STEM) fields and has 
received increased attention by undergraduate mathemat-
ics education researchers in the past few decades (Artigue, 
Batanero, & Kent, 2007; Dorier, 2000; Rasmussen & 
Wawro, 2017). A useful group of concepts in linear algebra 
is eigentheory, or the study of eigenvectors, eigenvalues, 
and eigenspaces.1 We focus on eigentheory because it is a 
conceptually complex set of ideas that build from and rely 
upon student understanding of multiple key ideas in math-
ematics, and its application is widespread in mathematics 
and beyond. First, investigating student understanding of 
eigentheory contributes to what is known about how stu-
dents conceptualize related key ideas, such as linear transfor-
mation, linear (in)dependence, solution sets, subspace, and 

geometric interpretations of these ideas when applicable. 
For instance, eigenvectors and eigenvalues have geometric 
interpretations in two and three dimensions; however, those 
may or may not connect to students’ understanding of the 
algebraic representations of these ideas (Hillel, 2000). Sec-
ond, students also encounter eigentheory in a wide spectrum 
of mathematics courses beyond linear algebra—such as dif-
ferential equations, probability, graph theory, cryptography, 
matrix theory—as well as courses in chemistry, physics, eco-
nomics, and engineering. For instance, within mathematics 
the uses of eigentheory include stochastic processes, preda-
tor–prey models, and connectivity of graphs and digraphs; 
in quantum mechanics, the uses of eigentheory include 
determining the possible measurements of observables in 
spin or energy systems. Thus, investigating student under-
standing of a complex topic that exists in a variety of areas 
in the undergraduate STEM curriculum has the potential 
to impact not only the field of mathematics education but 
various discipline-based educational research fields as well.
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1 “An eigenvector of an nxn matrix A is a nonzero vector x such that 
Ax = �x for some scalar � . A scalar � is called an eigenvalue of A 
if there is a nontrivial solution x of Ax = �x ; such a x is called an 
eigenvector corresponding to � ” (Lay et  al., 2016, p.  269). The 
eigenspace of A corresponding to � is “the set of all solutions of 
Ax = �x , where � is an eigenvalue of A. [It c]onsists of the zero vec-
tor and all eigenvectors corresponding to � ” (p. A9).
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One aspect of eigentheory that seems particularly under-
studied in educational research is eigenspace, including 
how students understand linear combinations of eigenvec-
tors. If x1 and x2 are eigenvectors of A both with eigenvalue 
� , then all vectors that are a linear combination of x1 and 
x2 (i.e., span

{

x1, x2

}

= k1x1 + k2x2 for scalars k1 , k2 ) are 
eigenvectors of A associated with � . Some research on stu-
dent understanding of eigentheory has included eigenspaces, 
but usually not as the focus of the study (Beltrán-Meneu, 
Murillo-Arcila, & Albarracín, 2016; Gol Tabaghi & Sin-
clair, 2013; Salgado & Trigueros, 2015; Thomas & Stewart, 
2011). In addition to the importance to eigentheory specifi-
cally, studying student understanding of linear combina-
tions of vectors is relevant to knowing how they understand 
vector spaces, span, and linear independence. By focusing 
on linear combinations of eigenvectors, this paper consid-
ers how students combine knowledge of the meaning of the 
eigenequation (both algebraically and geometrically) with 
their understanding of linear combinations of vectors and 
subspaces.

To explore students’ understanding of eigenspaces fur-
ther, the research question for this paper2 is: How do stu-
dents make sense of and reason about linear combinations 
of eigenvectors?

2  Theoretical framework and literature 
review

The research reported in this paper is part of a larger 
research program in which we endeavor to investigate how 
students reason about and symbolize eigentheory in linear 
algebra and in quantum physics (Project LinAl-P, NSF-DUE 
1452889). Herein we focus on the variety of mathematical 
conceptions that individual students bring to bear in their 
mathematical work, choosing to immerse ourselves in the 
multi-faceted nuances of students’ constructed conceptions 
(von Glasersfeld, 1995) about a particular set of mathemati-
cal ideas, namely those related to eigentheory and eigens-
pace. We note that these conceptions are not constructed in 
isolation; rather, the norms and practices of classroom activ-
ity give “shape and purpose to individuals’ goal-directed 
activities” (Saxe, 2002, p. 277). As such, we recognize the 
importance of an overarching theoretical approach towards 
learning called the Emergent Perspective (Cobb & Yackel, 
1996), which is based on the assumption that mathematical 
development is a process of individual cognition through 
constructivism (von Glasersfeld, 1995) and mathematical 

enculturation through symbolic interactionism (Blumer, 
1969). This paper is a first step toward understanding how 
students learn the concept of eigenspace by specifically 
focusing on the individual conceptions they hold about lin-
ear combinations of eigenvectors.

In order to understand nuances in students’ conceptions 
of eigentheory and eigenspaces, it is important to situate 
this study within the literature on the teaching and learn-
ing of eigenvectors and eigenvalues, which points to several 
aspects of eigentheory that are important as students build 
their understanding. In drawing upon these various studies, 
we recognize that each has a chosen theoretical framework 
that led to or illuminated particular results. Our focus here is 
to provide a broad overview of the educational research that 
has focused on eigentheory, tying together results that come 
from various theoretical framings into a cohesive whole.

Thomas and Stewart (2011) found that some students 
struggle to coordinate the two different mathematical pro-
cesses (matrix multiplication versus scalar multiplication) 
captured in the equation Ax = �x to make sense of equality 
as “yielding the same result” between mathematical enti-
ties (i.e., two equivalent vectors), an interpretation that is 
nontrivial or even novel to students (Henderson, Rasmus-
sen, Sweeney, Wawro, & Zandieh, 2010). This importance 
of understanding Ax = �x was further explored by Bouhjar 
et al. (2018). They found that a robust conceptual under-
standing (Hiebert & Lafevre, 1986) that leads to productive 
solutions in solving eigentheory problems includes the abil-
ity to interpret the matrix–vector multiplication in Ax = �x 
as a transformation (see Larson & Zandieh, 2013) which 
“yields a vector that is a scalar multiple of x, or that lies on 
the same line as x, or that points in the same (or opposite) 
direction as x” (p. 212). Furthermore, in navigating eigen-
theory problems, students have to keep track of multiple 
mathematical entities (matrices, vectors, and scalars), all of 
which can be symbolized similarly. For instance, the zero 
in (A − �I)x = 0 refers to the zero vector, whereas the zero 
in det(A − �I) = 0 is the number zero. This complexity of 
coordinating mathematical entities, operations, and their 
symbolizations is something students have to grapple with 
when making sense of eigentheory concepts and solving 
eigentheory problems.

Thomas and Stewart (2011) also posit that this complex-
ity may prevent students from making the symbolic pro-
gression from Ax = �x to (A − �I)x = 0 through the intro-
duction of the identity matrix, which is often an important 
step in solving for the eigenvalues and eigenvectors of a 
matrix A . In their genetic decomposition3 describing how a 

2 This paper builds from and is an extension of a conference pres-
entation given at the 2018 Research in Undergraduate Mathematics 
Education Conference (Wawro, Watson, & Zandieh, 2018).

