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class mostly asked clarification questions. We connect the 
revealed inclination to ask elaboration questions with intel-
lectual curiosity that characterizes generally gifted students. 
Accordingly, we suggest that in classes of students who are 
motivated to study mathematics at high level, students who 
are generally gifted may create mathematical discourse of 
higher quality. We also argue that the identified differences 
in students’ questions observed in classes of different types 
are not only student-dependent (i.e. depend on the students’ 
levels of general giftedness) but can also be teacher-related 
and content-related.

Keywords  Students’ questions · Mathematical promise · 
Motivation · General giftedness · Learning mathematics at 
high level

1  Introduction

There are many ways to nurture students with high math-
ematical potential, including but not limited to mathemati-
cal classes for mathematically promising students, spe-
cial mathematical schools, mathematical circles and more 
(Vogeli 2015). In their review of the ways of treatment of 
mathematically promising students in Israel, Leikin and 
Berman (2015) maintain that “Just as a challenging math-
ematical problem has multiple ways of solutions, so the 
problems of how to nurture these students have many solu-
tions” (p. 139). The problems include identification criteria, 
types of ability grouping, approaches to teaching, relevant 
teacher preparation and more. This paper presents a part 
of a larger study that analyzes teaching and learning math-
ematics in two types of classes for mathematically prom-
ising students. Classes of the first type include generally 
gifted (IQ >130) students who choose to study mathematics 

Abstract  This paper presents a part of a larger study, in 
which we asked “How are learning and teaching of math-
ematics at high level linked to students’ general gifted-
ness?” We consider asking questions, especially student-
generated questions, as indicators of quality of instructional 
interactions. In the part of the study presented in this paper, 
we explore instructional interactions in two high-school 
classes for mathematically promising students with spe-
cific focus on questions that students ask. The first class 
included generally gifted students (IQ ≥130) who were 
motivated to study mathematics at a high level (hereaf-
ter, a gifted class), and the second class included students 
characterized by high motivation regardless of their IQs 
(hereafter, motivation class). We analysed questions asked 
by the students during algebra and geometry lessons. Two 
types of questions are considered: elaboration and clarifica-
tion. We found that students in a gifted class mostly asked 
elaboration questions, whereas students in a motivation 
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at a high level (hereafter, GC). Classes of the second type 
include students who are highly motivated to study math-
ematics at a high level, but are not necessarily generally 
gifted (hereafter, MC).

The rationale for our study stems from the following 
observation. The classroom environment is an important 
venue for the exploration of teaching and learning in math-
ematics education research (Kilpatrick 2014). No studies, 
however, have attempted to document and explore how 
(if at all) different criteria for forming particular types of 
classes for mathematically promising students are reflected 
in classroom interactions.

We focus on the types of questions that students vol-
untarily ask during the lessons. Specifically, the study is 
driven by the following research question: What types of 
questions do the students of GC and MC ask, and what are 
the differences between their questions, if these exist at all?

2 � Theoretical background and literature review

In this section we review the professional literature about: 
the relationship between mathematical ability, general gift-
edness, and motivation; types of classes for students with 
high mathematical potential; classroom interactions in gen-
eral and types of student questions in particular.

2.1 � Mathematical promise, IQ and motivation

The notions of mathematical giftedness, high mathemati-
cal ability, and mathematical talent are frequently used 
synonymously, even though they denote different phenom-
ena (Leder 2012; Leikin 2014). At the school level, these 
constructs are often connected either to high achievement 
in mathematics or to general giftedness measured by high 
IQ. The distinction between the constructs of mathemati-
cal giftedness and high mathematical ability is rooted in the 
debate between static and dynamic perspectives on reach-
ing high achievements in mathematics (Leikin 2014).

To resolve the conflict between static and dynamic per-
spectives in mathematical giftedness/high mathematical 
ability, the NCTM (1995) Task Force introduced the notion 
of mathematical promise. Mathematical promise is a com-
plex function of mathematical ability, motivation to excel in 
mathematics, beliefs about one’s capacity to be successful in 
mathematics, and the learning opportunities. The Task Force 
notes that students with mathematical promise have the 
potential to become the leaders and “problem solvers of the 
future” (Sheffield 2012). Thus, the construct of mathemati-
cal promise interweaves mathematical ability with students’ 
motivation and characteristics of students’ personality.

Many authors emphasize that motivation constitutes a 
necessary condition for the development of mathematical 

ability (Subotnik, Pillmeier and Jarvin 2009). Knuth (2002) 
claimed that motivation to study mathematics and attitude 
to mathematics are associated with mathematical curios-
ity, which can be developed in students through appropri-
ate learning opportunities that are mostly open-ended. 
Researchers consider motivation to be an important con-
struct that reflects the natural human propensity to learn 
(Ryan and Deci 1996). In mathematics, this motivation is 
frequently associated with excitement, courage, and joy in 
the process of solving a problem or with finding an exciting 
mathematical discovery.

2.2 � Special classes and schools for the mathematically 
promising

Though there is still no unanimous approach to defin-
ing mathematical giftedness, a broad consensus does exist 
among scholars and educators, proposing that students 
showing mathematical promise should be given special 
treatment in order for them to realize their potential (e.g., 
Colangelo and Davis 2003; Davis and Rimm 2004; NCTM 
2000; Sheffield 1999). Thus, the lack of a broadly accepted 
theoretical definition of mathematical giftedness is not a 
barrier to opening special schools, classes, and programs 
for supporting and nurturing ‘mathematically promising’ 
students. In different countries, such students are selected 
for participation in these programs according to diverse 
operational criteria (e.g., House 1987; Mönks and Pflüger 
2005; Vogeli 2015).

