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1 Introduction

The development of mathematical creativity is frequently 
seen as both a means and a goal in education. However, there 
is no consensus concerning the definition of mathematical 
creativity and its framework of study. Despite this conceptual 
ambiguity, educational research efforts were often oriented 
towards proposing frameworks for assessing creativity, espe-
cially through problem posing and problem solving.

Rather than looking for a summative indicator, in this 
paper we propose the construct of Geometry-problem-pos-
ing cognitive style as an expression of personal traits within 
mathematical competence and we use it to look at prospec-
tive teachers’ mathematical creativity. Specifically, we were 
interested in answering the following questions: what kind 
of tool could provide information about mathematical crea-
tivity of university students in problem-posing contexts? 
How could we assess students’ levels of creativity in this 
case?

The answers to these questions are drawn from explora-
tions situated at the crossroads between careful analysis of 
students’ products from a mathematical point of view, and 
their interpretations using tools of cognitive psychology. 
Preliminary results of this study have been published in the 
Proceedings of the 9th Mathematical Creativity and Gifted-
ness Conference (Singer et al. 2015b).

2  Theoretical framework

2.1  Cognitive style

Cognitive style has been defined as a stable dimension that 
delineates consistencies in how individuals process infor-
mation across tasks (Ausburn and Ausburn 1978). In a 
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comprehensive review, Kozhevnikov (2007) considers that 
cognitive styles represent relatively stable heuristics that 
individuals use to process information from their environ-
ment. These heuristics can be identified at multiple levels 
of information processing, from basic perception to meta-
cognitive approaches, and they can be grouped according 
to the type of regulatory function they exert on processes 
ranging from automatic data encoding to conscious execu-
tive allocation of cognitive resources. In addition, a range 
of variables, such as intellectual abilities, previous experi-
ence, habits, and personality traits, influence the develop-
ment of a particular cognitive style.

Cognitive styles mediate the relation between an individ-
ual and his or her environment, having an adaptive dialec-
tic functioning. Thus, although styles are generally stable 
individual characteristics, they may also change or develop 
in response to specific environmental circumstances (Koz-
hevnikov 2007).

Although controversial, we refer further to Gregorc’s 
research because it played a role in inspiring the manner 
in which we analyzed our data and the way we have rep-
resented the results. Gregorc (1979, 1982) viewed learn-
ing style as a pattern composed of distinctive behaviors 
which serve as indicators of how a person learns from and 
adapts to his/her environment. Gregorc’s Mediation Ability 
Theory assumes that the human mind is an active and goal-
oriented decision maker, and the model of learning style 
he developed is meant to express each individual’s unique 
capacities.

More recent research on cognitive styles tries to inte-
grate patterns of cognitive behavior and personality fea-
tures into meta-styles characterizing individual resources 
for self-monitoring and regulation of cognitive functioning 
(Riding 2001; Riding and Al-Sanabani 1998; Sternberg and 
Grigorenko 1997). Further data (e.g., Zhang and Sternberg 
2001) revealed significant correlations among thinking 
styles, personality characteristics, socioeconomic status, 
and situational characteristics. In addition, a style mani-
festation may depend on the stylistic demands of a specific 
task (Kozhevnikov 2007).

The perspective presented above is appropriate for our 
research approach because it allows organizing our explo-
rations towards structuring a tool that functions based on 
deducing cognitive traits through the analysis of students’ 
products. As master students enrolled in a mathematics 
program, it may be likely that, in many cases, the partici-
pants in our study had already consolidated specific cogni-
tive styles that can be depicted by exposing these students 
to tasks that combine freedom and constraints so that their 
intellectual behavior is uncovered. However, in this paper, 
we are focused on a limited spectrum of cognitive features, 
more specifically those related to processing geometry 
problems in problem posing (PP) contexts.

As suggested by Borromeo Ferri and Kaiser (2003), 
mathematical thinking style can be reconstructed as a dis-
tinct psychological construct. Compared to the cited study, 
which uses a problem solving context, in the present paper 
we try to describe cognitive styles in a problem posing con-
text, and to identify links between PP cognitive style and 
creativity. Such links might exist in students at university 
level: for example, Moutsios-Rentzos and Simpson (2010) 
found that a specific thinking style in mathematics univer-
sity students can be identified, and that there exist some 
connections between studying mathematics at university 
level, and originality and freedom in thinking, i.e. connec-
tions between specific cognitive styles and creativity.

2.2  Creativity in PP contexts

Usually, creativity is studied starting from Torrance’s tests 
(Torrance 1974), which are based on four related compo-
nents: fluency, flexibility, novelty, and elaboration. Start-
ing from Torrance’s work, various frameworks for studying 
creativity have been generated, usually adapted to specific 
types of tasks and contexts.

Some researchers (e.g., Jay and Perkins 1997) claim 
that problem posing may stimulate creativity, possi-
bly even more than problem solving. Singer et al. (2013, 
2015a) advocate that problem posing can enhance students’ 
engagement in authentic mathematical activity and open 
students’ thinking towards new ideas and approaches.

In the present paper, we use a framework based on 
organizational theory to study creativity in a problem pos-
ing context (Pelczer et al. 2013; Singer et al. 2011; Singer 
2012; Voica and Singer 2011, 2013, 2014). This framework 
relies on the concept of cognitive flexibility, described in 
terms of the following: cognitive variety, cognitive novelty, 
and changes in cognitive framing. In the problem-posing 
context, we consider that a student manifests cognitive flex-
ibility when she or he poses different new problems starting 
from a given input (i.e., cognitive variety), generates new 
proposals that are far from the starting item (i.e., cogni-
tive novelty), and is able to change his/her mental frame 
in solving problems or identifying/discovering new ones 
(i.e., change in cognitive framing). Thus, cognitive flexibil-
ity arises as a complex, non-linear interplay between these 
dimensions. Consequently, the construct of cognitive flex-
ibility opens up the possibility of capturing different ways 
of being creative, namely through the differing loads on the 
three dimensions.

The sociological perspective of this framework has 
proved to be effective in PP contexts where problems reflect 
the process results not only as mathematical content, but 
also as the proposer’s attitudes and affect towards that con-
tent and context. This feature of the framework, of capturing 
aspects related to the proposer’s personality, represented for 
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us a supplementary argument that it is relevant to be used in 
the study of creativity within the present research.