3 “A genetic decomposition is a hypothetical model that describes the 
mental structures and mechanisms that a student might need to con-
struct in order to learn a specific mathematical concept” (Arnon et al., 
2014, p. 27).
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student might construct eigentheory concepts, Salgado and 
Trigueros (2015) also point out the importance of under-
standing the equivalence of the two equations through coor-
dinating solutions to Ax = �x , solutions to homogeneous 
systems of equations resulting from (A − �I)x = 0 , and the 
null space of the matrix A − �I . Adding further complexity 
to understanding these equations is the fact that the inter-
pretation of “solution” in this setting, the (infinite) set of 
all vectors x that make the equation true, is much different 
from solving equations such as cx = d , where c, x, and d 
are real numbers (Harel, 2000). Furthermore, our own work 
indicates students’ preference for using either Ax = �x or 
(A − �I)x = 0 can influence their reasoning when solving 
eigentheory problems (Watson, Wawro, Zandieh, & Ker-
rigan, 2017).

Not only must students navigate complexities involved in 
understanding the equations Ax = �x or (A − �I)x = 0 , they 
must also make sense of different representations and levels 
of abstraction involved in eigentheory. Hillel (2000) found 
that instructors often move between geometric, algebraic, 
and abstract modes of description without explicitly alert-
ing students; although the various ways to think about and 
symbolize linear algebra ideas are second nature to experts, 
they often are not within the cognitive reach of students. In 
fact, Thomas and Stewart (2011) mentioned that students 
in their study primarily thought of eigenvectors and eigen-
values symbolically and were confident in matrix-oriented 
algebraic procedures, but “the vast majority had no geomet-
ric, embodied world view of eigenvectors or eigenvalues … 
losing out on the geometric notion of invariance of direc-
tion” (p. 294).4 In contrast, other researchers have shown 
how exploration of eigentheory through dynamic geometry 
software (Çağlayan 2015; Gol Tabaghi & Sinclair, 2013; 
Nyman, Lapp, St John, & Berry, 2010) or reinvention-ori-
ented task sequences (Plaxco et al. 2018; Zandieh, Wawro, 
& Rasmussen, 2017) can help students develop a robust 
geometric understanding of eigenvectors and eigenvalues. 
Another potentially fruitful way to help students develop an 
understanding of eigentheory is using real-world contexts 
(Beltrán-Meneu et al., 2016; Salgado & Trigueros, 2015). 
For example, using a Models and Modeling approach (Lesh, 
Hoover, Hole, Kelly, & Post, 2000), Salgado and Trigueros 
(2015) showed how a model-eliciting activity supplemented 
with additional activities explicitly designed from their 
genetic decomposition helped many students in the class 
develop at least a process conception5 of eigenvectors and 

eigenvalues, and several were able to demonstrate an object 
conception.

Regarding eigenspaces in particular, some researchers 
have suggested specific ideas about eigenspaces that a student 
needs to develop as they build their understanding of eigen-
theory. Thomas and Stewart (2011) pointed out that students 
need to understand (a) there are infinitely many eigenvectors 
associated with an eigenvalue, (b) every scalar multiple of an 
eigenvector is also an eigenvector, and (c) “a linear transfor-
mation represented by an n × n matrix has at most n distinct, 
non-parallel eigenvectors” (p. 279). In Salgado and Trigueros 
(2015), their genetic decomposition culminates with: “The 
need to compare spaces spanned by different eigenvectors 
allows students to encapsulate the spanned space process into 
an object, defined as the eigenspace corresponding to a given 
eigenvalue of a matrix” (p. 107). They found that through 
their model-eliciting activity, students were able to construct 
a process view of eigenspace by coordinating the concepts 
of span and the null space of (A − �I) to find the solution set 
to the system of equations. However, in interviewing stu-
dents three weeks later, they found many students struggled 
to construct an object conception of eigenspace and to coor-
dinate the number of eigenvectors corresponding to a given 
eigenvalue with the dimension of the space spanned by the 
eigenvectors of that eigenvalue.

Although researchers have made some progress in delin-
eating what is involved in understanding eigentheory as well 
as ways to teach it, there is a need for research that explic-
itly examines the various conceptions students have about 
eigenspaces and linear combinations of eigenvectors. Some 
researchers (Beltrán-Meneu et al., 2016; Thomas & Stew-
art, 2011) have asked questions related to reasoning about 
eigenspaces and briefly shared results of student thinking on 
those problems in the context of their larger investigations. 
In our results section, we tie in these previous findings to 
help create a more comprehensive understanding of the vari-
ous ways that students reason about eigenspaces and linear 
combinations of eigenvectors.

3  Methods

The data for this study come from student written responses 
to the 6-question Eigentheory Multiple-Choice Extended 
(MCE) Assessment Instrument (Watson et al., 2017), which 
aims to capture nuances of students’ conceptual understand-
ing of eigentheory. At the time of data collection, there 
existed multiple versions6 that varied by question format. 

4 See Tall (2004) for a more detailed discussion of the Three Worlds 
of Mathematics (geometric/embodied, symbolic, formal) used as part 
of the framing in Thomas and Stewart (2011).
5 “Process conception” and “object conception” are constructs from 
APOS Theory; see, for example, Dubinsky and McDonald (2001) for 
more information.

6 The main MCE version prompts students to justify their answer to 
the multiple-choice stem by selecting all pre-made justification state-
ments that support their choice (Watson et al., 2017; Zandieh, Plaxco, 
Wawro, Rasmussen,Milbourne, & Czeranko 2015).
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All versions have questions that begin with a multiple-choice 
element; the variation exists in how the students are asked 
to justify their conclusions in the multiple-choice stem. The 
two populations whose responses we analyze in this paper 
were administered an open-ended version of the Eigentheory 
MCE, in which they were asked to select an answer to the 
multiple-choice stem and then respond to the open-ended 
justification prompt: “Because…(Please write a thorough 
justification for your choice).” In particular, we focus on 
student responses to Questions 3 and 5 (Q3 and Q5), which 
are about linear combinations of eigenvectors (Fig. 1).

Q3 asked if a linear combination of two eigenvectors of 
the same eigenvalue is an eigenvector (it is), and Q5 asked 
if a linear combination of two eigenvectors with different 
eigenvalues is an eigenvector (it is not). Because MCE ques-
tions were created to elicit student thinking about eigenthe-
ory within and across different settings and interpretations 
(see Wawro, Zandieh, & Watson, 2018), we note that Q3 
had no geometric wording and was for a more abstract, nxn 
matrix, whereas Q5 was worded in terms of a line and plane 
of eigenspaces for a 3 × 3 matrix. In both cases these ques-
tions ask students to coordinate their knowledge of linear 
combinations of vectors with their understanding of eigen-
vectors and eigenvalues. If students have experience with 
properties of eigenspaces, they may apply that knowledge. 
On the other hand, students who only have minimal exposure 
to eigentheory can still coordinate their knowledge of linear 
combinations of vectors from other parts of linear algebra 
with their knowledge of eigenvectors and eigenvalues.