For a variety of reasons, special mathematics schools do 
not exist in Israel. Instead, either special classes for math-
ematically advanced students are established in schools 
with heterogeneous populations or university programs are 
made available to the gifted high-school students (Leikin 
and Berman 2015). The term “mathematically gifted” 
is not used routinely in Israel, but others such as general 
giftedness, high-level mathematical competency, or high 
motivation to study high-level mathematics. Motivation as 
a selection criterion opens the programs to a broader popu-
lation; it also addresses the dilemma of exclusiveness vs. 
inclusiveness.

Note that mathematics is a compulsory subject in Israeli 
high schools, and students can be placed in one of three 
levels of mathematics: high, regular, and low. As a rule, the 
level of instruction is determined by students’ mathemati-
cal achievements in earlier grades. Instruction at high level 
differs from that at regular level in terms of the depth of the 
material learned and the complexity of the mathematical 
problem-solving involved.

Our study explores lessons in two types of Israeli classes 
for mathematically promising students who study high-
level mathematics. The classes of the first type are formed 
using general giftedness (IQ >130) criteria and students’ 
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motivation to study mathematics at high level, whereas the 
classes of the second type include students with high moti-
vation to study mathematics at high level regardless of their 
IQs.

2.3 � Classroom interaction and students’ questions

Stimulated by Dewey (1933) and Vygotsky (1978), in this 
we study takes the view that the key feature of the teaching 
and learning processes is the teacher–student interaction. 
The quality of interaction determines the quality of learn-
ing, and changes in the quality of interactions signify the 
learning process (Sfard 2001).

Teacher–student interactions in a mathematics class have 
certain regularities and can be described by their structures 
(Bauersfeld 1988; Voigt 1995; Mehan 1979; Wood 1998). 
Mehan (1979) suggested a three-part-exchange structure of 
classroom discourse composed of three main components: 
initiation-reply-evaluation (IRE) as the dominant type of 
teacher-student interaction. In an IRE-structured lesson 
the teacher is the initiator and evaluator, and the students 
are respondents. However, in the last decade several stud-
ies have demonstrated that the IRE pattern does not neces-
sarily reflect every lesson’s structure. For example, in the 
inquiry classroom the third step may be aimed at expand-
ing students’ ideas instead of evaluating them (Forman and 
Ansell 2001). At the same time, the IRE structure can also 
indicate initiation by students, response by the teacher and 
expansion of the ideas by students (Leikin 2005). Leikin 
suggested a model of instructional interactions accord-
ing to which teachers’ expertise can be reflected in a shift 
from the teacher to the students (including asking ques-
tions). Thus, expert teachers who encourage pupils to initi-
ate new learning situations which are meaningful for them 
develop pupils’ motivation and curiosity when learning 
mathematics.

Asking questions is one of the most important actions 
in a mathematics classroom as it promotes interaction, dis-
cussion and collaboration (Chin 2004). Tobin and Tippins 
(1993) argued that it is not easy to find teachers who require 
learners to generate questions and seek answers. The con-
struction of questions is an important way for learners to 
build conceptual conflict, and the search for answers may 
begin the process of resolving that conflict.

Several educators and researchers emphasize the impor-
tance of students’ questions in the teaching and learning 
process. For example, Almeida (2012) stresses the impor-
tance of moving to student-focused teaching, which sug-
gests that “putting the focus on students’ questions rather 
than on teacher’s questions, and valuing students’ questions 
rather than emphasizing their responses is imperative in 

supporting learning higher levels of thinking” (p 634). Ask-
ing questions by students can contribute to the development 
of their understanding and the construction of their knowl-
edge through a better connection between new and exist-
ing knowledge (Almeida 2012; Chin and Osborne 2008; 
Scardamalia and Beretier 2006; Rosenshine, Meister and 
Chapman, 1996; Pedrosa de Jesus, Almeida, Teixeira-Dias, 
and Watts 2003). Moreover, student problem posing is cru-
cial in problem solving and in decision making (Almeida 
2012; Zoller 1987), in developing creativity, mathematical 
thinking and self-confidence (Shodell 1995; Donovan and 
Bransford 2005; Chin and Osborne 2008), and in promot-
ing the students’ motivation and their interest in and com-
mitment to the learning process (Almeida 2012; Chin and 
Kayalvizhi 2005; Marzano et  al. 1988; Pedrosa de Jesus, 
Teixeira-Dias, and Watts 2003).

Researchers distinguish between different types of 
questions. Dewey (1944) distinguished between ‘genuine’ 
and ‘stimulated’ questions that could foster ‘good habits 
of thinking’. Watts and Alsop (1996) discussed three cat-
egories of pupils’ questions as related to different stages of 
learning: consolidation questions; exploratory questions 
and elaborative questions. In this framework, consolidation 
questions are associated with learners’ attempts to deline-
ate the rationale for classroom tasks, confirm explanations 
and consolidate understanding of new ideas in science; that 
is, to clarify conceptual issues. Exploratory questions are 
associated with pupils’ attempts to expand their knowledge 
and test constructs they have formed. Elaborative questions 
are raised when learners search for conviction about their 
own frameworks of understanding or those being offered 
to them. They examine claims and counterclaims, elabo-
rating and challenging both their previous knowledge and 
experience, and that being presented to them. Elaborative 
questions may have some direct relevance to the classroom 
topic being taught or go beyond the studied topic.

