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1  Aims and scope of the special issue

For several decades, the research on mathematical think-
ing and learning mainly occurred from a cognitive point of 
view, but at least since the 1990s, the field of mathemat-
ics education has been enriched by perspectives from many 
other disciplines, including philosophy, sociology, econom-
ics, anthropology, and neuroscience (De Corte, Greer, & 
Verschaffel, 1996). Yet, because cognitive psychology is 
centrally concerned with learning processes such as think-
ing, remembering, and transfer, our attempts to understand 
and improve the learning and teaching of mathematics con-
tinue to be heavily influenced by cognitive psychology. At 
the same time, cognitive psychologists have long claimed 
that their research is relevant for teaching and learning in 
school, particularly in major subject-matter domains such 
as language, science and mathematics (Star and Verschaffel 
2017).

Historically, the relationship between cognitive psychol-
ogy and (mathematics) education is a complex one. As 
argued by Star and Verschaffel (2017), whereas the decade 
of the 1980s represented the apex of cognitive psycholo-
gy’s impact on (mathematics) education, some would argue 
that, today, its influence appears to be less substantial—
either because it shares the stage with other disciplines 
such as sociology and/or because many in the field no 
longer feel that (cognitive) psychological studies of learn-
ing are relevant to school settings. The goal here is to sum-
marize some of the instructional design principles or tech-
niques that have been derived directly and explicitly from 
recent research in cognitive psychology and that have been 
claimed to be informative for the learning and teaching of 
mathematics.

In some sense, this special issue relates to a series of 
recent publications from cognitive psychologists bringing 
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psychological findings to education in general. These 
publications are similar in structure, in that they claim to 
synthesize research in order to identify a set of learning or 
instructional principles that have strong support from cog-
nitive psychology, with the hope that educators will adopt 
these principles. As a first example, we provide the ten 
“cornerstone findings” about learning identified by Sch-
neider and Stern (2010): (1) It is the learner who learns. 
(2) Optimal learning builds on prior knowledge. (3) Learn-
ing requires the integration of knowledge structures. (4) 
Optimal learning is about learning concepts, skills and 
metacognitive competence in a balanced way. (5) Optimal 
learning builds complex knowledge structures through the 
hierarchical organization of more basic pieces of knowl-
edge. (6) Optimally, learning uses structures in the exter-
nal world to organize knowledge structures in the mind. 
(7) Learning is constrained by capacity limitations of the 
human information-processing architecture and capacity. 
(8) Learning results from the dynamic interplay of emotion, 
motivation, and cognition. (9) Optimal learning builds up 
transferable knowledge structures. (10) Learning requires 
time and effort. Whereas this list is strongly focused on 
learning, and only indirectly addresses the issue of instruc-
tion, other lists are more explicitly conceived and phrased 
in terms of principles for instructional design. Take, for 
instance, Pashler et  al. (2007) list of seven recommenda-
tions for improving student learning: (1) Space learning 
over time, (2) Interweave worked examples solutions and 
problem solving exercises; (3) Combine graphics with ver-
bal descriptions; (4) Connect and integrate abstract and 
concrete representations of concepts; (5) Use quizzing to 
promote learning; (6) Help students to allocate study time 
efficiently; (7) Help students to build explanations by ask-
ing and answering deep questions. Recently, several other 
examples of such general lists of principles of learning and/
or instructional design have been produced: Graesser and 
colleagues (2008) identify their 25 “learning principles”, 
Roediger and Pyc (2012) discuss three “inexpensive tech-
niques” from cognitive psychology that can inform educa-
tional practice, Koedinger, Booth, and Klahr (2013) write 
about five techniques for improving learning, while Dunlo-
sky and colleagues (2013) describe their own five instruc-
tional techniques.

This special issue does not aim to duplicate these efforts 
to produce lists of recommendations from cognitive psy-
chology for improving learning, but rather wishes to extend 
the discussion in two important ways.