3  Methodology

3.1  Sample and data

Students-prospective teachers in their last year of a mas-
ter’s program in Mathematics, participants in a course in 
Mathematics Education, were asked to pose problems start-
ing from a context rich in geometrical properties. More 
precisely, the following task was presented to students:

for better documenting their preferences, strengths and 
weaknesses, as well as their creative manifestations in 
other contexts, we compared the problem analysis with ele-
ments related to the meta-context (information about stu-
dents’ academic performance, their teaching experience, 
class observations, etc.).

3.2  Criteria for data analysis

As discussed above, cognitive style refers to typical ways in 
which individuals organize their environment conceptually. The 
cognitive style is a hypothetical construct developed to explain 
the process of mediation between stimuli and responses.

The figure contains: the square ABCD, the circle inscribed in this 
square, and the circular arc of centre A and radius AB.
Pose as many problems as possible related to this figure, within the
time-frame of the next three weeks.
Write the posed problems in the order in which they emerged from 
your mind, if possible, and add a proof, or at least an indication of
solving, for each posed problem. A B

CD
E

Taking into account the above hypotheses and notations, prove that 2⋅ EC = AC.

To make students familiar with the given figure, but also 
to show that this figure offers a rich geometrical context, 
the teacher indicated and solved an example of a problem 
emerging from it:

Initially, six students (out of the eighteen students 
enrolled in this course) responded to the task. We repeated 
the call a year later, under identical circumstances (i.e., 
prospective teachers in mathematics, in their last year of 
a master’s program, and the same initial geometrical con-
text and requirements). At this call, 7 students answered 
(out of the 9 students enrolled in the course). In all, in the 
two successive years, 13 students responded to the task, 
generating a total of 243 problems. Each of these students 
proposed at least 9 problems, and there is a student who 
generated 50 problems. These 13 students represent our 
sample.

After the primary processing of data, we addressed fur-
ther questions and tasks to some of the students in the sam-
ple, for a better understanding of some aspects revealed 
during this process. In general, the added questions were of 
the following type:

• How did you generate, starting from the given configu-
ration, the figure on page…?

• For your problem…, what additional elements are 
needed in the text in order to have a definite answer?

We included the problems provided by the students in 
this second phase in the analysis of their products. Finally, 

Crespo (2003) uses the term “problem posing style” in 
relation to proposers’ views on and beliefs about mathemat-
ics problems and mathematical errors. Within the present 
research, the students generated products that revealed 

certain ways of perceiving and processing the given infor-
mation, ways that can be better depicted from a good 
design of the parameters to be studied. We thus searched 
for criteria to characterize individual differences in geom-
etry PP contexts. We identified three criteria, which are 
briefly described below.

Validity. For the validity criterion, we adapted the defini-
tions used by Singer and Voica (2013) to the situation 
described in this paper. Thus, the students’ posed problems 
were analyzed in terms of their coherence and consistency.
The coherence of a problem refers to its syntax; more pre-
cisely it refers to the rules and principles that govern the 
structure of a mathematical problem (Singer and Voica 
2015; Voica and Singer 2013). Within the context of this 
paper, the coherence is related to the explicit definition of 
the new elements added by the proposer to the initial con-
figuration. A problem was considered as being coherent if 
its elements were defined explicitly or were marked on the 
drawing so as to avoid ambiguities.
The consistency of a problem refers to its seman-
tics; more precisely, it refers to the existence of math-
ematically meaningful links among the elements of 
the problem. In the context of this paper, consistency 
also means a meaningful correlation of the new posed 
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problems with the underlying configuration of the start-
ing problem.

Geometric nature. The second criterion is a domain-spe-
cific one that takes into account the nature of the posed 
problems related to the geometrical context. We called this 
criterion the Geometric nature (GN) of the posed problems. 
The posed-problems GN is a bi-polar criterion, based on 
two opposite features: metric and qualitative. The metric 
posed problems are those that require finding sizes and the 
solving necessarily implies the use of specific computing 
formulas. The qualitative posed problems are those requir-
ing the use of geometrical reasoning based on congruence 
without appealing to (explicit) metric calculations.

Conceptual dispersion. The third criterion captures the man-
ner by which the filtering and processing of stimuli allows 
the environment to take on psychological meaning in a stu-
dent’s mind. As compared to GN, which reflects the nature 
of the problem, this criterion reflects students’ personalized 
answers when facing the given task. We found that, in our 
sample, students’ strategies varied from a rigorously organ-
ized approach (named structured), to a random, fuzzy one 
(named entropic). For describing this spectrum of strate-
gies, we introduced the term conceptual dispersion (CD) as 
a third criterion. This is also a bi-polar criterion, underlying 
two opposite features: structured versus entropic.

A student’s list of problems shows structured concep-
tual dispersion when the set of posed problems denotes 
an approach that is systematic, structured, planned, pat-
terned, and rigorously organized. More specifically, this 
criterion is met when the student’s posed problems are 
organized within clearly defined structures, systematically 
exploiting a configuration, and incrementally going within 
sub-configurations.

We talk about an entropic conceptual dispersion when 
the set of posed problems shows an approach that is unsys-
tematic, or arbitrary, and eventually extended beyond the 
given context. More specifically, this criterion is met when 
the student’s posed problems are disconnected to each 
other or to a prior mathematical model, denoting random 
distribution of ideas, with large leaps from one configura-
tion to another.

The criteria described above may be thought of as inde-
pendent in the sense that the classification of individuals on 
one criterion does not affect their classification based on 
another. By identifying these criteria, we found traits that 
could be used to describe students’ behavior in problem 
posing situations. We thus introduce the term geometry-
problem-posing cognitive style to characterize individual 
differences in geometry PP contexts.

In general, we observed that as students started to apply 
a certain strategy, they followed it in a consequent manner. 
This reinforces the existence of a durable approach that 

goes beyond the specificity of posing a certain problem. It 
belongs to a bird’s eye view of the task—an aspect that sug-
gests also considering a metacognitive dimension. Conse-
quently, we needed to relate cognitive style to metacognitive 
functioning. A metacognitive dimension was discussed in 
the cognitive style literature (e.g., Kozhevnikov 2007), and 
it is consistent with our approach, as revealed by the data.

3.3  Problem classification: some relevant examples

To make more transparent the classification procedures 
based on the above three criteria, we include below, as 
examples, five of the problems posed by one of the stu-
dents. (The problems were proposed in the listed order and 
refer to Fig. 1.) We selected these examples because we 
found in this list coming from the same student all types 
of needed exemplars for all the criteria. In addition, it was 
important to select examples from only one student to illus-
trate the CD criterion, which captures relations between 
problems from the same proposer.

Example 1: Prove that the diagonals of quadrilateral CEAE’ 
are orthogonal.