Another categorization of questions is proposed by Intel 
Teach Program (2016) that promotes the Socratic Ques-
tioning Technique as an effective way to explore ideas 
in depth. While most of the of questions’ types that Intel 
Teach Program suggests can be considered as elaboration 
or exploratory questions, the clarification questions cat-
egory can be considered as an additional one. According to 
the Intel Teach Program, these questions help participants 
in a Socratic dialog to better understand other’s ideas and 
questions.

In our view, distinctions between exploratory and elabo-
ration questions are vague and difficult to apply. Thus, in 
our study we use two categories to analyze students’ ques-
tions: elaboration and clarification questions as described 
in the method section.
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3 � Method

3.1 � Participating classes

The participating classes belonged to two different regu-
lar schools in the northern part of Israel. Both classes were 
taught by experienced mathematics teachers who hold 
a BSc degree in mathematics and an MA in mathematics 
education. Both teachers had over 15 years of experience 
in teaching high-level mathematics and were regarded as 
expert teachers by their colleagues and school principals.

GC consisted of 22 tenth-grade students with IQ ≥130 
(tested in the 3rd grade)1 who, in tenth grade, chose to study 
mathematics at a high level. This choice was motivated either 
by their enjoyment of mathematics study or by realization that 
mathematics is important for their future careers. The class 
studied mathematics 5 h a week, which is the same number of 
hours as in the rest of the tenth-grade classes, using the 
instructional approach of deepening the standard curricula.

MC consisted of 28 ninth graders. The class was formed 
at the end of 6th grade with the criterion of an expressed (in 
the interview with the child and his or her parents) and con-
firmed (during a three-day preparatory camp) interest to 
invest more time and effort in studying mathematics and sci-
ence than is provided by the regular curriculum.2 The class 
studied 8 h of mathematics per week, which is 3 h more than 
the regular classes. The instructional approach to mathemat-
ics in MC included elements of deepening and acceleration. 
That is, the program enabled 9th-grade students to study 
mathematical content that is regularly taught in the 10th 
grade. MC students studied towards taking their matricula-
tion examinations in mathematics 1 year earlier than the reg-
ular classes do (as a rule, in 11th rather than 12th grade).

In summary, we treat the GC and MC classes as similar 
with respect to the students’ motivation to study high-level 
mathematics, but different with respect to the level of stu-
dents’ general giftedness.

3.2 � Data collection and analysis

The lessons in MC were videotaped at the end of a 
school year, and in the GC at the beginning of the fol-
lowing school year. Accordingly, the chronological ages 

1  Gifted classes in regular Israeli secondary schools operate in the frame-
work of a special program of the Ministry of Education (see http://cms.
education.gov.il/EducationCMS/Units/Gifted/English).
2  Motivation classes, such as the one that took part in our study, oper-
ate in Israel within different projects. The class that took part in our 
study operated under the auspices of the MOFET project. MOFET is 
an Israeli public association that provides methodological and peda-
gogical support to regular schools interested in attracting and nurturing 
STEM-oriented students (see http://www.reshetmofet.org/en/ for pro-
ject details).

of the students in two classes were close and both classes 
included 15–16 year-old students. Both classes were vide-
otaped when they studied the same topics.

The data sources consisted of about 15 h of transcribed 
videotapes; five mathematics lessons of 90 min were vide-
otaped in each class. Most of the time the camera was 
trained at the teacher and the blackboard; the camera was 
occasionally rotated in order to capture those students who 
talked.

Four selected lessons presented below are typical with 
respect to their structure. All observed lessons started with 
a short discussion of the homework, after which new mate-
rial was explained to the whole class. In the explanations, 
the teachers often used the blackboard to show the students’ 
solutions to a sample problem. This demonstration was usu-
ally followed by students’ individual work on selected text-
book tasks. Sometimes the teacher or the students presented 
the solutions on the board. The teacher encouraged the stu-
dents to ask questions and was willing to help by elaborating 
on the explanations and demonstrations. The four selected 
lessons were particularly rich in students’ questions.

The lesson transcripts were first analyzed by one of the 
authors and then by all the authors together. We implemented 
an inductive analysis with partially predefined categories (Dey 
1999; Strauss and Corbin 1990). We first scanned the data for 
episodes in which the students asked questions. Operationally 
speaking, we looked for the students’ assertions/requests that 
could be interpreted as ending with a question mark expressed 
by intonation or as invitations to respond. We then isolated 
those episodes in which the student questions were explicitly 
addressed by the teacher or the students. At the next stage, we 
characterized the students’ questions in terms of the catego-
ries described in the literature. Through a subsequent iterative 
process of refinement, we eventually abstracted and classified 
two categories, for which the data seemed to have provided 
rich and solid evidence and which we found most useful for 
capturing the differences between GC and MC. As mentioned 
above, the categories are: elaboration questions and clarifica-
tion questions.

3.2.1 � Elaboration questions

A student’s question was categorized as an elaboration ques-
tion if it led the classroom discussion towards new mathe-
matical territory, sometimes unforeseen by the teacher. When 
raising these questions, students seek to examine claims and 
counterclaims, elaborating and challenging both their previ-
ous knowledge and what is being presented to them. Exam-
ples: “Well, if that’s the case, then…?”; “But what happens 
if…?” and “How is what we learned yesterday compatible 
with…?” Questions within this category are attempts to rec-
oncile different understandings, resolve conflicts, test cir-
cumstances, force issues, and track in and around the ideas 

http://cms.education.gov.il/EducationCMS/Units/Gifted/English
http://cms.education.gov.il/EducationCMS/Units/Gifted/English
http://www.reshetmofet.org/en/
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and their consequences. Such questions may have an indi-
rect connection to the teacher’s explanation or be triggered 
by tangential issues. Note that the Elaboration Questions 
category, as defined above, unites exploratory question and 
elaboration questions as defined by Watts and Alsop (1996).