As this work is part of a larger study of student under-
standing of eigentheory in mathematics and physics, data 
sources for this paper come from a junior-level quantum 
mechanics class at a northwestern US university (which 

we refer to as “Class A”) and a sophomore-level introduc-
tory linear algebra class at a university in the eastern United 
States (referred to as “Class B”). Both universities are large, 
public, research-active doctoral universities. The relevant 
prerequisite for students in Class A was either a combined 
introductory linear algebra and differential equations course 
or two full introductory courses in both linear algebra and 
differential equations; we have no data regarding the instruc-
tional methods nor curriculum in these courses. Class B 
was a student-centered, active learning course that utilized 
the Inquiry-Oriented Linear Algebra curricular materials 
(Wawro, Zandieh, Rasmussen, & Andrews-Larson, 2013) 
with a supplementary textbook (Lay et al.  2016). Eigenvec-
tors, eigenvalues, and matrix diagonalization were taught in 
Class B and in Class A’s linear algebra prerequisites. Note 
that we do not intend this study as a comparison of these stu-
dent groups; rather we draw on students from two different 
settings to allow for a variety of types of student reasoning 
to emerge.

Of the 32 students in Class A, 23 answered Q3 and 16 
answered Q5. Of the 28 students in Class B, 27 answered 
Q3 and 23 answered Q5. Class A was asked to work on 
the MCE for no more than 20 min as homework, without 
outside consultation, during the first week of their Quan-
tum Mechanics course; Students in Class B worked on the 
MCE individually for approximately 20 min in-class dur-
ing the last day of their linear algebra course. The version 
of Q5 given to Class A had a different wording in which 
the vector under consideration was on the plane of the two-
dimensional eigenspace, and students were asked to decide 
what happened geometrically to the vector when acted on 
by the matrix. We determined, however, that this question 
under-emphasized the aspect of linear combination, and it 

Fig. 1  Questions 3 and 5 of the Eigentheory MCE Assessment Instrument
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did not seem to differentiate or lend insight into students’ 
understanding of eigentheory. Thus, the results regarding 
Q5 in this paper (see Sect. 3.4) only report on Class B, 
who was given the version of Q5 in Fig. 1.

To analyze the data in such a way that would allow us 
to characterize the concepts students brought to bear as 
they justified their answers to Q3 and Q5, we engaged 
in qualitative analysis consisting of two levels of coding 
(Miles, Huberman, & Saldaña, 2014):

Codes are labels that assign symbolic meaning to the 
descriptive or inferential information compiled during 
a study. Codes usually are attached to data ‘chunks’ of 
varying size and can take the form of a straightforward, 
descriptive label or a more complex one (e.g., a metaphor) 
(p. 71–72).

In the first level of analysis, we engaged in a cycli-
cal process to code all students’ justifications and develop 
a coding book of the codes and their descriptions. This 
cyclical process included: (a) each author coding students’ 
justifications individually (open or inductive coding ini-
tially, and then using the developed codes with each sub-
sequent pass); (b) group discussions with all three authors 
about each student to work towards a coding consensus; 
and (c) development and refinement of codes and their 
descriptions within the coding book. The codes devel-
oped and given to students’ justifications in this first level 
of coding were generally descriptive or in vivo codes. 
Descriptive codes are short words or phrases assigned to 
data as a label that briefly describes the ideas contained 
therein, and in vivo codes use “words or short phrases 
from the participant’s own language in the data record 
as codes” (Miles et al. 2014, p. 74). In the second level 
of analysis, we identified how the first-level codes were 
loading together in the various student justifications, 
which assisted us in inferring underlying themes among 
the conceptions that students brought to bear in their jus-
tifications for particular multiple-choice answers to Q3 
and Q5. This second-level of analysis is similar to axial 
coding in Grounded Theory (Glaser & Strauss, 1967). In 
the results that follow, we share the codes developed and 
themes discovered, with explicating the themes being the 
major focus of our results.

4  Results

Our analysis of the data revealed 24 codes and seven themes 
that characterized the concepts and reasoning that students 
brought to bear as they justified their answers to Q3 and Q5. 
We list all 24 codes in Fig. 2; to facilitate a brief explana-
tion of a sampling of codes, we organize some of them into 
three clusters—Algebraic/symbolic, geometric, and global. 
Although all 24 codes grew out of our analysis, not all are 
discussed in detail in this paper. Rather, we provide addi-
tional detail on specific codes throughout the subsequent 
Results subsections as needed when the seven themes are 
delineated.

There are four algebraically/symbolically oriented codes; 
we coded if students wrote some version of any of the three 
equations Ax = �x , (A − �I)x = 0 , and det(A − �I) = 0 . We 
also gave the code “Calculation-based” if students seemed 
to utilize any of these equations to carry out computations 
and deduce a conclusion based on these calculations. There 
are four geometrically-oriented codes: “Geometric–vector,” 
“Geometric–transformation,” “Geometric–eigenspace,” and 
“Geometric–span.” The purpose of each was to describe 
which type of object the student was reasoning about geo-
metrically. For example, “An eigenvector doesn’t change 
direction under transformation” [A9] is coded as “Geo-
metric–transformation” because the student focused on the 
graphical quality of the vector after a transformation was 
applied, whereas “v is lay [sic] on the plane formed by y, z” 
[B82] is coded as “Geometric–vector” because the student 
focused on the graphical quality of the vector implied by the 
linear combination. Five codes are of a more global quality, 
intended to capture when students said statements that had 
a universally true type of quality to them. These include: a 
linear combination of eigenvectors is (1) always an eigen-
vector, (2) not necessarily an eigenvector, or (3) never an 
eigenvector; (4) only scalar multiples of eigenvectors are 
also eigenvectors; and (5) vectors in an eigenspace are also 
eigenvectors of that eigenvalue.

In the remainder of the results, we focus on the seven 
themes we found among students’ justifications for their 
answers to Q3 and Q5. For Q3, less than half of each class 
correctly chose (a) “Yes, v is an eigenvector of A with 

Fig. 2  The 24 codes developed 
from the data to describe stu-
dent reasoning on Q3 and Q5
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eigenvalue 2 ,” indicating that Q3 was a particularly difficult 
question for students to answer on the MCE (see Table 1). 
Exploring the reasoning in students’ justifications for each 
of the three answer choices for Q3 constitutes the majority of 
our themes in the following subsections. For Q5, most stu-
dents were able to choose the correct answer (b) “The vector 
z is not an eigenvector of B, ” and many gave justifications 
related to a common theme but to varying degrees of math-
ematical sophistication. In the last section of our results, we 
explain the nuances among students’ justifications for Q5.

4.1  Equation satisfaction and membership 
satisfaction: justification themes of students 
who chose (a) on Q3

Examining the justifications of students who correctly 
chose that v is an eigenvector of A with eigenvalue � = 2 
revealed two main themes: Equation Satisfaction and 
Membership Satisfaction. The Equation Satisfaction 
theme is typified by students who performed a series of 
calculations to verify that Av = 2v within their justifica-
tion; these seven students were coded with both “ Ax = �x ” 
and “Calculation-based” in our coding scheme. Here, we 
share two different examples of this approach (see Fig. 3). 