Example 2: Prove that FEO’O is a rectangular trapezoid.

Example 3: Prove that area of the triangle AOD is equal to 
OE2.

Example 4: Prove that EOʹ =  
√
7
4

 OC.

Example 5: Prove that the area of the triangle EOF is an 
irrational number.

All the five problems above are coherent (briefly, 
because the new intersection points that are referred in 
the problems are set out unambiguously on the figure) and 
task-consistent (briefly, because all these problems are 

Fig. 1  The drawing used by one of the students as an iconic support 
for the posed problems
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connected to the given geometrical context). Problem 5 is 
coherent and task-consistent, but not mathematically con-
sistent: the accuracy of this problem depends on the cho-
sen measurement unit (by which one can express the sides 
of the square ABCD). More precisely, if the length of the 
side AB is a¸ then the area of the triangle EOF equals 
a2
√
7

20
; therefore, if (for example) a = 1, then the area is 

expressed by an irrational number, and if a = 4
√
7, the 

area is expressed by a rational number. In other words, the 
mathematical model associated with this problem is not 
consistent.

We classified problems 1 and 2 as qualitative because 
their proofs use the congruence relationship and/or prop-
erties related to parallel or perpendicular straight lines. 
By comparison, problems 3, 4 and 5 were classified in the 
category of metric problems, because their proofs suppose 
computing lengths or areas based on the use of specific 
formulas.

We classified problems 2 and 4 in the category struc-
tured dispersion because they are derived from some pre-
vious problems (problem 2 is an immediate application 
of example 1), or from a recognizable model (problem 4 
comes from the calculation of the height in an isosceles tri-
angle). By comparison, we classified problems 1, 3 and 5 
in the entropic dispersion category because they are inde-
pendent of the same student’s previous proposals and the 
usable mathematical models are not a priori obvious.

3.4  Constructing the tools

The next difficulty was to find appropriate measures to 
match the criteria description with appropriate repre-
sentations. Consequently, we assigned numerical values 
to the studied features. For the first criterion (concern-
ing the validity of problems), the numerical characteriza-
tion is simple: a problem is or is not coherent, or it is or 
is not mathematically consistent. Yet, the other two criteria 
required finer numerical characterizations that better cap-
ture both the specifics of each individual problem, and spe-
cifics of the entire list of problems. We further explain the 
design of the proposed tool.

3.4.1  Numerical values for the GN criterion

The second criterion—the geometry-specific nature of the 
posed problems (GN) refers to the content of the proposed 
problems. For the GN criterion, a problem was coded +1 if 
it was qualitative and −1 if it was a metric problem. Given 
the polarity involved, we did not used intermediary values: 
each problem was classified as either metric or qualitative.

The use of positive and negative values has no conno-
tation in terms of quality assessment of the posed prob-
lems; these values are meant only to ensure the problems’ 

distribution on the two features of the bi-polar criterion 
GN, and the representation of these features on an orthogo-
nal system of axes.

Next, we calibrated these raw measures with the total 
number of posed problems based on the arithmetical mean. 
Thus, the criterion led to two numerical values, expressing 
the relative weight of qualitative and metric problems in the 
set of the student’s posed problems.

In order to capture quantitatively the number of posed 
problems, (i.e. in order to link each problem, as an individ-
ual answer, to the list of all problems posed by a student) we 
divided, at the end, the numbers obtained in this process by 
the total number of posed problems. For the sake of a clearer 
representation, the previously obtained mean was convention-
ally multiplied by 10 to enlarge the drawing proportionally.

Therefore, we used the following formulas to obtain the 
two values of the features metric and qualitative used in the 
GN criterion:

3.4.2  Numerical values for the CD criterion

The third criterion—the Conceptual Dispersion of the 
posed problems (CD) reflects students’ personalized 
answers. This is a more sensitive criterion, which should 
capture more of each student’s personal approach, taking 
into account both the micro level of each posed problem 
and the macro level of his/her product in its entirety.

To better capture individual variation in the CD crite-
rion, we nuanced its application. We associated with each 
student’s proposal a Dispersion Factor (DF), which char-
acterizes each problem, and a Conceptual Dispersion Fac-
tor (CDF), which corresponds to the complete list of posed 
problems, viewed as a whole. We used these two factors 
to characterize numerically the conceptual dispersion fea-
tures: structured and entropic.

The dispersion factor. For each problem, we determined 
its dispersion factor (DF) that represents the way in which 
the problem derives from the given configuration (and 
data). It is a composite factor that reflects, on the one hand, 
the way in which the problem connects to a mental model/
previous problems, and, on the other hand, the way the stu-
dent manipulates the initial given frame.

For the sake of a suggestive representation in an orthog-
onal system of axes, we associated each problem with the 
following: a positive value (conventionally taken as +1), if 
the posed problem is independent of any of the others in the 
list, and the mathematical model of the given configuration 
is integrated into consistent internalized developments; or 

Metric = −10×
Number ofmetric problems

Square of total number of posed problems

Qualitative = +10×
Number of qualitative problems

Square of total number of posed problems
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a negative value (conventionally taken as −1), if the posed 
problem is an immediate derivation from an easily identifi-
able mathematical model that can be recognized either in 
the prior studied theory or in the previously posed prob-
lems. As in the GN criterion, the use of positive and nega-
tive values has no connotation in terms of quality assess-
ment of the posed problems.

The frame manipulation factor. In the process of prob-
lem posing, students bring modifications to the initial geo-
metrical context. The modified contexts are then used in the 
search for new relations. The nature and extent of modifica-
tions brought by students to the initial context was captured 
by a discrete scale that concerns the way a student manipu-
lates the given frame.

For entropic dispersion, we identified five frame manipu-
lation degrees, as described in Table 1. For each of these, we 
associated a frame manipulation factor, varying from 0.1 to 
0.5: in this case, the positivity of DF increases from stage 1 
towards stage 5 (because of the multiplication by +1).

For structured dispersion, the same discrete scale is 
applied for the initial frame manipulation, but the asso-
ciated score is symmetrically disposed compared to the 

previous one (see Table 2). In this case, the negativity of 
DF decreases from stages 6 to 10 (because of multiplica-
tion by −1). We thus obtained a scale of ten frame-manipu-
lation phases varying from −0.5 to + 0.5.