3.2.2 � Clarification questions

A student’s question was categorized as a clarification 
question when it asked for support to gain a better under-
standing of the learning material (e.g., concept definitions, 
theorems or mathematical problems) presented by the 
teacher or other students. Additionally, students’ utterances 
were classified as clarification questions when students 
needed approval for their ideas (e.g., a solution strategy 
they planned to use) related to the teacher’s assignment. For 
example, the following questions belong to this category: 
“What do you mean by…?” “I don’t understand this step, 
please explain it again…” and “Could you please remind 
me…” Questions within this category do not challenge 
what is being presented; rather they attempt to narrow the 
gap between the learner’s knowledge and the knowledge 
required by the presented material or explanation. Such 
questions have direct relevance for what has been presented 
and are stimulated by the students’ wish to meet their teach-
er’s requirements. Note that the defined above Clarification 
Questions category unites Watts and Alsop’s (1996) catego-
ries of clarification questions and consolidation questions.

4 � Findings

In this section we present and analyze four classroom epi-
sodes. The first two episodes (one occurred in GC and 
another in MC) contain classroom discussions of tasks 
in the context of function explorations. The third and the 
fourth episodes (again, one episode from each group) 
revolve around geometry proofs.

4.1 � Pre‑calculus lesson in GC

4.1.1 � Episode 1: classroom discussion of the homework 
task in GC

Prior to the lesson under discussion, the class was taught 
how to qualitatively (i.e., without using limits or deriva-
tives) investigate rational functions and draw sketches of 
graphs. Specifically, the students were taught to sketch the 
graphs using mainly the following information: functions’ 

intersections with the coordinate axes, the functions’ signs 
and their behavior at infinity. The students did not have 
any knowledge about asymptotes at this stage, so their 
decisions about the functions’ behaviors at infinity were 
based on informal reasoning. In addition, the students were 
familiar with the idea of linear translation of the graphs of 
functions.

At the beginning of the lesson, Tom, a student, asked TG 
(henceforward the mathematics teacher in GC) to discuss 
the following homework task (Fig. 1):

In response, TG invited Tom to solve the task on the 
board.

Tom confidently found the point of intersection of the 
function f (x) = 2−x

x+3
 with the axes and domains in which 

the function was positive or negative. Then he asserted that 
the function approaches −1 when x approaches infinity.

1. Tom:	 The function approaches −1 when x approaches 
infinity.

2. TG:	 Okay, Tom, now let’s look at what happens to the 
behavior at infinity. How did you see that this is close 
to −1?

3. Tom:	 Because 2 minus infinity is negative infinity and 
three plus infinity is also pretty much infinity so it’s 
kind of… it approaches −1.

Following Tom’s explanation, the TG asked the class:

4. TG:	 Class, does negative infinity divided by infinity 
always tend to −1?

This TG’s question that used a student’s mistake to initi-
ate a vivid discussion demonstrates TG’s ability to stimu-
late students’ reasoning and interactions among students. 
TG and the students brought several examples to show that 
this statement is not always true (e.g., x

2

x
 and 3x

x
).

Then TG asked:

5. TG:	 If negative infinity divided by infinity is not 
always −1, how can it be shown that this function 
(

f (x) = 2−x
x+3

)

 approaches −1 when x approaches infin-

ity?

Another student, Orion, approached the board and wrote:

6. Orion:	 − x−2
x+3

= −

(

x+3
x+3

− 5
x+3

)

= −1+ 5
x+3.

 And when 

this is… when x approaches infinity this 
(

5
x+3

)

 is equal to 0… 
[Writes and talks]

Fig. 1   Task 1 in a GC calculus 
lesson Task 1:  Explore the function

3
2)(
x

xxf and draw its graph. 
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Orion’s solution was unplanned by TG, but her openness 
to students’ ideas allowed other students to be exposed to 
his solution. TG accepted Orion’s explanation and repeated 
it to the class. Then she offered another explanation, in line 
with previous lessons.

7. TG:	 2−x
x+3

=
x
(

2
x
−1

)

x
(

1+ 3
x

) =
2
x
−1

1+ 3
x

→ 0−1
1+0

= −1 [writes on 

the blackboard and talks]

Maya expressed her concern about the TG’s solution:

8. Maya:	I have a problem; here 

(

2
x
−1

)

(

1+ 3
x

) the function is not 

defined as 0 and there 
[

2−x
x+3

]

 it is not defined as −3.

9. TG:	 Okay, you’re right, but now we’re doing an alge-
braic manipulation to check what happens at infinity 
and at negative infinity…, thus the equal sign should be 
replaced by the “tends” sign

This concern of Maya demonstrated her attentiveness 
and understanding that algebraic manipulations of func-
tions should result in an equivalent algebraic expression. 
Thus, request of preciseness in mathematical language dur-
ing the lesson can be considered as an elaboration question 
rose by the student.

Then TG drew a sketch of the function on the board 
(Fig. 2).

At this point Uri entered the discussion:

10. Uri:	 It has to be semi-linear, right?
11. TG:	 What do you mean?
12. Uri:	 It has to become more and more linear. As the x 

gets bigger, −2 and −3 become smaller in this particu-
lar place, it needs to be linear.

13. Tamar:	 I don’t understand what “semi-linear” is.

It seems that the idea of semi-linear function was new 
also to the teacher, that is, the discussion moved to the ter-
ritory unforeseen by TG. In response, TG reiterated what 

2− x

x + 3
→

x
(

2
x
− 1

)

x
(

1+ 3
x

) →
0− 1

1+ 0
= −1

Uri said. Then he returned to the Orion’s solution and 
showed how it was related to the idea of linear translation 
of the graph y = 1

/

x, which was discussed at the previ-
ous lesson. Some students found this method to be simpler 
than the method of reducing by x (see row 7), but TG noted 
that the former method is less general because it cannot be 
applied to all functions. For example, it would not be useful 
in drawing a graph of the function g(x) = x

x2−1
.