Notice both justifications use linearity of matrix multi-
plication and the fact that y and z are eigenvectors of A 
with eigenvalue � = 2 to conclude that v satisfies the equa-
tion Av = 2v . Student A24 began with Av and substituted 
in 5y + 5z for v . S/he then used linearity, determined the 
results of A acting on y and z, and used commutativity 
of scalar multiplication and substitution to arrive at 2v 
(Fig. 3a). Student B61 started differently, by taking the 
information about y and z and introducing a factor of 5 
in order to have equations in terms of 5y and 5z . Then 
combining this with the linear combination information 
for v , the student arrived at v = 5

2
A
(

1

5
v

)

 , which led to 
2v = Av after simplification (Fig. 3b). These rather pow-
erful approaches used the given information to connect 
v to the definition of eigenvectors by determining that it 
satisfied the eigen-equation Ax = �x.

Second, the Membership Satisfaction theme is typified 
by students who, rather than looking at how v satisfies 
the eigen-equation, reasoned about v belonging to a set of 
eigenvectors. This was done in two ways: by pointing out 
that v is a linear combination of the eigenvectors y and 
z that have the same eigenvalue (coded with “Combina-
tion” and “Same Eigenvalue”) or by stating that v would 
be a vector in the same eigenspace as y and z (coded with 
“Eigenspace”). First, five students that correctly chose 
(a) focused on the fact that v is a linear combination of 
the eigenvectors y and z , with all except B62 pointing 
out in some way that y and z have the same eigenvalue. 
For example, B72 wrote, “ v is a linear combination of 
y and z which have same eigenvalue,” and A13 wrote, 
“ v = 5y + 5z . To be an eigenvector: �A = �v [sic], v is 
composed of linearly independent eigenvectors of A with 
eigenvalues of 2.” These students may have reached this 

Table 1  Students’ multiple-choice answers on Q3 of the eigentheory 
MCE

Class Chose (a) Chose (b) Chose (c) No answer Yes eigen-
vector, but 
� ≠ 2, 5

Class A 13 5 3 9 2
Class B 6 5 16 1 0
Total 19 10 19 10 2

Fig. 3  Justifications of A24 (a) 
and B61 (b) on Q3
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conclusion if they were reasoning that linear combinations 
of eigenvectors are always eigenvectors; in this case, that 
would have allowed them to choose the correct answer. 
Because 4 of 5 students explicitly mentioned the shared 
eigenvalue 2, however, we conjecture more may have been 
involved in their reasoning. For example, consider A27’s 
justification: “Combinations of eigenvectors will still be 
an eigenvector. Because eigenvectors are paired with an 
eigenvalue, the combination of its eigenvectors is another 
one (of infinite possible) corresponding to the same eigen-
value.” This sophisticated response could also involve 
aspects of the second possible type of reasoning: that of 
v belonging to an eigenspace. Acknowledging that there 
are infinitely many eigenvectors for the same eigenvalue 
is consistent with reasoning about linear combinations of 
elements from the same eigenspace being members due to 
closure, but none of the 5 students in this group explicitly 
made this claim regarding subspace.

Examples of the second type of justification within 
the Membership Satisfaction theme include those that 
did explicitly state that v belongs to the eigenspace cor-
responding to the eigenvalue � = 2 . Five students included 
this as part of their justification; examples include B68 
who simply wrote, “ v is in the eigenspaces of both y and 
z !” and A25 who added some reasoning about subspaces 
(see Fig. 4). As research on students’ understanding of 
eigentheory has previously pointed out the difficulty for 
students to understand eigenspaces (Salgado & Trigueros, 
2015), it is notable that these students were successful in 
this type of reasoning.

Connecting to previous research on student understand-
ing of eigentheory, we find evidence of student reasoning 
consistent with our Equation Satisfaction and Member-
ship Satisfaction themes in one aspect of the work by 
Beltrán-Meneu et al. (2016). In their study, students were 
given the following test question: “Consider the following 

matrix A =

(

3 −1

0 2

)

 [and] consider the vectors v1 = (2, 0) , 

v2 = (1, 1) , and v3 = (2, 2) . Are the vectors v1 + v2 and 

v2 + v3 eigenvectors of A? Justify your answer.” Note 
there are three ways in which this question differs from 
our Q3: it is framed in ℝ2 , specific vectors are given rather 
than abstract, arbitrary vectors, and the question does not 
specify if v1 , v2, and v3 are eigenvectors. The authors cat-
egorized students’ responses as either symbolic or formal. 
Students that checked if v1 + v2 and v2 + v3 satisfied the 

eigen-equation Ax = �x were identified by the authors as 
using a symbolic approach; in terms of our analysis in this 
paper, students using a symbolic approach would be cat-
egorized under the Equation Satisfaction theme. Students 
were identified as using a formal approach by Beltrán-
Meneu et al. when they “reasoned that the sum of eigen-
vectors is an eigenvector if and only if all vectors belong 
to the same subspace” (p. 7). Students using this formal 
approach would most likely be categorized through our 
analytical framing as falling under the Membership Sat-
isfaction theme. We note that although this small finding 
was only one aspect in their larger study on student visu-
alization in eigentheory, we find this coding consistency 
across studies to be encouraging. Furthermore, because 
Beltrán-Meneu et al. confined themselves to Tall’s (2004) 
Three Worlds (embodied, symbolic, formal) as their cate-
gorizations of student approaches, our analytical approach 
allows us to uncover additional nuances in student reason-
ing, if they exist. We hope the results shared within this 
and subsequent sections better elaborate on those nuances 
in student reasoning.

4.2  Scalar Confusion: Justification theme 
of students who chose (b) on Q3

Question 3 was constructed with coefficients of 5 in the 
equation v = 5y + 5z and with a multiple choice option 
(b) � = 5 to test whether students would conflate the sca-
lar multiple of 5 with the eigenvalue of 2. In our experi-
ence, because the eigenvalue appears as a scalar of the 
vector in the eigenequation Ax = �x , students sometimes 
confuse other scalar multiples with the eigenvalue. This did 
in fact occur in our data, with 10 students choosing option 
(b) � = 5 . Six of the ten wrote statements that were true, 
primarily arguing that the linear combination should be an 
eigenvector without stating why they thought the eigenvalue 
should be 5 (illustrated with B71 and A9 below); the other 
four students were much less certain using phrases such as 
“not sure” or “I guessed.”

We define the theme Scalar Confusion to describe this 
phenomenon. Students are labeled as exhibiting Scalar Con-
fusion when they implicitly or explicitly referred to one type 
of scalar in a situation where it was mathematically correct 
to refer to the other type of scalar. For example, by choos-
ing option (b), a student has referred to the scalar 5 instead 
of the correct answer of � = 2 . Therefore, all 10 students 
who chose (b) had their responses labeled with this theme 

Fig. 4  Justification of A25 on 
Q3
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whether or not their written justifications contained explicit 
statements conflating the scalars. Of students who did not 
answer (b), only two students provided justifications that fit 
the Scalar Confusion theme. Examples of each are provided 
after a description of the relationship of the codes to the 
theme.