Finally, the obtained positive and negative scores for 
each problem from a proposed list were calibrated by 
dividing by the total number of posed problems in that list, 
in order to get a unitary measure of problems Dispersion 
Factor (pDF). Thus, the pDF results as a weighted mean of 
all the DFs of the posed problems for the two parameters: 
entropic problems dispersion factor (pDF+) versus struc-
tured pDF (pDF−). In other words, we use the following 
formulas:

The conceptual dispersion coefficient. In order to charac-
terize the global parameter CD numerically, we introduced a 
conceptual dispersion coefficient (CDC). It provides a global 

pDF+ =
Sumof framemanipulation factors for entropic problems

Total number of posed problems

pDF− =
Sumof framemanipulation factors for structured problems

Total number of posed problems

Table 1  The frame 
manipulation factors for 
entropic dispersion of posed 
problems

# Frame manipulation degree for entropic dispersion Frame manipulation factor

1. Almost none (the student do not actually operate within the given frame) 0.1

2. Simplistic, minimal 0.2

3. Canonical 0.3

4. Frame changes 0.4

5. Reframing 0.5

Table 2  The frame 
manipulation factors for 
structured dispersion of posed 
problems

# Frame manipulation degree for structured dispersion Frame manipulation factor

6. Almost none (the student do not actually operate within the given frame) 0.5

7. Simplistic, minimal 0.4

8. Canonical 0.3

9. Frame changes 0.2

10. Reframing 0.1

Table 3  The conceptual dispersion coefficient

Stages Description CDC

Entropic The properties highlighted by the posed problems (including open-ended) are varied. The given configuration is 
integrated in a more complex contextual design. Almost no connected problems

3

Relatively entropic The posed problems retain only part of the initial configuration data and denote a fuzzy selection of content. The 
problems are mostly unrelated

2.5

Relatively structured The posed problems are built on a frame that takes disparate elements of the original context and these are 
exploited in small steps and easily identifiable (predictable) approaches. Only occasionally there are situations of 
jumping from one structure to another, highlighting new properties

2

Structured One systematically explores the given configuration without adding new auxiliary geometric constructions, but 
focusing on the sub-configurations that allow incremental explorations

1.5
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assessment of the list of problems proposed by a student. To 
simplify the analysis, four stages on a discrete scale for CDC 
were considered, namely: structured, relatively structured, 
relatively entropic, and entropic. In order to allow a unify-
ing representation for each of the student’s products, we con-
ventionally assigned numerical values for the coefficients on 
this discrete CDC scale (i.e., 1.5; 2; 2.5; 3) so as to fulfill 
two conditions: to keep the result of multiplication of the 
coefficient with the Dispersion Factor smaller than 1, and to 
ensure equal distribution of the four stages on the CDC scale. 
A description of this CDC scale is presented in Table 3.

The numerical values for entropic and structured char-
acteristics. The conceptual dispersion (CD) criterion allows 
a representation with two opposite directions, correspond-
ing to entropic and structured features. In determining the 
numerical values corresponding to these characteristics, we 
use the following formulas:

The number of posed problems implicitly occurs in 
computing the conceptual dispersion factors because they 
occur in the formulas for calculating the pDFs (pDF+ and 
pDF−), which are obtained as weighted means relative to 
the total number of posed problems.

A note on choosing the coefficients. In the above for-
mulas we used various coefficients, for example, for the 
following: the multiplication factor for metric and qualita-
tive features; the ten frame-manipulation factors; the four 
conceptual-dispersion coefficients. The coefficients used 
in these formulas are multiplier constants, meaning that 
they keep the same value on all data sets. This allows us to 
choose these constants for convenience.

Once the system of constants is established, we can plot 
the data. The choices made for the constants are meant to 
lead to a more suggestive representation of data. Other 
choices for these values obviously lead to other graphical 
representations, but the results of the study (inferred based 
on these representations) are the same.

4  Results

4.1  A holistic view on the data

We organize the results based on the three criteria pre-
sented above.

The coherence-consistency criterion relates to the valid-
ity of the final product. Getting valid problems was a target 
pursued by almost all students in achieving their task. In 
total, 238 (i.e., 98 %) were coherent, out of the 243 gener-
ated problems. For the remaining 5 problems, the text was 
not sufficiently clear.

Entropic(= CD+) = CDC × pDF+

Structured (= CD−) = CDC × pDF−

Six of the 243 posed problems were identified as not 
being consistent per se; except for these six problems, there 
are another 21 problems (9 %) that have been ranked as 
being not consistent relative to the task because they actu-
ally do not refer to the given geometric configuration. In 
total, 27 problems (i.e., 11 % of the 243) were classified as 
not being consistent.

A synthetic representation of the problems’ distribution 
relative to this criterion is presented in Fig. 2.

The fact that most problems are coherent and consist-
ent shows that the sample on which we did this analysis is 
valid: in PP tasks, a relatively low percentage of consistent 
and coherent problems may indicate that the task was not 
understood, or had a too high difficulty level, inappropriate 
for participants’ level. Consequently, we analyzed all the 
problems, even the non-valid ones, considering that some 
mistakes can be even more relevant in capturing personal-
style accounts.

The 243 students’ posed problems have a balanced dis-
tribution with regard to the geometric nature criterion: a 
total of 141 problems (58 %) were been classified as met-
ric, the remaining 102 posed problems (42 %) being quali-
tative. The balance is no longer preserved in terms of the 
conceptual dispersion criterion: 181 problems (74 %) were 
classified as structured, the remaining 62 problems (26 %) 
being entropic. These data give a holistic view of the sam-
ple, but they are not relevant as such. To get meaningful 
information, we have to analyze, first, particular cases, 
and then, to integrate these cases into a more fine-grained 
analysis.

4.2  Describing students’ proposals: nine relevant cases

In order to capture the manifestation of individual PP styles 
better, we present below brief descriptions of some stu-
dents’ products. We have chosen nine cases that cover the 
entire sample in a relevant way.

4.2.1  The case of V.

V. initially posed 9 problems. He used elementary con-
figurations; in each of his posed problems a circle and an 

0
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Coherent vs. non-coherent Consistent vs. non-consistent

Fig. 2  The posed-problem percent distribution according to the 
validity criterion
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inscribed quadrilateral were used. We classified all these 
problems as being task-related inconsistent.

We asked V. about his choice of using a single element 
from the initial configuration (i.e., the circle) instead of the 
whole figure (thus actually diluting the problem frame). 
His answer was that he self-imposed a constraint of pos-
ing simple problems. Yet, this seems rather to be a personal 
limitation and not the result of a self-imposed behavior dur-
ing PP: When asked to pose problems considering a com-
bination of elements from the given configuration, he was 
able to pose only a single problem which, again, was using 
only a circle from the initial context.