4.1.2 � Analysis of Episode 1

The structure of the episode is as follows: Tom asked a 
question about a homework task—TG invites Tom to pre-
sent his solution—Tom presented and explained—TG 
disagreed with Tom’s explanation and asked the class for 
counterexamples—the class offered counterexamples so 
that the problem with Tom’s explanation became clear—
TG repeated Tom’s initial question—Orion presented his 
solution—TG presented an additional solution—Maya 
asked a question about TG’s solution—TG modified and 
completed her solution—Uri asked a (seemingly) unre-
lated question—TG asked Uri to clarify—Uri explained his 
question—Tamar asked TG to explain Uri’s question—TG 
just reiterated Uri’s explanation—TG returned to the solu-
tion of Orion, links it to the material studied in the previous 
lessons and discussed the affordances of her and Orion’s 
solution.

Accordingly, the episode includes discussions of three 
solutions to the same problem (Tom’s solution [2–4], Ori-
on’s solution [6] and TG’s solution [7–9]) and a discussion 
of Uri’s question [10–13]. Overall, the discussion is essen-
tially driven by the students’ questions. We now turn to 
characterizing them.

It is difficult to say whether Tom’s initial question was 
aimed at clarification or elaboration of his solution, but TG 
used this question as an opportunity to elaborate on a vague 
term “function behavior at infinity.” Maya was clearly seek-
ing an elaboration when expressing her concern about TG’s 
solution [8]. By the above definition of what an elaboration 
question is, Maya challenged an element of the presented 
solution that had not been suggested by TG. Uri’s question 
[10] was also an elaboration question, because it concerned a 
term which had not been articulated before in GC lessons, but 
apparently invented by Tom as his way to make sense of the 

Fig. 2   A sketch on the board in 
a GC calculus lesson
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previous discussion. Maya’s and Uri’s questions both exem-
plified their prior knowledge and inventiveness. Only Tamar’s 
question [13] could be classified as a clarification question, as 
she asked for an explanation of what had been explicitly said. 
Some of the students’ elaboration questions and original ideas 
were accompanied by TG’s clarification questions [11].

4.2 � Algebra lesson in MC

4.2.1 � Episode 2: solving quadratic inequalities

This episode took place in an MC algebra lesson. The les-
son began by reviewing one of the homework tasks. The 
discussion centered around the concept of positive/non-
negative and negative/non-positive functions, in connec-
tion to the graphs of quadratic functions. After checking 
the homework, TM (henceforth teacher in MC) moved 
on to the subject of the lesson, quadratic inequalities. TM 
connected this topic to the previous lesson by noting that 
the students actually already knew how to solve quadratic 
inequalities, and wrote on the board as a reminder (Fig. 3):

After reviewing the solution stages, TM handed out a 
worksheet with the following exercises (Task 2) (Fig. 4):

TM and the students solved the first exercise together: 
TM asked questions about what should be done at each 
step of the solution and emphasized what was important to 
write, draw and make note of (Fig. 5).

TM went back over the solution and explained all the 
solution stages.

After this repeated explanation, the students were 
encouraged to ask questions.

	14. Moshe:	 I didn’t understand.
	15. TM:	What did you not understand?
	16. Moshe:	 How we solved this?
	17. TM:	Go back; what did we do here?
	18. Moshe:	 We solved a function [meaning, the equa-

tion ax2 + bx + c = 0], but which parabola do we 
have?

	19. TM:	Here?
	20. Moshe:	 Does it intersect with the x-axis?
	21. TM:	Yes.

In order to solve the inequality , find domains of the function 
 for  all types of inequalities:    

Fig. 3   Reminder on the board in MC

Task 2:  Solve the following inequalities:  
(1)   ; (2)  ; (3)  ;  

 (4) Given the parabola:   

Find: Values of k for which the parabola has  
(a) the point of minimum; (b) the point of maximum.

Fig. 4   Task 2—in an MC algebra lesson

Fig. 5   Solution to Task 2.1 in MC
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	22. Moshe:	 Ah…so why didn’t we write that?
	23. TM:	[Repeats the whole solution.]
	24. Moshe:	 And what do we do now?
	25. TM:	Which parabola do we draw?
	26. Moshe:	 A negative one.
	27. TM:	Inverse. We drew it. Where are the positives? 

Above the x-axis. Where are the negatives? Below the 
x-axis. Yes, so now…? Which segment do we choose?

	28. Moshe:	 What do you mean by “which segment”?
	29. TM:	Here, what do we write for the answer? Which 

inequality do we solve? Greater than 0. So we solve, 
choose a segment with a plus sign…

This transcript (lines 14–29) demonstrates that students 
asked clarification questions. Similarly to TG, TM tried to 
answer the student questions by questions addressed to the 
students. However, these questions did not lead to the dis-
cussion elaboration. Afterwards, TM offered another way 
(so she said) to solve the problem.

TM explained that in the case of a negative coefficient 
of x2 in a given inequality, it is efficient to multiply the ine-
quality by −1, change the inequality sign and solve the new 
inequality. (Note that in the first solution, multiplication by 
−1 was applied to the equation, not to the inequality).

Like TG during Episode 1, TM presented the students 
with the solution by using “the second way” and empha-
sizes that there is no need to look at the original inequality 
but rather at the inequality obtained after multiplying it by 
−1. At the end of the process TM notes that with both of 
these methods you reach the same solution.