The scalar in the linear combination v = 5y + 5z and the 
scalar in the eigenequation were explicitly referred to by 
students in both correct and incorrect ways. In our initial 
coding of the data we created codes “Scale k” and “Scale � ” 
for instances in which students explicitly referred to the two 
types of scalar multiples. “Scale k” was given if a student 
wrote about a vector being a scalar multiple of other vec-
tors, which could include linear combinations of vectors; 
“Scale � ” was given if a student wrote about a vector being 
scaled by an eigenvalue or the eigenvalue being some type 
of scaling quantity. One might expect that students exem-
plifying the Scalar Confusion theme would be labeled with 
both of these because the codes refer to the two scalars that 
are conflated. However, these codes were not a good pre-
dictor for this theme because student responses that cor-
rectly discussed a scalar could also be coded with “Scale 
k” or “Scale � .” Also, many students who did exhibit Scalar 
Confusion did not explain their choice of (b) by referring to 
these scalars explicitly. First, students who chose (b) � = 5 
and had their explanations labeled with the Scalar Confusion 
theme wrote both true statements and false statements for 
their explanations. For example, B71 stated, “ v is a linear 
combination of y and z . Both 5 y and 5z are scalar multiples 
of their previous form so the resultant vector would be an 
eigenvector as well.” This is a true statement, but the student 
wrote this as her/his explanation for (b) � = 5 . A9 wrote, 
“An eigenvector doesn’t change direction under transforma-
tion, and since the vector v is composed of eigenvectors, it, 
too, would not change.” In this case the student provided a 
geometric argument based on the idea that �v is in the same 
direction as v ; this is a true statement (coded with the afore-
mentioned “Geometric–Transformation”), but the student 
incorrectly chose (b) � = 5 . In general, only three students 
were coded with “Geometric –Vector” and two with “Geo-
metric–Transformation” for Q3, and A9 is the only one of 
them who answered (b). Second, two students were labeled 
as exhibiting Scalar Confusion even though they did not 
choose � = 5 . B81 chose (c) not an eigenvector, stating.

No, because an eigenvector is defined as some linear com-
bination defined by the eigenvalue, so that Ax = �x , where x 
is the eigenvector and � is the eigenvalue. The vectors y and 
z are being scaled by a factor of 5 and � = 2 so they cannot 
be corresponding eigenvectors.

B81’s explanation was the only one that received both 
“Scale k” and “Scale � ” codes. In this justification, B81 
clearly and explicitly recognized the different roles that 5 
and 2 play in the problem, but at the same time, did not 

realize that v could have an eigenvalue of 2 even though it 
is a linear combination of vectors scaled by 5. This student 
seems to conflate the scaling by 5 of the vectors y and z in 
the linear combination with the scaling by 2 of the vectors 
y and z when acted upon by the matrix A . In the former, 
y and z have not been acted upon by a transformation—the 
5 is used to define the amount of each vector that is needed 
to create the vector v . In the latter, the 2 is used to define that 
the result of multiplying each vector by A is twice the input 
vector. B81’s reasoning seems to explain the role of the 5 in 
ways that would be more compatible with the role of the 2 
and, because the scalars are different, concluded that “they” 
could not be eigenvectors. It is unclear what vectors “they” 
were—it could be some combination of v, 5y and/or 5z.

4.3  Linear dependence exclusion and linear 
combination exclusion: justification themes 
of students who chose (c) on Q3

There were two main themes for the justifications given by 
students who chose “(c) No, v is not an eigenvector of A ” on 
Q3: Linear Dependence Exclusion and Linear Combination 
Exclusion. Linear Dependence Exclusion is characterized 
by students who conveyed an underlying rationale that a set 
of eigenvectors of a matrix must be linearly independent, 
including stating that {v, y, z} is linearly dependent, or that 
eigenvectors need to be “unique.” We coded student justi-
fications in this theme with either “Eigenvectors must be 
Linearly Independent” or “Unique.” One example of this 
theme is B58’s justification: “Eigenvectors must be LI from 
each other so if v is a linear combination of y and z then it 
cannot be an eigenvector.” By assuming eigenvectors must 
be linearly independent from one another, B58 concluded v 
could not be an eigenvector because v is not linearly inde-
pendent from the eigenvectors y and z.

Although uniqueness and linear independence are dif-
ferent ideas, it is our experience that students often use 
“unique” as a synonym or substitute for “linearly independ-
ent.” This is consistent with Zandieh, Adiredja, and Knapp 
(2018) that found some students using the word “unique” 
when asked to create “everyday examples” to describe the 
concept of basis (which involves linear independence). As 
an example, consider B79’s justification: “Because they 
all correspond to the same eigenvalue they all must have 
unique eigenvectors and v is a linear combination of y and 
z and therefore not unique and not an eigenvector of A .” 
We note B79 explained a need to have unique eigenvectors 
because all of the vectors would “correspond to the same 
eigenvalue,” which, as pointed out previously, would indi-
cate that the vectors all belong to the same eigenspace. We 
hypothesize students reasoning that v could not be an eigen-
vector because the set {v, y, z} is linearly dependent may have 
been conflating the need for eigenvectors in a basis for an 
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eigenspace to be linearly independent with their decision 
about whether or not v is an eigenvector of the matrix.

Linear Combination Exclusion was typified by students 
who reasoned v would not be an eigenvector of A because it 
was a linear combination of eigenvectors. We coded these 
student justifications with “Linear Combinations of Eigen-
vectors are not Eigenvectors,” or “Linear Combinations of 
Eigenvectors are not necessarily Eigenvectors.” Two exam-
ples are “Having v as a sum of the two eigenvectors does not 
ensure that v is an eigenvector” [B75], and “The eigenvec-
tors are not combinations of each other” [B64]. Though it 
is not completely clear which eigenvectors B64 was refer-
ring to, we assume s/he was making a global statement that 
eigenvectors in general are not linear combinations of other 
eigenvectors. We think there are two possible reasons why 
students concluded that v is not an eigenvector of A when 
giving these justifications. First, they may have thought simi-
larly to students whose justifications were categorized with 
the aforementioned Linear Dependence Exclusion theme, 
assuming that a linear combination of eigenvectors could 
never be an eigenvector because the vectors involved would 
form a linearly dependent set. Second, students may have 
been recalling the definition of eigenvector and/or processes 
used to find eigenvectors and eigenvalues but were unable to 
determine how a linear combination of eigenvectors would 
satisfy that definition or process. For example, consider 
B65’s justification shown in Fig. 5. Here, B65 noted that 
eigenvectors correspond to specific eigenvalues, found using 
the characteristic equation, but s/he was not able to see how 
a linear combination of eigenvectors related to this process.

An interesting blend of reasoning consistent with both 
Linear Dependence Exclusion and Linear Combination 
Exclusion was evident within A8’s justification: “Eigenvec-
tors are always linearly independent to other eigenvectors 
(assuming it is not a scalar multiple of the original) there-
fore v cannot be a unique eigenvector because the set of v, y, 
and z is linearly dependent.” Note A8’s parenthetical caveat, 
wherein s/he demonstrated an understanding that scalar 
multiples of eigenvectors are also eigenvectors; however, 

this seems to be an exception to eigenvectors needing to be 
linearly independent from each other. We find it commend-
able that A8 knew that scalar multiples of eigenvectors are 
also eigenvectors, but we note this as a potentially limiting 
approach to reasoning about eigenspace because it excludes 
the viability of linear combinations of vectors in an eigens-
pace to be an eigenvector, which is guaranteed by the closure 
of eigenspaces as subspaces (of ℝn or other vector spaces).