4.2.2  The case of L.

L. initially posed 14 problems. She used only “elementary 
configurations” to which she added initial data, so to have 
a coherent and consistent problem, if we were to appreci-
ate it independently of the task. However, the ensemble of 
L.’s proposal is not consistent with the task frame. At our 
request to keep the combination of certain elements from 
the initial configuration (in order to ensure the consistency 
with the task), L. proposed three problems; we include one 
of them below (Fig. 3):

For the inscribed circle in square ABCD, we trace the 
tangents that intersect the sides of the square in points 
Aʹ and A″, Bʹ and B″, Cʹ and C″, Dʹ and D″. Prove 
that triangles AAʹA″, BBʹB″, CCʹC″ and DDʹD″ are 
congruent, and that the quadrilateral determined by 
these tangents is a square.

In the above problem, the points to which the tangents 
are drawn are not specified, tacitly supposing that these are 

the middle points of the respective circular arcs. In general, 
her new posed problems show loose coherence, but they 
shift from metric to qualitative.

4.2.3  The case of P.

P. proposed a list of 10 problems, all of them coherent. 
In generating these problems, P. used a single drawing 
(Fig. 4), which started from the initial configuration, to 
which diverse supplementary constructions were added.

The distinguishing element in this case, compared with 
others presented above, is the type of inconsistency. In fact, 
P. does not use the initial problem context in an authentic 
way: she thinks of learnt/previously-practiced models (as 
for example, a certain configuration of points on the sides 
of the triangle), then forcibly “implements” this configu-
ration on the given one and applies a known result in for-
mulating a problem, such as Ceva’s theorem. She applied 
this type of procedure in 4 out of the 10 posed problems. 
The remaining six can be solved by going through the first 
phase of the problem solving process—i.e. decoding.

All these elements suggest that P. ‘mimes’ problem pos-
ing: her problems are fully dependent on previously learnt 
mathematical models (even though some of them are quite 
advanced), and just transposed on the configuration.

4.2.4  The case of A.

A. proposed the most problems of all −50. All her prob-
lems are coherent and consistent and answer adequately to 
the task.

We were interested in looking into A.’s PP strategy, given 
that the number of the proposed problems was at least dou-
ble that posed by the majority of students from the sample. 
A. explored one-by-one the configurations she ‘isolated’ 
from the given one. Each time her focus shifted to another 

Fig. 3  The drawing used by L

Fig. 4  The drawing used by P
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aspect (a new sub-configuration), A. made a new drawing 
through which she accentuated certain aspects by coloring 
regions, bolding lines or marking details. For example, the 
drawings in Fig. 5 were made as support for the following 
problems:

(a) Let S be the midpoint of the segment AF. Prove that 
OS =  AO

2
.

(b) Prove that ∠CEO ≡ ∠CFO and that CO is the bisector 
of angle ECF.

(c) Prove that the circle sector shaded area in the picture is 
πR2·m(∠EOF)

1440
.

We hypothesize that the ‘personalized’ figures allowed A. to 
focus on those sub-configurations, and generate more formula-
tions than peers did. In this way, she reduced the complexity of 
the initial figure by a simplification procedure that she applied 
systematically. This type of behavior individualizes her in our 
sample because the other students preferred to use a ‘global’ 
figure, or to use the same figure for more posed problems.

4.2.5  The case of D.

D. posed 33 problems. For all her problems, D. used a single 
figure (as P. did), on which she successively marked new ele-
ments. This ‘global’ drawing (Fig. 6) had a dual role: it replaced 
some text (a text that is reduced to a minimum possible—of the 
type AN = 4/5 AB), and it was used as a kind of graphic organ-
izer. (The figure lists the lengths of segments, as they are calcu-
lated; this is why it is not very easy to follow it.). Many of the 
problems proposed by D. (27 out of 33) are of metric nature.

4.2.6  The case of T.

T. posed 20 problems. All these problems were task-con-
sistent, but 3 of them were not mathematically consistent.

As did P. and D., she used a single ‘global’ figure, for 
all proposals (Fig. 7), part of the problem data being speci-
fied only on the figure. Apparently, T. exploited the given 
configuration in the same way as D. did, but there is a 
major difference between the two students’ actions. While 
D. referred all measures to the side of the initial square, T. 
chose different reference systems: in 12 of the 20 problems, 
the requirement was to calculate a ratio (the compared 
measures being different each time).

Fig. 5  Some of the drawings made by A

Fig. 6  The drawing used by D

Fig. 7  The drawing used by T
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Her strategy in generating problems seems to be just 
that, namely, to express some measures as functions of 
other measures. When she abandoned this strategy, she pro-
posed problems that were no longer consistent (see Exam-
ple 5 in Sect. 3.3).

4.2.7  The case of C.

C. originally posed 19 problems, classified as coherent 
and consistent. In generating problems, C. had a metric 
approach: in most problems, the requirement referred to 
the calculation of a specified size. In the problems initially 
posed, C. did not generate new points: she only marked 
some points that naturally occurred in the initial configura-
tion, as intersections of arcs and/or segments. The focus on 
various elements of the initial figure allowed her to redefine 
each time the framework on which she focused.

Once her attention focused on a frame, she explored 
(from a metric perspective) the new context and generated 
new problems, in this way. It seems that her process of gen-
erating problems was powered by the question “what else 
can be calculated?” As a result, the ‘frames’ were defined 
in these terms: she searched for triangles, circular sectors, 
and rectangles to calculate lengths, areas, arcs measures, or 
angles, resorting to known metric relationships.

Later, we asked C. to propose a way to complete the ini-
tial figure with new elements and to pose as many problems 
about the new configuration as she could. In response to 
this request, she made the drawing in Fig. 8a and, based on 
this configuration, posed 7 new problems.

We noticed that the requirement to extend the initial con-
figuration helped C. to reframe. Although she persisted in 
posing metric problems, they are much more varied, refer-
ring (among others) to the minimal distance between arcs, 
or to negotiating a route without crossings on the same road 
(i.e., Eulerian path in a graph—see Fig. 8b).

4.2.8  The case of O.

O. posed 15 problems. She carefully defined any new ele-
ment introduced in the geometric configuration, and she 
managed to generate only problems that are coherent and 
consistent. Out of the 15 problems, only two are likely to 
be metric (the framing of one is still questionable—it could 
also be considered as a qualitative problem).