30. TM:	Now let’s compare the answer in the end with this 
answer. It is the same answer, right?

31. Peter:	 Yes, yes.
32. TM:	This [second] way is simpler because we are 

always looking at the minus sign. It bothers us. We 
multiply by −1 and solve it as usual. The number of 
possibilities [of the parabola forms] can be reduced, so 
I prefer this way. … Now, who has questions?

33. Moshe:	 I don’t…I don’t understand. I have a 
problem with this parabola.

34. TM:	You don’t have to draw it precisely. You draw it 
like this and afterwards you mark the points −1 on the 
left side and 5 on the right side. Understand?

Once again, TM encouraged students to ask their ques-
tion, and the questions raised by the students were clarifica-
tion ones. Later, when the students had solved the inequal-
ity −3x2 − 6x − 5 > 0, the teacher asked them to solve it 
using the second way and justified this request by saying 
that with the second way there is less chance of making 
mistakes.

35. Peter:	 The teacher, which way did you say we 
should use?

36. TM:	The second. Here, multiply by −1 right away and 
solve the inequality and we draw the straight parabola. 
We won’t forget to draw. Sometimes students solve and 
forget the inverse parabola and draw the straight parab-
ola and make a mistake.

4.2.2 � Analysis of Episode 2

The episode can be summarized as follows: TM presented 
a way of solution and exemplifies it—TM repeats the 
explanation—Moshe asks questions about the presented 
solution and TM answers—TM offers another solution—
Moshe asks questions about the second solution and TM 
answers—TM compares the solutions and states that the 
second one is preferable—to be sure, Peter asks which 
way they should use—TM reiterates that the second way is 
preferable.

Overall, the episode includes discussions of two solu-
tions one of which was produced by students with the TM 
help and the second was presented by the teacher. It is 
worth noting that while TM encouraged her students to ask 
questions and listened to students ideas, the students of MC 
felt free to expose their lack of understanding and ask even 
very basic questions. As a rule, the questions are directed to 
the teacher, and the teacher answers the questions without 
attempting to open the discussion to the whole class.

By the above definition, the students’ questions are clari-
fication questions. For instance, Moshe [14–29, 33] clearly 
seeks assistance in obtaining an explanation of what had 
been presented by the teacher. Peter [35] asks TM to ver-
ify the way in which she expected the students to solve the 
task. In response, the teacher goes back and explains the 
solutions to the exercises several times.

4.3 � Geometry lesson in GC

The lesson presented below was the first geometry lesson 
after a long holiday break. Prior to the holiday, an exten-
sion of Thales Theorem was proved, and the homework 
consisted of the problems that could be solved by the use 
of this extension. The lesson below is divided into three 
episodes.

4.3.1 � Episode 3.1: discussion of Thales Theorem

At the beginning of the lesson TG went over the Thales 
Theorem again, drew (Fig. 6) on the board and wrote the 
proportion:
 
AC

AB
=

AC′

AB′
=

CC′

BB′
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Neta noted that AB′ and C′B′ as well as CBand AB look 
equal on the drawing. She asked whether they indeed are 
equal [37].

TG modified the drawing in order to make it visible 
that these segments are not necessarily equal (Fig. 7). Neta 

reformulated the proportion as a+b
b

?
= c+d

d

?
= f

e
 and asked 

TG whether it was correct [38].
TG confirmed that the proportion a+b

b
= c+d

d
 was correct 

and asked Neta how she knew that both ratios are equal to 
f
e
.

Neta did not respond. TG explained that a+b
b

= c+d
d

�=
f
e
 

and corrected Neta’s proportion to a+b
a

= c+d
c

She suggested that Neta’s mistake was rooted in the first 
drawing, in which a seemed to be equal to b and c to d. 
However, Neta did not accept the correction and asked why 
a+b
b

�=
f
e
 [39].

In response, the teacher explained that Neta’s proportion 
could not be derived from Thales Theorem.

40. TG:	 Look, we spoke about 4 proportional segments 
and we defined what the proportion was. Right? The 
proportion a

b
= c

d
 leads to the other proportions. And 

from here we cannot deduce that a+b
b

=
f
e
. Okay?

Neta was not convinced:

41. Neta:	 But I asked about …an extension of 
Thales [Theorem; not about the theorem itself]. How is 
this related to the segments on parallel lines [f and e]?

42. TG:	 How did we prove the extension of Thales Theo-
rem? We drew a parallelogram [adds B′E—Fig. 8]

43. Neta:	 Yes.
44. TG:	 Right? And we look at this angle as an angle 

[C′] from which two sides come out. This means, we 
related to the Thales Theorem extension only so that it 
would be easier to implement more complicated prob-
lems. Okay? Now, you see yourself that this is not true, 
that the drawing does not…

Neta was still not convinced and continued asking why 
in the denominator of the equation a+b

a
=

f
e
 there is a and 

not b. TG stopped the dialogue by proposing that Neta go 
over the theorem’s proof once more at home.

4.3.2 � Episode 3.2: and what if they are parallel?

TG continued the lesson and formulated the Inverse Theo-
rem for Thales Theorem (“If two straight lines separate the 
sides of an angle at proportional intervals, then they are 
parallel”), draws a new drawing and writes the proportion 
AC
AB

= AC′

AB′
= CC′

BB′
 (Fig. 9).

At this point the following dialogue between TG and 
another student, Ofek, took place:

45. Ofek:	 …Why does it matter if these are sides of 
an angle and not just two lines? Because they can also 
be parallel?