First, we consider these principles or techniques derived 
from recent cognitive psychological research using a disci-
plinary lens. So, rather than providing, as the various syn-
theses cited above, a review that is content general, iden-
tifying recommendations that are presumed to improve 
learning generally rather than in the specific case of 

mathematics, we look critically at these principles and tech-
niques from the perspective of mathematics education. For 
many years, leading scholars of the field of mathematics 
education have pleaded strongly in favor of such a domain-
specific approach (Verschaffel and Greer 2013). For exam-
ple, Freudenthal (1991, p.  149) was highly critical of the 
work of cognitive and educational psychologists relating to 
mathematics “as long as, for the researcher, mathematics is 
no more than an easily available and easily handled subject 
matter, chosen to test and apply general ideas and meth-
ods, with no regard for the specific nature of mathematics 
and mathematics instruction”. Likewise, Fischbein (1990, 
p. 10) stated that “(m)athematics education raises its own 
problems, which a professional psychologist would never 
encounter in his own area and that the methodology should 
also be adapted to the specificity of the domain”. Wittmann 
(1995, p. 356) also strongly pleaded for mathematics edu-
cation to be validated as a scientific field in its own right, 
one that cannot be developed by simply combining the 
insights from other fields like mathematics, general didac-
tics, pedagogy, and psychology; “rather, it presupposes a 
specific didactic approach that integrates different aspects 
into a coherent and comprehensive picture of mathematics 
teaching and learning, and then transposing it to practical 
use in a constructive way”. A recent illustrative case of a 
discussion between the community of cognitive scientists 
and mathematics educators relates to the use of concrete or 
abstract examples. Kaminski, Sloutsky, and Heckler (2008) 
published in Science a study on “The advantage of abstract 
examples in learning math”. Their main claim, which was 
supported by their data, was that students benefit more from 
learning mathematics through an abstract symbolic repre-
sentation than from concrete examples. However, the paper 
elicited many critical comments by mathematicians and 
mathematics educators (e.g. Jones 2009a, b; Podolefsky 
and Finkelstein 2009). Based on a combination of theoreti-
cal arguments and empirical results of a carefully designed 
replication study, De Bock, Deprez, Van Dooren, Roelens, 
and Verschaffel (2011) raised serious concerns about the 
interpretation by Kaminski et  al. (2008) on the specific 
mathematical concepts that students actually acquired in 
the study and on the educational recommendations these 
authors derived from their study. So, in this special issue, 
we seek recommendations for improving mathematics 
learning from cognitive psychology that are tested in and 
supported by research in mathematics education, preferably 
by studies that representatives of the mathematics educa-
tion community would find most valuable.

Second, the various contributions to this special issue 
not only review and discuss these instructional design 
principles in relation to mathematics education in gen-
eral terms; in addition, each contribution also includes a 
report of a specific study or a set of studies that concretely 
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illustrates how that specific principle or technique is actu-
ally used in the design of a mathematics learning environ-
ment and/or how it is subjected to an empirical test of its 
effectiveness. Furthermore, using that exemplarily study or 
set of studies as an illustrative case, each author (team) has 
been asked to reflect not only on the strengths, but also on 
the pitfalls of their instructional design principle or tech-
nique for improving mathematics education and to do sug-
gestions for further research.