O. had a different strategy for generating problems 
compared to the other students: she imagined a new con-
figuration, formulated a problem, then she looked for other 
properties of the given geometric configuration. Moreo-
ver, O. emphasized the symmetry of the figure, in 5 of her 
posed problems, by using the configuration obtained by 
adding the circle of center C and radius CD: in this way, 
the figure became symmetrical, not only across the line 
AC, but also across the line BD (and about the center of 
the square). The qualitative properties of the figure (mainly 
based on symmetry) were therefore guiding O. in generat-
ing problems.

We have met the same strategy—using symmetry to imag-
ine new configurations, in the case of C. There is, however, a 
major difference: while C. generated a new configuration by 
symmetry (Fig. 8a) and subsequently saw this configuration 
as being “rigid” (i.e., once generated, she could no longer 
modify it), O. proposed almost every time a new configura-
tion. It seems that O. had a dynamic mode with which to per-
ceive the given configuration—as also happened with D.

4.2.9  The case of I.

I. proposed 15 problems. She used one single drawing 
(Fig. 9) for all these problems. On this drawing, she com-
pleted the entire circle of center A and radius AB, built the 
arc of center C and radius CB, and marked other points, 
which occurred as intersections of lines and/or circles.

Fig. 8  Geometric configura-
tions used by C
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With one exception, I. preferred to mark on the drawing 
the elements to which she referred (using colors to make 
the figure), instead of defining them in the problem text. All 
15 problems were coherent and mathematically (and task) 
consistent. Only one of her problems was of metric type, all 
others being classified as qualitative.

Initially, she explored the symmetry properties of the 
given configuration: the first 9 problems highlight the fig-
ure symmetry across the diagonals AC and BD, or about 
the point O (square center). Later, she proposed ‘asym-
metrical’ problems in which she requested, for example, 
to prove that the triangle CAE is acute-angled, or that 
m(ECA) > m(EAC).

The presence of these problems (in which symmetry is 
abandoned in favor of the order relationship) shows her pre-
dilection for comparative analyses. Her problem-generation 

process was driven by the question “what else can be com-
pared”? As a result, she focused on a pair of elements of 
the figure (triangles, segments, or angles) and used ways to 
compare them (congruence, order, similarity). This strategy 
was used consistently, the first 13 problems being gener-
ated in this way. In the last two problems, she resumed the 
topic of the initial problem (i.e., 2 CE = AC) and proposes 
variations of it, concerning the area of quadrilateral CEAF.

5  Discussion

5.1  Representing the data

The tool presented above was applied to each student from 
our sample. More precisely:

• For each posed problem: we determined the validity, we 
made a classification depending on the metric or quali-
tative nature, and we associated a frame manipulation 
factor;

• For each list of problems: we determined the conceptual 
dispersion coefficient.

After applying the formulas specified in Sect. 3.4, we 
finally obtained the data presented in Table 4.

We represented these data as diagrams, in which, on the 
horizontal axis is the GN criterion, and on the vertical axis 
is the CD criterion; the diagrams corresponding to the 9 
participants discussed above are shown in Fig. 10.

5.2  Differences in cognitive styles

In the diagrams of Fig. 10, the numbers on each axis asso-
ciated with the GN and CD criteria determine a quadrilat-
eral, which may be put in relation to a particular cognitive 
style in problem posing. The quadrilaterals obtained for 

Fig. 9  The drawing used by I

Table 4  The numerical characteristics of the GPP style for the students from the sample

The italic columns present the value for GN and CD

Student # Of posed problems Metric/qualitative features Stage/CDC pDF+ pDF− Structured/entropic features (CD−/CD+)

V. 9 −1.11/+0 Relatively structured/2 0 0.42 −0.84/+0

L. 17 −0.42/+0.17 Relatively entropic/2.5 0.03 0.3 −0.75/+0.08

P. 10 −0.7/+0.3 Relatively structured/2 0.06 0.2 −0.4/+0.12

A. 50 −0.12/+0.08 Structured/1.5 0.06 0.24 −0.36/+0.09

D. 33 −0.26/+0.05 Structured/1.5 0.02 0.25 −0.38/+0.03

T. 20 −0.34/+0.16 Relatively structured/2 0.11 0.17 −0.34/+0.22

C. 26 −0.32/+0.06 Relatively entropic/2.5 0.12 0.18 −0.45/+0.30

O. 15 −0.06/+0.61 Entropic/3 0.15 0.12 −0.36/+0.45

I. 15 −0.04/+0.63 Entropic/3 0.2 0.11 −0.33/+0.60
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the students in the sample have different shapes. The stu-
dents’ preferences in PP evidenced by these representations 
show the existence of different PP cognitive styles. This 
variety of shapes is an additional argument that the above 
described criteria may be thought of as independent such 
that the position of individuals in one dimension does not 
affect their position in the other. This was visible in the 
nine analyzed cases; we found there a variety of combina-
tions, with no dependence between the criteria.

Although all 9 diagrams are different, we tried to group 
them into several categories, within which we included dia-
grams with relatively similar shapes. In what follows, we 
briefly present these categories and discuss those students’ 
style in posing problems.

V.’s associated diagram (Fig. 10a) is concentrated 
towards metric and structured with zero value on the other 
dimensions. In addition, V.’s posed problems are not valid 
in the sense that his posed problems have only a loose link 
with the task, relying on a frame that conserves only dispa-
rate elements of the given context. The PP cognitive style 
of V. seems to be very particular—in fact, he did not pay 
attention to the task and retained only that he had to pose 
geometry problems.

The diagrams associated with L. (Fig. 10b), A. 
(Fig. 10d) and D. (Fig. 10e) are balanced relatively to 
the GN criterion (they are almost symmetrical across 
the vertical axis), but the effects are disproportionate 
relative to CD (with predisposition for structured). We 
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Fig. 10  The graphical representations corresponding to nine of the students from the sample



49Cognitive styles in posing geometry problems: implications for assessment of mathematical…

1 3

now analyze the three students’ responses to the task in 
a holistic way. We observed in the case of L. the per-
sistence of a strategy: although the new configuration 
keeps many of the complexities of the given problem, 
certain elements were excluded in favor of some new 
elements. The problems posed by L. retain the informa-
tion from the given configuration partially (for example, 
the square) and denote a fuzzy selection of the problem 
contents. The strategies consisting in reformulation and 
synthesizing allowed A. to generate a big number of 
problems, denoting a good control of the frame associ-
ated with the initial configuration. She followed these 
strategies in a consistent manner to propose mainly met-
ric problems, often linking them together. In the case 
of D., we can identify a diligently applied pattern. She 
used instruments specific to 1-D geometry (through cal-
culations on the straight lines AC and BD) or 2-D (based 
on the symmetry in relation to the straight line AC and 
the use of certain metrical results) inside of a rigorously 
organized “program” driven by the question “what else 
can be calculated?”