Connecting to previous research, we find evidence of stu-
dent reasoning consistent with our themes here in research 
by Thomas and Stewart (2011) on written exam questions. 
For instance, when asked how many different eigenvectors 
are associated with a given eigenvalue, several students 
in their study stated there is only one eigenvector associ-
ated with each eigenvalue. Thomas and Stewart posit that 
the textbook’s focus on finding a single eigenvector for an 
eigenvalue rather than writing the set of eigenvectors para-
metrically may have led students to think in this way. In light 
of our results, an alternative explanation could be students 
conflating the process of finding a basis for the eigenspace 
(which requires one vector for a one-dimensional eigens-
pace) with the number of possible eigenvectors for a given 
eigenvalue. Another related question explored by Thomas 

and Stewart was “Can 
[

3

−4

]

 and 
[

−3

4

]

 both be eigenvectors 

of a given matrix?” One-third of the students were able to 
answer correctly, mostly arguing that one vector is a sca-
lar multiple of the other; however, in light of our example 
A8 above, we caution that a knowledge of scalar multiples 
of eigenvectors also being eigenvectors does not necessar-
ily correspond to a robust understanding of eigenspace. 
Additionally, seven of the 42 students said the two vectors 
could not both be eigenvectors because eigenvectors must 
be linearly independent. This is a clear example of Linear 
Dependence Exclusion in previous research, indicating this 
may be a common occurrence in student reasoning about 
eigenspaces and linear combinations (or scalar multiples) 
of eigenvectors.

4.4  Eigenvector total and dimension total: 
justification themes of students who chose (b) 
on Q5

This subsection details results related to Question 5 (see 
Fig. 1). Our last themes regarding student understanding 
of linear combinations of eigenvectors focus on reasoning 
about the total number of eigenvectors for a matrix versus 
the total eigenspace dimensions for that matrix.

In Q5, z = y + 0.5x , where y is an eigenvector of B with 
eigenvalue 2 and x is an eigenvector of B with eigenvalue 
4. So Bz = B(y + 0.5x) = By + 0.5Bx = 2y + 0.5(4x) , lead-
ing to Bz = 2y + 2x. When the question was written, we 

Fig. 5  Justification of B65 on Q3
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conjectured that students might be tempted to think z was an 
eigenvector of B with eigenvalue 2; however, we did not see 
evidence of this in the data. Of the 21 students from Class B 
(from 28 total) that completed Q5, 19 correctly chose “(b) 
The vector z is not an eigenvector of B. ” Not all of their justi-
fications, however, are ones that an expert would deem to be 
mathematically sound. One prominent undercurrent that we 
evidenced in our data (in both productive and unproductive 
student justifications) was that of students reasoning about 
a finite quantity from within the question situation, namely 
a number of eigenvectors, a size of a matrix, or a dimension 
of a vector space or eigenspace. In our coding, these justifi-
cations were frequently identified through codes such as “# 
e-vectors” (3 students), “dimension” (8 students), or “size 
of matrix” (5 students). These were parsed into two different 
themes, depending on how students used these numerical 
aspects in their justifications.

The Eigenvector Total theme describes student jus-
tifications in which reasoning about a finite number of 
eigenvectors for a matrix played a prominent role; this is a 
potentially problematic view because each eigenspace has 
an infinite number of eigenvectors. The Dimension Total 
theme describes student justifications in which reasoning 
about the numerical value of the dimensions of a matrix’s 
eigenspaces played a prominent role. For the first theme, 
consider B59, who correctly chose (b) and wrote this was 
because “Matrix B already has 3 eigenvectors so there’s 
no room for a 4th” (coded with “# e-vector” and “size of 
matrix”). We coded this with “# e-vector” because the 
student focused on there already being three eigenvectors 
of matrix B ; we are uncertain, however, which “3 eigen-
vectors” the student meant. The question indirectly names 
vectors y (on the eigenline) and x (on the eigenplane), so 
possibly the student was imagining a second vector on the 
eigenplane such that this imagined second vector and x 
were linearly independent. We coded the response with 
an implicit “size of matrix” because the student said that 
matrix B had “no room for a 4th” eigenvector. One expla-
nation for this response may be if the student was consid-
ering the fact that a nxn matrix can have at most n linearly 
independent eigenvectors (which often is considered with 
the concept of diagonalization). Student B66 gave a very 
similar justification: “ z is a linear combination of y and x , 
and there are already 3 eigenvectors for 3 dimensions, so z 
cannot be an eigenvector of B .” This response, coded with 
“# e-vectors,” “combination,” and “dimension,” focused 
on the existence of three eigenvectors (again, we cannot 
be sure what vectors the student was considering) for three 
dimensions. The student did not elaborate on whether s/
he was considering the dimensionality of ℝ3 or that of the 
given one-dimensional and two-dimensional eigenspaces 
(possibly the latter because of the question wording). 
One explanation for this response may be if the student 

was considering the fact that there must be exactly three 
linearly independent vectors to create the bases for the 
given one- and two-dimensional eigenspaces. In the case 
of both B59 and B66, the underlying rationale that pos-
sibly explain for their justifications are themselves correct; 
however, they do not invalidate that z could be an eigen-
vector and thus are incorrect justifications for the correct 
conclusion (b). The students’ reasoning within the Eigen-
vector Total theme was inappropriate when paired with 
reasoning about linear independence because it seemed to 
block them from thinking that matrix B could have more 
than three eigenvectors.

Second, consider justifications from two student 
responses categorized according to the Dimension Total 
theme. Both students correctly chose (b) and seem to reason 
about finite number and dimension in productive ways. B58 
stated, “In a 3 × 3 matrix there can only be 3 dimensions to 
the eigenspace. E2 and E4 together span the entire space of 
ℝ

3 so there cannot be another eigenvector of B besides E2 
and E4 .” This was coded with “size of matrix,” “# e-vec-
tors,” “dimension,” “span,” and “eigenspace.” B68 stated, 
“ B is nxn matrix where n = 3 . The dimensions of E2and 
E4 add up to n , so there are no more eigenspaces. Because 
z⃗ ∉ {E2,E4} , z⃗ is not an eigenvector.” This was coded with 
“size of matrix,” “dimension,” and “eigenspace.” Both jus-
tifications focused on the fact that the dimensions of the 
eigenspaces of a nxn matrix can sum to at most n , and that 
the two given eigenspaces had dimensions that added up to 
three; because the vector z was an element of neither eigens-
pace and the allowable eigenspace dimension at already at 
the maximum possible, there could be no more eigenspaces 
to contain z . Although these students also used finite number 
reasoning, the focus here was on dimensions of eigenspaces, 
rather than on an amount of eigenvectors. We conjecture 
grasping the difference between finiteness of eigenspace 
dimensions (in ℝn ) and infiniteness of eigenvectors may be 
particularly important for understanding eigenspaces.