In the present special issue, a dozen of such instructional 
design principles or techniques that have been derived from 
cognitive psychology and that appear promising for impact-
ing students’ learning of mathematics, are reviewed, illus-
trated, and discussed. These principles are listed briefly 
below. But before doing so, we briefly explain how we 
arrived at this list. Actually, following up the approach 
applied by Star and Verschaffel (2017), we combined two 
complementary approaches. On the one hand, we looked 
at the recent research syntheses mentioned above, where 
cognitive scientists had conducted extensive literature 
reviews to identify research-supported recommendations 
for improving student learning in general (e.g., Dunlosky 
et al. 2013; Koedinger et al. 2013; Pashler et al. 2007; Sch-
neider and Stern 2010). By looking across these synthe-
ses, we identified several distinct principles for improving 
student learning that had been identified as having strong 
research support from cognitive psychology, and we con-
sidered whether we were aware of manifest and explicit 
applications of these principles in the domain of math-
ematics education. On the other hand, we looked in the 
research community of mathematics education for (teams 
of) scholars who explicitly and systematically refer to prin-
ciples or techniques of instructional design in their attempts 
to enhance students’ mathematical learning, with a pref-
erence for evidence that emerged from studies in “real” 
mathematics classrooms (where it existed). Using these two 
sources of data, we finally used our professional judgment 
and experience as mathematics educators to select a list of 
principles and techniques that are addressed in the vari-
ous contributions to the present special issue. We recog-
nize that this process was not entirely objective, but rather 
included some personal bias about what we considered to 
be particularly illustrative and useful for the topic of this 
special issue. Furthermore, it should be clear that some of 
the chosen principles and techniques are sometimes termed 
differently in other, similar overviews and/or are grouped 
into a broader instructional design principle or technique 
(e.g., Booth, McGinn, Barbieri, et al., 2017; Star and Ver-
schaffel 2017).

Each invited author (team) was asked to write his/her 
chapter according to a fixed structure, consisting of the 
following elements: (1) Explanation of the instructional 
design principle and its theoretical underpinnings; (2) 

Short review of the relevant empirical research and its main 
results and conclusions in general and in the domain of 
mathematics education in particular; (3) A summary of an 
illustrative study (or a line of research) by the author’s own 
research team; (4) Discussion of theoretical and methodo-
logical issues for future research; (5) (Provisional) recom-
mendations for mathematics educators.

The initiative for this special issue grew out of a work-
shop entitled “Providing Support for Student Learning: 
Cornerstone findings, implications and recommendations 
from Cognitive Psychology for the Teaching of STEM 
(Science, Technology, Engineering and Mathematics)”, 
which was organized in October 2015 in Leuven. However, 
the specific themes addressed in the special issue and the 
authors involved coincide only partially with those involved 
in that workshop.

2  The different contributions

The first principle, addressed by Vamvakoussi, is instruc-
tional analogies. The problem of adverse effects of prior 
knowledge in mathematics learning has been amply docu-
mented and theorized by mathematics educators as well 
as cognitive (developmental) psychologists. This problem 
emerges when students’ prior knowledge about a math-
ematical notion comes in contrast with new information 
coming from instruction, giving rise to systematic errors. 
Conceptual change perspectives on mathematics learning 
argue that in such cases reorganization of students’ prior 
knowledge is necessary. Analogical reasoning, in particular 
cross-domain mapping, is considered an important mecha-
nism for conceptual restructuring.

Relying on the same conceptual change framework, 
Lem, Onghena, Verschaffel, and Van Dooren (2017) dis-
cuss an instructional design technique called refutational 
text. The aim of refutational text is to transform misconcep-
tions into conceptions that are in line with current scientific 
concepts. This is done by explicitly stating a misconcep-
tion, refuting it, and providing a correct conception. This 
technique has been applied to various content domains, 
particularly in science teaching but, more recently, also in 
the domain of mathematics, and is being argued to be effec-
tive in inducing cognitive conflicts in students and remedi-
ating misconceptions.

Walkington (2017) reviews personalization as an 
instructional design principle that involves presenting 
mathematics tasks to students in the context of their inter-
ests in areas like sports, music, or video games. Person-
alization may allow for students’ understanding of domain 
principles to become grounded in their concrete and famil-
iar experiences. It is argued that by making connections 
to students’ prior knowledge, personalization may reduce 
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extraneous cognitive load, freeing up cognitive resources 
for the acquisition of new ideas.