46. TG:	 Ah…if they are parallel lines… [AC parallel to 
A′C′—Fig.  10]…let’s think. And these lines are also 
parallel (AA′, BB′, CC′).

Fig. 6   Drawing to Thales Theorem
Fig. 7   Modified rawing to Thales Theorem

Fig. 8   Drawing to A, the proof of the Thales Theorem

Fig. 9   New drawing to illustrate proportion 
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47. Ofek:	 This [AA′, BB′, CC′ are parallel] is the 
regular part of Thales Theorem.

48. TG:	 If the lines were not sides of an angle, they would 
be parallel. Now give an example of a proportion… 
What can you say about these segments? (AA′, BB′, 
CC′).

49. Ofek:	 They are parallel.

The discussion continued, and TG, together with the stu-
dents, reached the conclusion that the quadrilaterals formed 
by the five lines are parallelograms and so segments AA′, 
BB′, CC′ are equal. Thus, the ratio between them is 1. In 
contrast, it is clear that the ratio between AB and BC is not 
necessarily equal to 1, and this is a contradiction.

50. TG:	 Therefore, it cannot be that these straight lines are 
parallel and we must relate to AC and AC′ as sides of 
an angle.

4.3.3 � Episode 3.3: indirect proof (reductio ad absurdum)

In continuation of the lesson, TG proved the Inverse Thales 
Theorem. She used an indirect proof, and Tal asked:

51. Tal:	 Why do we need to assume this [that BB’ is not 
parallel to CC′]? You can simply say that it is appropri-
ate to the proportions and you don’t know if… to say 
that you don’t know if it’s parallel. It could be parallel 
but it could also not be (Fig. 11).

As a result of Tal’s question, a dialogue about the mean-
ing of indirect proof ensues. TG explained that the inverse 
of a theorem is not always correct.

4.3.4 � Analysis of Episodes 3.1, 3.2, 3.3

Episode 3.1 has the following structure: TG presented an 
extension of Thales Theorem—Neta inquired whether the 
drawing for the theorem was correct—TG modified the draw-
ing—Neta suggested an alternative formulation of Thales 
Theorem and asked whether it was correct—TG answered 

that Neta’s formulation was wrong—Neta asked why—TG 
answered that it did not follow from the proof of the theo-
rem—Neta was not convinced and repeated her question—
TG suggested she go over the proof again at home.

Neta’s persistence is worthy of note. As we have seen, 
Neta did not take the teacher’s explanations for granted and 
repeatedly put forward her ideas. Neta’s question [37] can 
be classified as a clarification question, though it caused the 
correction of the drawing by the teacher. Her main ques-
tions ([39], [41]) were elaboration questions since they 
were directed at understanding mathematical statements 
beyond TG’s plan and led TG to conduct the class discus-
sion of the meaning of inverse statements.

The structure of Episode 3.2 is as follows: TG formu-
lated the Inverse Theorem—Ofek asked if the theorem 
would be correct in an additional case—TG opened the 
class discussion and eventually concluded that it would not. 
Ofek’s question [45] fits the definition of an elaboration 
question because it is a question of a “what happens if…” 
structure which directed the discussion towards “new math-
ematical territory.”

Tal’s question [51] in Episode 3.3 is another example of 
an elaboration question. This is because Tal did not merely 
accept what TG had explained, but challenged her explana-
tion and suggested an alternative course of reasoning.

Overall, Neta’s, Ofek’s and Tal’s questions manifested 
their intellectual independence, analytical skills, highly-
developed hypothetical reasoning and the wish not merely 
to follow TG’s explanation but to assimilate the presented 
proofs into their existing knowledge.

4.4 � Geometry lesson in MC

4.4.1 � Episode 4.1: multiple solutions to a geometry 
problem

After checking the homework, TM handed out a worksheet 
containing Task 3 (Fig. 12).

TM remarked that there was only one way to prove 
Task 3(a) and at least two ways for Task 3(b). The students 
were given 4–5 min to think of the problem. TM circulated 
among the desks and the students asked her questions.

Fig. 10   What if they are parallel lines? Fig. 11   Drawing to the indirect proof of the inverse Thales Theorem
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52. Yossi:	 TG, can I mark the center of the circle? 
Can I mark O and the radius?

53. TG:	 Yes you can.
54. Katya:	 Do I have to mark the center?
55. TG:	 It’s not necessary…
56. TG to Peter:	 Use the square.
57. Peter:	 What does that give me?
58. Katya:	 How do you solve that?
59. TG:	 Using the theorems… Given a square—you have 

to prove that angle AEF is 90°. Think—what do you 
need to prove in order to arrive at 90°?

	 In about 5 min, Moran presented the solution to Task 
3(a) of the problem, as follows:

59. Moran:	 Because angle ADF is an inscribed right 
angle, it relies on the diameter of the circle; thus angle 
FEA relies on the diameter and hence it equals 90°

For Task 3(b), two proofs were found and presented: 
Proof b.1 (Fig. 13) and Proof b.2 (Fig. 14).

Elad explained this proof from his desk, and TM wrote 
the proof on the board. Katya asked to explain the proof 
once more, and the teacher did so.

TM was enthusiastic about this proof and praised the 
student. As in the previous case, she worked near the board 
while the student explained his proof. TM required the stu-
dent to provide justification. The other students required 
additional explanations, and TM answered their questions.

58. Yossi:	 Angle F?
59. TM:	Here, here?
60. Yossi:	 Angle F is also x.
61. TM:	Ah, great, nice. This is also a method.
62. Katya:	 Why?
63. TM:	Explain why. Why? Same rule.
64. Yossi:	 The circumferential angle that leans 

against the hypotenuse is equal.
65. TM:	The angle between the tangent and the hypote-

nuse, this is the hypotenuse [AE]. Where is the circum-
ferential angle that leans on this hypotenuse?