The diagrams of P. (Fig. 10c), T. (Fig. 10f), and C. 
(Fig. 10g) have a balanced distribution on the criterion CD, 
but are disproportionate in relation to the criterion GN—
predisposed to metric. A holistic analysis shows similar 
behaviors of the three students in solving the task. In the 
case of P., her strategy of implementing generic results on 
the given configuration was used for a part of her posed 
problems, but there exist also problems outside of this 
strategy. T. systematically exploited the given configura-
tion, minimally completed with new points and segments, 
but she had moments during which she ‘jumped’ from one 
structure to another, highlighting new properties. In the 
case of C., we initially observed a ‘linear’ approach to the 
task; however, when we asked her to relate to the initial fig-
ure, she posed problems that were diverse, unconnected, 
highlighting new ideas (optimization problems, graph route 
problems, qualitative properties of geometrical figures).

The last two diagrams—i.e., the ones corresponding to 
O. (Fig. 10h) and to I. (Fig. 10i) form a special category. 
The diagrams show a predisposition for qualitative prob-
lems and entropic behavior in PP. We correlate this data 
with the holistic picture of how they proceeded to solve the 
task. O. and I. posed problems in which they used nega-
tion, or various relations (order, similarity, congruence), 
and the highlighted properties (open-ended type included) 
are varied.

Concluding this section, the information we gleaned 
from the diagrams are convergent with our observations 
and interpretations related to the analysis of students’ posed 
problems.

5.3  Diagrams and cognitive flexibility

The flowcharts of Fig. 10 highlight the existence of differ-
ent geometric PP cognitive styles of students in our sample 
and show that the combination of the two criteria (GN and 
CD) allows the detection of personal manners in address-
ing the task, not imposed by the constraint of solving it 
correctly. The question we ask now is: What significance 
might these differences have in terms of mathematical 
creativity?

As stressed at the beginning, we analyze mathematical 
creativity based on a cognitive-flexibility framework, high-
lighting students’ behaviors on three components: cognitive 
variety, cognitive novelty, and changes in cognitive framing 
(Singer and Voica 2013; Voica and Singer 2013).

For cognitive variety, the indicator is the number of dif-
ferent posed problems. In the graphic representations, cog-
nitive variety can be associated with the measure of the 
superior angle of the quadrilateral. Because the horizontal 
diagonal is smaller as the number of posed problems is 
higher, and the height of the top triangle is greater as the 
approach is more entropic (which is expressed by the vari-
ety of problems) we interpret cognitive variety in the fol-
lowing way: the sharper the superior angle, the greater the 
cognitive variety.

For cognitive novelty, the indicator is the amount of new 
proposals that are far from the given item. In the graphic 
representation, cognitive novelty can be associated with 
the measure of positive CD, because an entropic approach, 
based on an unsystematic, arbitrary, random selection of 
problem content and structure through a variety of prob-
lems bringing ideas from different unconnected zones, 
denotes novelty.

For cognitive framing, the indicator is the validity of 
posed problems. The proposal of valid problems (coherent 
and mathematically- and task-consistent) can be put in rela-
tion to an existing cognitive frame of the context in which 
it operates. If this frame is not set enough—as happens, 
for example, with V., the context is not understood and the 
posed problems are not valid.

For change in cognitive framing, the indicator is a stu-
dent’s ability to change his/her mental frame in solving 
problems or identifying/discovering new ones. In the flow-
charts, cognitive framing can be associated with the ratio 
between the vertical height of the superior triangle and the 
vertical height of the inferior triangle of the quadrilateral. 
In other words, when the module of the ratio between CD+ 
and CD− is >1, this is a clue for a capacity for changing the 
cognitive frame, hence for creative behavior: the bigger the 
value of this ratio (>1), the larger the distance towards the 
initial frame.
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Briefly expressed, a student is creative in the given con-
text if the ratio between the area occupied by the quadri-
lateral in the first quadrant (qualitative–entropic) and the 
area occupied in any of the other quadrants is greater than 
1. In addition, as a relative comparison, in the given context 
and within the given sample, the bigger the ratio between 
the area occupied by the quadrilateral in the first quadrant 
and the total area occupied in the other quadrants, the more 
creative the student is.

Therefore, looking at the flowcharts, we can estimate a 
degree of creativity for each of the students from our sam-
ple within the creativity framework described through cog-
nitive flexibility.

5.4  GPP cognitive style as a tool to assess mathematical 
creativity

Within this study, we developed a tool that has the poten-
tial to give information about students’ creativity in prob-
lem posing contexts. In this section, we focus our discus-
sion on the question: Is this a valid tool? To answer, we 
use two types of information about students in our sample. 
On the one hand, we interpret the diagrams from Fig. 10 
within the cognitive flexibility discussion of Sect. 5.3; on 
the other hand, we use data collected from observing stu-
dents’ behavior in class, in other contexts of learning, and 
data about their academic performance (evaluated against 
the performance of colleagues from the same master’s 
program: on average, in such a program 20 students are 
enrolled). We further analyze these comparisons.

V. had difficulty in understanding the proper task, which 
shows that he failed to develop a cognitive frame for this 
context. It is not accidental that his posed problems are 
not valid. Given this situation, it is meaningless to dis-
cuss changes in cognitive frame. The diagram position-
ing (Fig. 10a) suggests the absence of creative elements in 
his case. This conclusion is supported by observing V. in 
other learning contexts. On the academic level, V. is below 
average, having real difficulties in achieving a minimal 
understanding of mathematical concepts. In applying the 
mathematics, V. usually uses typical algorithms, proving 
(in the best case) a low level of creativity. It is interesting 
that V. is also an in-service teacher in a middle school (for 
2 years now): he follows the master’s program in parallel 
with teaching, which is an exception to the rule. Perhaps 
the limited understanding of mathematical concepts over-
lapped with the need to teach mathematics at middle school 
level led him to focus on repetitive algorithms, which he 
also used as basis for solving the PP task.