Another intensively investigated instructional design 
principle is that of using multiple representations. To make 
complex mathematics concepts accessible to students, 
teachers often rely on visual representations. But because 
no single representation can depict all aspects of a math-
ematics concept, instruction typically uses multiple repre-
sentations. Much research suggests that multiple represen-
tations can have immense benefits for students’ learning, 
particularly in the domain of mathematics—a domain that 
is fundamentally characterized by the intrinsic inaccessibil-
ity of its (thinking) objects (Duval 2002). However, some 
research also cautions that multiple representations may 
fail to enhance students’ learning if they are not used in the 
“right” way. In their contribution to the special issue, Rau 
and Matthews (2017) review research-based principles for 
how to use multiple representations effectively so that they 
enhance student mathematics learning.

An additional instructional design principle with par-
ticular potential in early mathematics education is embodi-
ment. According to Dackermann, Moeller,  Fischer, Cress, 
and Nuerk (2017), there is accumulating evidence that the 
acquisition of basic numerical representations (e.g., mag-
nitude understanding) can be corroborated by embodied 
trainings allowing children to move their body in space. 
Following a brief summary of recent embodied training 
studies, the authors try to integrate the respective results 
into a unified model framework which elucidates the work-
ing mechanisms of embodied trainings, allowing for the 
identification of the age group and/or numerical content for 
which embodied trainings should be most beneficial.

Kullberg, Runesson Kempe, and Marton (2017) present 
and discuss variation as a guiding principle of pedagogi-
cal design in the domain of mathematics education. The 
variation theory of learning, which underlies this principle, 
emphasizes variation as a necessary condition for learners 
being able to discern new aspects of an object of learning. 
In a substantial number of studies these authors have used 
the theory to analyze and design the teaching and learning 
of mathematics.

Probably one of the best-known and empirically most 
tried-and-tested instructional design principles resulting 
from cognitive research, reviewed and discussed by Renkl 
(2017), is learning from worked examples. Such examples 
consist of a problem formulation, the final solution, and 
typically also the steps leading to the final solution. When 
applied properly, learners studying such examples are 
assumed to engage in self-explanations that justify not only 
the demonstrated solution steps but also their underlying 
principles.

Underlying Durkin, Rittle-Johnson and Star’s (2017) 
article is the idea that comparison is a fundamental 

cognitive process that has been shown to support learn-
ing in a variety of domains, including mathematics. 
The authors report results of their own classroom-based 
research on using comparison to help students learn 
mathematics, indicating that comparing different solu-
tion methods for solving the same problem is effective for 
supporting procedural flexibility across students and for 
supporting conceptual and procedural knowledge among 
certain groups of students.

Rittle-Johnson, Loehr and Durkin (2017) address self-
explanation (i.e., generating explanations for oneself in 
an attempt to make sense of new information) as another 
powerful instructional technique that has been shown to 
improve learning in a range of domains. Theoretically, 
self-explanation is thought to guide attention to structural 
features over surface features of the to-be-learned con-
tent and in doing so promote knowledge generalization 
and integration. The authors report a meta-analysis of the 
self-explanation literature for mathematics learning that 
provides empirical support for the benefits of prompting 
for self-explanation for improving comprehension and 
transfer in mathematics.

Another recommendation from cognitive psychology 
that has a quite strong evidentiary base in mathematics 
classrooms is that metacognition plays a significant role 
in mathematical problem solving and that it therefore 
is productive to train students in the use of metacogni-
tive strategies. After having reviewed the research on the 
assessment and stimulation of metacognition in general, 
Baten, Praet, and Desoete (2017) report a study high-
lighting that instructional designs where metacognition 
is stimulated to enhance children’s mathematical profi-
ciency at a young age.