Connecting to previous research on student understand-
ing of eigentheory, we were intrigued by an exam question 
analyzed by Thomas and Stewart (2011): why the situation 
in Fig. 6 is impossible if A is a 2 × 2 matrix. This tested if 
students could see that three vectors that were geometri-
cally described as eigenvectors could not all exist for a 2 × 2 
matrix. The authors categorized only six of 42 students as 
correct. For instance, one student said, “Diagram shows 3 
eigenvalues/ eigenvectors a 2 × 2 matrix should have only 2.” 
This is sensible if the student meant only two eigenvalues; 
if the student meant only two eigenvectors, it could be an 
example of reasoning consistent with the Eigenvector Total 
theme (without more explanation about why those three par-
ticular vectors could not all be eigenvectors of the matrix).
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5  Discussion

From analyzing student written responses to multiple-
choice questions with open-ended justifications that aimed 
to help us characterize students’ understanding of linear 
combinations of eigenvectors, we were able to delineate 
seven themes (see Fig. 7). In our data, students’ reasoning 

within the first, second, and seventh of these themes led 
to productive solution strategies. On the other hand, cat-
egorizing students’ reasoning as aligning with the third 
through sixth themes in our data allowed us to extract 
nuance about how students may have been reasoning in 
ways that were sensible to her/him yet did not align with 
either a correct answer or a correct justification.

These themes arose from our data by concentrating 
on students’ responses to one question at a time. We also 
acknowledge that relating a particular student’s responses 
to both questions may afford us additional insight into his/
her understanding of eigentheory. In particular, comparing 
a student’s responses across the two questions may provide 
triangulation regarding our analysis of their reasoning on 
the individual questions. For example, B69 answered Q3 
correctly but gave a rather vague justification: “since it is 
a linear combination of the other eigenvectors, it would 
also be an eigenvector.” On Q5, however, B69 explained 
that the vector would only be an eigenvector if the two 
vectors in the linear combination had the same eigenvalue. 
When considering B69’s Q3 response in light of his/her 
Q5 response, we hypothesize that B69’s vague response 
to Q3 was most likely based in a correct understanding of 
linear combinations of eigenvectors.

We also note that the themes may appear in categoriza-
tions of student thinking across the questions. For instance, 

Fig. 6  Impossible Linear Transformation in ℝ2 . Reproduction of Pic-
ture in Fig. 2 of Thomas & Stewart (2011, p. 282)

Fig. 7  Summary of the seven 
themes of student reasoning 
found in our data
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the analysis referring to a finite number of eigenvectors was 
developed with respect to Q5, but there may also be evidence 
of this in Q3. For instance, B78 reasoned that the linear com-
bination of eigenvectors could not be another eigenvector 
because “technically, you could multiply the eigenvectors by 
any number and if you did so and another eigenvector was 
achieved there would be a possibility for infinite eigenvec-
tors which doesn’t make sense.” We note that the student 
was envisioning all possible scalar multiples of an eigen-
vector, realizing that would produce infinitely many vec-
tors. The perturbation for the student occurred when trying 
to consider these infinitely many vectors as eigenvectors; 
we cannot know, unfortunately, why this was not sensible 
to the student. Further exploring and developing these two 
analytical connections across Q3 and Q5—comparing stu-
dent responses and using the themes across questions—is a 
direction of future research for us. It would entail integrating 
analyses of student work on the other four MCE questions as 
relevant and exploring any seemingly contradictory reason-
ing offered by the same student in different tasks.

We conclude our paper with some possible implications 
for teaching. First, our results presented in this paper suggest 
consistency with research that points to challenges student 
have with solving systems that have infinitely many solu-
tions (Zandieh & Andrews-Larson, 2018). We caution that 
an overemphasis on finding bases for eigenspaces before stu-
dents have developed a strong understanding of eigenvectors 
and eigenvalues could lead students to think that there is 
only one eigenvector for each eigenvalue or that eigenvectors 
must always form a linearly independent set. For example, 
an overemphasis on diagonalization of matrices may encour-
age students to think that all sets of eigenvectors are linearly 
independent. Relatedly, we echo the sentiment of Salgado 
and Trigueros (2015) that the concepts of basis, span, span-
ning set, and subspace are particularly challenging for stu-
dents to develop a rich conception of; hence, if students are 
only asked to find bases for eigenspaces, they may never 
fully grasp what an eigenspace is. A focus on eigenspaces 
as subspaces has the potential to mitigate these challenges 
and help students see connections across the linear algebra 
course.

We propose that Linear Algebra instructors may want 
to give their students more questions like the ones shared 
in this paper that provide students opportunities to wrestle 
with linear combinations of eigenvectors and explore ele-
ments of eigenspaces. Additionally, having students engage 
with a dynamic “eigen-sketch,” such as one proposed by Gol 
Tabaghi and Sinclair (2013) in Geometer’s Sketchpad, could 
help students understand the existence of multiple eigenvec-
tors for a single eigenvalue as they explore dragging an input 
vector x along the line of an eigenspace. Having students 
engage with these types of questions and activities, and 

encouraging discussions about them, might help students 
develop a more sophisticated understanding of eigenspace.

Acknowledgements This material is based upon work supported by the 
National Science Foundation under Grant Number DUE-1452889. Any 
opinions, findings, and conclusions or recommendations expressed in 
this material are those of the authors and do not necessarily reflect the 
views of the National Science Foundation.

References

Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Roa Fuentes, S., 
Trigueros, M., et al. (2014). APOS Theory. A framework for 
research and curriculum development in mathematics education. 
Nueva York: Springer.

Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking 
and learning at post-secondary level. In F. K. Lester Jr.. (Ed.), 
Second handbook of research on mathematics teaching and learn-
ing (pp. 1011–1050). Reston: National Council of Teachers of 
Mathematics.

Beltrán-Meneu, M. J., Murillo-Arcila, M., & Albarracín, L. (2016). 
Emphasizing visualization and physical applications in the study 
of eigenvectors and eigenvalues. Teaching Mathematics and 
its Applications: An International Journal of the IMA, 36(3), 
123–135.

Blumer, H. (1969). Symbolic interactionism: Perspectives and method. 
Englewood Cliffs: Prentice-Hall.

Bouhjar, K., Andrews-Larson, C., Haider, M., & Zandieh, M. (2018). 
Examining Students’ Procedural and Conceptual Understanding of 
Eigenvectors and Eigenvalues in the Context of Inquiry-Oriented 
Instruction. In S. Stewart, C. Andrews-Larson, A. Berman, & M. 
Zandieh (Eds.), Challenges In Teaching Linear Algebra Chal-
lenges and Strategies in Teaching Linear Algebra (pp. 193–216). 
Cham: Springer.

Çağlayan, G. (2015). Making sense of eigenvalue-eigenvector rela-
tionships: Math majors’ linear algebra–geometry connections in 
a dynamic environment. Journal of Mathematical Behavior, 40, 
131–153.

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and socio-
cultural perspectives in the context of developmental research. 
Educational Psychologist, 31, 175–190.

Dorier, J.-L. (Ed.). (2000). On the teaching of linear algebra. 
Dordrecht: Kluwer Academic.

Dubinsky, E., & McDonald, M. (2001). APOS: A constructivist theory 
of learning. In D. Holton (Ed.), The teaching and learning of 
mathematics at university level: An ICMI study (pp. 275–282). 
Dordrecht: Kluwer Academic.