In the case of L. (Fig. 10b) and D. (Fig. 10e), the module 
of the ratio between CD+ and CD- has a low value (close to 
0) and the top angle of the diagram is very flat. This shows 
that L. and D. do not go too far from the initial frame and 

cognitive variety is at a minimal level, indicating a low level 
of cognitive flexibility. In the case of D., this conclusion 
seems surprising because of the relatively large number of 
proposed problems (33); however, the shape of her diagram 
suggests limited cognitive variety and low level of cogni-
tive novelty. We compared these findings with information 
about L. and D. obtained in other contexts. In both cases, 
we found an academic level below average and a cognitive 
behavior without personal initiatives, which indicates a low 
level of creativity. It is interesting that D. is also an in-ser-
vice teacher (as in the case of V.); in her case, however, we 
have seen a particular skill in posing new problems starting 
from the given context, but most problems she posed are of 
a metric nature, suggesting an interest in the application of 
learned formulas and again, the concern for reproduction 
algorithms (which, actually, allows her to generate many 
problems very similar to one another).

A special case is A., who posed the biggest number of 
problems (50). The associated diagram (Fig. 10d) shows 
a balanced distribution on the GN criterion (metric versus 
qualitative problems) and the horizontal diagonal has a rela-
tively small size, which indicates cognitive variety. On the 
other hand, the fact that the top angle of the diagram has a 
large size and (the module of) the ratio between CD+ and 
CD− is <1 suggests an average level of cognitive novelty. 
These elements suggest the existence of cognitive flexibility 
at a moderate level. As a student, A. has above-average aca-
demic performances and manifests some ability in problem 
solving. The solutions she posed within the given task have 
nothing special, or ‘spectacular’: the general impression is 
that A. practiced problem-solving strategies without devel-
oping deep heuristics for problems and without making use 
of the stage of “looking back”. In a superficial examination, 
we would be tempted to consider her highly creative. Her 
diagram made us take a closer look at her work and recon-
sider that impression, leading to a more appropriate one.

The diagrams associated with P. (Fig. 10c), T. (Fig. 10f) 
and C. (Fig. 10g) are similar: an average value for the top 
angle measure, a ratio close to 1 between the CD+ and 
CD−, and a higher value than in previous cases for CD+. 
All these indicate the existence of an above-average level 
of cognitive flexibility. We compare this statement with our 
class observations. In the case of C., the observations are 
consistent with this conclusion: on an academic level, C. 
is above average, and her interventions in other contexts of 
learning bring ‘something’ different, being sometimes “out 
of the box”, thereby confirming the diagram shape.

T. and P., however, represent special cases. In other 
learning situations, during the teaching course, T. did not 
come out at all, perhaps because of excessive shyness. 
When involved in activity and when she had to formulate 
an answer, no overcoming of routines was identified—i.e., 
change in cognitive framing. Therefore, in her case, the 
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data obtained from different sources do not correlate. The 
same conclusion seems to apply to P.: she has medium aca-
demic level performance, and her interventions in learning 
contexts are sporadic, without bringing more quality, sug-
gesting a rather low level of creativity—a result that seems 
contradictory to what the diagram indicates. Still, the mis-
match can be due to insufficient observational data. In 
these cases, the diagrams may suggest the need for special 
attention to be given to some students who usually do not 
actively participate in the course.

The diagrams of O. (Fig. 10h) and I. (Fig. 10i) show the 
highest ratios between CD+ and CD-, and the measures of 
the top angles are small. In addition, the ratio between the 
areas occupied by the respective quadrilaterals in the first 
quadrant and the other quadrants are above 1. All these 
lead to the conclusion of a high level of cognitive novelty 
and cognitive variety for those students. These findings 
are consistent with our observations. O. and I. have above 
average academic performance. In problem solving activi-
ties, as well as in various other learning contexts (designed 
for teacher preparation), they have shown inventiveness 
and originality. Therefore, the highest level of creativity 
obtained in our sample for O. and I. by applying the devel-
oped tool is confirmed from both sources.

6  Conclusions

In this paper we investigated the problems posed in a given 
geometric context by a group of prospective mathematics 
teachers enrolled in a master’s program.

To detect students’ personal characteristics when involved 
in problem posing, we developed a tool to investigate students’ 
behaviors in this situation. We determined the validity of each 
posed problem (relative to its coherence and mathematical 
consistency), and we used two bi-polar criteria designed to 
detect personal manners in addressing the task: Geometric 
Nature (GN) of the posed problems (analyzed based on two 
opposite features: metric versus qualitative), and Conceptual 
Dispersion (CD) of the posed problems (analyzed based on 
two opposite features: structured versus entropic).

Numerical characterization of these features allowed us 
to associate each list of posed problems with a diagram of 
a quadrilateral shape. In this way, we recorded individual 
differences inside the sample and we identified a geometry-
problem-posing cognitive style of each student from the 
sample.

Various geometric properties of the quadrilateral gen-
erated within the obtained charts were associated with the 

components of creativity based on the cognitive-flexibility 
framework used in this paper. Thus, cognitive variety can 
be associated with the measure of the superior angle of the 
quadrilateral; cognitive novelty can be associated with the 
measure of positive CD, i.e. with the height of the top tri-
angle of the quadrilateral; cognitive framing can be associ-
ated with the ratio between the vertical height of the supe-
rior triangle and the vertical height of the inferior triangle 
of the quadrilateral. We noticed that, in the given context 
and within the given sample, the bigger the ratio between 
the area occupied by the quadrilateral in the first quadrant 
and the total area occupied in the other quadrants, the more 
creative the student is.

Our data converge on the fact that cognitive flexibility 
inversely correlates with a style that has dominance in met-
ric GN and structured CD. Comparing data obtained within 
this study with information coming from other sources 
regarding the students’ creative behavior, we found that 
the shape of the PP cognitive style diagram can be a good 
predictor of students’ mathematical creativity in geometry-
problem-posing situations. As a rough conclusion, a style 
that is closer to generating geometry problems with higher 
conceptual dispersion and qualitative rather than metric 
nature is more susceptible to belonging to a potentially cre-
ative person in mathematics.

Some limitations of this study should be taken into 
account. Thus, we cannot draw firm conclusions due to the 
small number of participants and to the fact that we have 
used a single task (even if it is complex). On the other 
hand, variations may occur in the administration of the 
proposed instruments, as long as there is no standardized 
system of recording the proposed parameters. However, in 
the teacher’s hand, such a tool can at least serve for a two-
fold purpose: it could contribute to a better assessment of 
students’ capabilities, and it could draw attention towards 
some students who usually do not actively participate in the 
class, but who may happen to have high potential.

We intend to apply similar tasks with a larger sam-
ple and to analyze PP cognitive styles. We also intend to 
explore the validity of the developed tool across differ-
ent types of PP tasks (not only related to geometry). Until 
then, we can conclude that, at least, students’ cognitive-
style charts reveal different patterns of students’ knowledge 
organization and its emergence; further research will show 
whether those are sustained by converging evidence across 
tasks and mathematical domains.
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