The starting point of the contribution by Lehtinen, 
Hannula-Sormunen, McMullen and Gruber (2017) are 
theories of expertise development that highlight the cru-
cial role of deliberate practice in the development of high 
level performance. Deliberate practice is practice which 
intentionally aims at improving one’s skills and compe-
tencies. It is not a mechanical and repetitive process of 
making performance more fluid. Instead, it involves a 
great deal of thinking, problem solving, and reflection for 
analyzing, conceptualizing, and cultivating a developing 
performance. Expertise studies in music and sport that 
have described early forms of deliberate practice among 
children have inspired the authors to analyze and design 
various forms of practice in early and elementary school 
mathematics.

The special issue ends with an interview with Paul 
Kirschner, reflecting upon the theme of the special issue 
in general and the contribution of the different articles to 
the theme.
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3  Some preliminary comments

For the special issue, we have selected a dozen principles 
and techniques derived from cognitive psychology that 
are considered by cognitive scientists as well as mathe-
matics educators as particularly promising for the field of 
mathematics education.

Surely, this is not the first attempt to come up with 
such a list. In this respect, we refer to two recent pub-
lication, namely Booth et al. (2017) discussing evidence 
for a somewhat different subset of principles from cogni-
tive psychology (including principles such as abstract and 
concrete representations, analogical comparison, feed-
back, error reflection, scaffolding, distributed practice 
interleaved practice, and worked examples), and Star and 
Verschaffel (2017) discussing a much smaller selection 
of three such principles (i.e., explanatory questioning, 
worked examples, and metacognitive training).

As argued by the authors of these similar reviews, a 
common feature of all these principles reviewed is that 
they are grounded in well-articulated general theories of 
human cognition and learning and that they have been 
applied to and tested in mathematics education settings, 
and, thus, have the potential to enhance students’ mathe-
matics learning processes and outcomes. But at the same 
time, these principles differ from each other in various 
ways (see also Booth et  al. 2017; Star and Verschaffel 
2017).

First, they differ in terms of the underlying theoretical 
notions and models. For instance, while some principles 
are grounded in conceptual change theories, others are 
derived from cognitive load theory and still others from 
theories such as variation theory or embodied cognition.

Second, these principles differ in terms of the available 
empirical evidence in their support in the field of math-
ematics education. For instance, whereas the principles of 
explanatory questioning, worked examples, and metacog-
nitive training have already been amply tested in the field 
of mathematics education (see Star and Verschaffel 2017), 
others, such as refutational text, rely on much less evidence 
from within this field. Also, some principles have been 
well-tested in laboratory studies, while others were mainly 
subjected to classroom research.

Third, the principles also differ with respect to their 
application field. Some principles seem primarily appli-
cable and/or have been primarily tested for simpler versus 
more complex mathematics and/or for younger rather than 
older students (Booth et  al. 2017). Given what is known 
about differences between distinct subdomains and devel-
opmental levels or levels of expertise, it would be danger-
ous to simply transfer results and recommendations from 
one mathematical domain, type of problem, and/or target 
group to another.

Fourth, these principles also differ largely in terms of 
how easy or difficult it is to implement and enact them in 
the real mathematics classroom, at least if one wants to use 
them not merely occasionally but on a rather systematic 
basis (Booth et  al. 2017; Star and Verschaffel 2017). For 
instance, whereas a technique like instructional analogy or 
refutational text can be quite easily incorporated into exist-
ent mathematics textbooks or lessons, others, such as mul-
tiple representations or personalization may be difficult to 
implement systematically without the help of educational 
technology.

Notwithstanding these differences into theoretical back-
ground, empirical support, field of application and diffi-
culty of implementation, the contributions in this special 
issue provide an interesting overview of the main instruc-
tional design principles and techniques that have derived 
from general cognitive theories of thinking and learning 
and applied to the mathematics education—either alone or 
in combination with other principles or techniques—with a 
view to enhance students’ learning processes and outcomes 
in this particular curricular domain. In the interview that 
closes this special issue, Paul Kirschner will reflect upon 
the promises and pitfalls of such an attempt.
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