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: 
Strategies for qualitative research. Chicago: Aldine Publishing 
Company.

Gol Tabaghi, S., & Sinclair, N. (2013). Using dynamic geometry soft-
ware to explore eigenvectors: The emergence of dynamic-syn-
thetic-geometric thinking. Technology, Knowledge and Learning, 
18(3), 149–164.

Harel, G. (2000). Three principles of learning and teaching mathe-
matics. In J.-L. Dorier (Ed.), On the teaching of linear algebra. 
Dordrecht: Kluwer Academic.

Henderson, F., Rasmussen, C., Sweeney, G., Wawro, M., & Zandieh, 
M. (2010). Symbol sense in linear algebra: A start toward eigen 
theory. Proceedings of the 13th Annual Conference on Research 
in Undergraduate Mathematics Education, Raleigh, NC. Retrieved 
from http://sigma a.maa.org/rume/crume 2010.  Accessed 1 Sept 
2015.

http://sigmaa.maa.org/rume/crume2010


1123Student understanding of linear combinations of eigenvectors  

1 3

Hiebert, J., & Lafevre, P. (1986). Conceptual and procedural knowl-
edge in mathematics: An introductory analysis. In J. Hiebert (Ed.), 
Conceptual and procedural knowledge: The case of mathematics 
(pp. 1–27). Hillsdale: Lawrence Erlbaum Associates.

Hillel, J. (2000). Modes of description and the problem of representa-
tion in linear algebra. In J.-L. Dorier (Ed.), On the teaching of 
linear algebra (pp. 191–207). Dordrecht: Kluwer.

Larson, C., & Zandieh, M. (2013). Three interpretations of the matrix 
equation Ax = b. For the Learning of Mathematics, 33(2), 11–17.

Lay, D., Lay, S., & McDonald, J. (2016). Linear algebra and its appli-
cations (5th edn.). Essex: Pearson Education.

Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles 
for developing thought-revealing activities for students and teach-
ers. In A. Kelly & R. Lesh (Eds.), Handbook of research design in 
mathematics and science education (pp. 591–646). New Jersey: 
Lawrence Erlbaum.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Fundamentals of 
qualitative data analysis. In Qualitative Data Analysis: A Methods 
Sourcebook (3rd edn.). Thousand Oaks: Sage Publications Inc.

Nyman, M. A., Lapp, D. A., St. John, D., & Berry, J. S. (2010). Those 
do what? Connecting eigenvectors and eigenvalues to the rest 
of linear algebra: Using visual enhancements to help students 
connect eigenvectors to the rest of linear algebra. International 
Journal for Technology in Mathematics Education, 17(1), 35–41.

Plaxco, D., Zandieh, M., & Wawro, M. (2018). Stretch directions and 
stretch factors: A sequence intended to support guided reinvention 
of eigenvector and eigenvalue. In S. Stewart, C. Andrews-Larson, 
A. Berman & M. Zandieh (Eds.), Challenges In Teaching Linear 
Algebra. ICME-13 Monographs (pp. 175–192). Cham: Springer.

Rasmussen, C., & Wawro, M. (2017). Post-calculus research in under-
graduate mathematics education. In J. Cai (Ed.), The compendium 
for research in mathematics education (pp. 551–579). Reston: 
National Council of Teachers of Mathematics.

Salgado, H., & Trigueros, M. (2015). Teaching eigenvalues and eigen-
vectors using models and APOS Theory. The Journal of Math-
ematical Behavior, 39, 100–120.

Saxe, G. B. (2002). Children’s developing mathematics in collective 
practices: A framework for analysis. Journal of the Learning Sci-
ences, 11, 275–300.

Tall, D. O. (2004). Building theories: The three worlds of mathematics. 
For the Learning of Mathematics, 24(1), 29–32.

Thomas, M. O. J., & Stewart, S. (2011). Eigenvalues and eigenvectors: 
Embodied, symbolic and formal thinking. Mathematics Education 
Research Journal, 23(3), 275–296.

von Glasersfeld, E. (1995). Radical constructivism: A way of knowing 
and learning. Bristol: Falmer Press.

Watson, K., Wawro, M., Zandieh, M., & Kerrigan, S. (2017). Knowl-
edge about student understanding of eigentheory: Information 
gained from multiple choice extended assessment. In A. Wein-
berg, C. Rasmussen, J. Rabin, M. Wawro, and S. Brown (Eds.), 
Proceedings of the 20th annual conference on research in under-
graduate mathematics education (pp. 311–325), San Diego, CA: 
SIGMAA on RUME.

Wawro, M., Watson, K., & Zandieh, M. (2018). Student understand-
ing of linear combinations of eigenvectors. In A. Weinberg, C. 
Rasmussen, J. Rabin, M. Wawro, and S. Brown (Eds.), Proceed-
ings of the 21st annual conference on research in undergraduate 
mathematics education (pp. 1372–1378), San Diego, CA: SIG-
MAA on RUME.

Wawro, M., Zandieh, M., Rasmussen, C., & Andrews-Larson, C. 
(2013). Inquiry oriented linear algebra: Course materials. 
Retrieved from http://iola.math.vt.edu. Accessed 1 Sept 2015.

Wawro, M., Zandieh, M., & Watson, K. (2018). Delineating aspects of 
understanding eigentheory through assessment development. In 
V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N.M. Hog-
stad (Eds.), Proceedings of INDRUM 2018 Second Conference 
of the International Network for Didactic Research in University 
Mathematics (pp. 275–284), Kristiansand: University of Agder 
and INDRUM.

Zandieh, M., Adiredja, A., & Knapp, J. (2018). Exploring Everyday 
Examples to Explain Basis from Eight German Male Graduate 
STEM Students. (Manuscript submitted for publication).

Zandieh, M., & Andrews-Larson, C. (2018). Solving linear system: 
Reconstructing unknowns to interpret row reduced matrices. 
(Manuscript submitted for publication).

Zandieh, M., Plaxco, D., Wawro, M., Rasmussen, C., Milbourne, H., 
& Czeranko, K. (2015). Extending multiple choice format to 
document student thinking. In T. Fukawa-Connelly, N. Infante, 
K. Keene, and M. Zandieh (Eds.), Proceedings of the 18th annual 
conference on research in undergraduate mathematics education 
(pp. 1094–1100), Pittsburgh, PA: SIGMAA on RUME.

Zandieh, M., Wawro, M., & Rasmussen, C. (2017). An example of 
inquiry in linear algebra: The roles of symbolizing and brokering. 
PRIMUS, 27(1), 96–124.

http://iola.math.vt.edu

	Student understanding of linear combinations of eigenvectors
	Abstract
	1 Introduction
	2 Theoretical framework and literature review
	3 Methods
	4 Results
	4.1 Equation satisfaction and membership satisfaction: justification themes of students who chose (a) on Q3
	4.2 Scalar Confusion: Justification theme of students who chose (b) on Q3
	4.3 Linear dependence exclusion and linear combination exclusion: justification themes of students who chose (c) on Q3
	4.4 Eigenvector total and dimension total: justification themes of students who chose (b) on Q5

	5 Discussion
	Acknowledgements 
	References