F1, right? If x is here, so here x continues.

66. Katya:	 Why is x there?
67. Yossi:	 And then I made it so that B is 90°.
68. TM:	Yes. So here?
69. Yossi:	 90° – x
70. TM:	And here? 90° − x.
71. Katya:	 Why? Why is this x?
72. TM:	Just a second, we’re…it’s right, very nice. Great 

job. And this method is also very good. And correct. 
Look, if we start by marking x here. This is the tan-
gent, this is the hypotenuse. E is the angle between the 
tangent and the hypotenuse? Hypotenuse, tangent, and 
hypotenuse. Where is the circumferential angle that 
leans on the hypotenuse?

Fig. 12   Task 3—geometry 
problem in MC Task 3 

 is a square. A circle that is tangent to  at point , 
passes through vertices  and  and intersects  at 
point .  
Prove:  (a) °;    (b). ;    (c) 

Proof b.1, by Elad, was as follows:  

 (an angle between the tangent and the 
chord equals a corresponding inscribed 
angle.) 

sum of angles in a triangle

Fig. 13   Proof b1 Task 3 in MC



76 R. Leikin et al.

1 3

For Task 3(c), two proofs were presented as well: Proof 
c.1 (Fig. 15) and Proof c.2 (Fig. 16).

TM tried to organize the discussion so that each student 
could be heard. She was pleasantly surprised, enthusiastic 
and praised the students.

73. TM:	The midline in the trapezoid? This is something 
new!—So, okay. …

74. TM:	Nice, great. I didn’t think of this—good for you! 
Great, good job, good job, nice, I hadn’t even thought 
about this method. …

The other students ask to explain the proof again, but 
this time TM did not encourage them because the lesson 

was nearly over and she was interested in letting Peter pre-
sent the second proof for Task 3(c) (Fig. 16).

Once again, TM was enthusiastic about the proof and 
praised Peter who presented it. The other students wanted 
to show other proofs, but the bell rang. The discussion and 
presentations continued, however, during the break.

4.4.2 � Analysis of Episode 4

The above lesson had the following structure: TM gave 
the students a problem for independent solution—the stu-
dents worked on the problem and consulted TM—Moran 
presented her solution to Tasks 3(a)—Elad presented the 
first proof to Task 3(b)—Katya asked to explain Elad’s 

Proof b.2 was presented by Moran.  

 (because an angle between a tangent 
and a chord equals a circumferential 
angle relying on the same chord). 

  total of the angles in triangle 

  total of the angles triangle 

Therefore 

Fig. 14   Proof b2 Task 3 in MC

Fig. 15   Proof c.1 Task 3 in MC
Proof c.1 was presented by several students who 
enthusiastically spoke out all at once.  

The proof was as follows: 

is a trapezoid 

, because a radius is perpendicular to 
tangent at the tangent point.  

Next, , and thus  is parallel to 
. 

, and thus  is a midline of the trapezoid 
and . 

Fig. 16   Proof c.2 Task 3 in MC Proof c.2 by Peter, was as follows:  

Equal chords correspond to equal 
inscribed angles (see Part (b)),  

Therefore .  

Thus, triangles  and  are 
congruent,  
which concludes the proof: . 
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proof—TM explained—Moran presented her proof—TM 
encouraged the rest of the students to ask questions—
Yossi and Katya asked questions about the proofs and TM 
answered—the first proof to Task 3(c) was presented by 
several students—the other students asked to explain the 
proofs again—TM did not do so because of the time con-
straints—Peter presented the second proof—other students 
wanted to present their proofs and ask questions about the 
presented proofs but the lesson was over.

Overall, different students produced different proofs so 
that the class was exposed to several proofs. TM and some 
of the students became very enthusiastic. However, there 
were also students who expressed their concern that none 
of the proofs was written in an organized way so they antic-
ipated that they would have difficulty at home when trying 
to review the proofs. It should also be noted that TM’s deci-
sion to make room for oral presentation of different proofs 
only by the most successful students left little opportunity 
for the rest of the students to ask questions. Those ques-
tions that were asked anyway were clarification questions, 
either when the students worked on the problem ([52], [54], 
[58]) or when discussing the presented proofs ([60], [64], 
[68], [73]). Despite the lack of time, TM repeated each 
proof to the class several times, but it appeared that some of 
the students were accustomed to receiving a more detailed 
and slower response to their clarification questions.

5 � Discussion

5.1 � Classroom discourse in GC and MC and the 
differences in questions the students asked

This paper presents a part of a larger study that was aimed 
at characterizing teaching and learning mathematics for 
students with high mathematical abilities. We examined 
classroom interactions in two classes of students who were 
motivated to learn mathematics at high level, but differed 
in the level of general giftedness. Specifically, we attended 
to questions that students in two types of classes asked dur-
ing mathematics lessons. Our study demonstrates that this 
research methodology (i.e., focusing on students’ ques-
tions) is effective in the comparative analysis of learning 
process in classes of different types.

Overall, asking elaboration questions was a distinct 
characteristic of the GC students in both algebra and geom-
etry lessons. The students’ elaboration questions expressed 
their need to make sense of the ideas presented by others, 
and to present and discuss their own ideas. These questions 
reflected the students’ curiosity and persistence and con-
tributed to a high level of mathematical discourse.

Sometimes the discourse was truly exploratory (Sfard 
and Prusak 2005). The GC students were unwilling to 

accept a mathematical argument just because “it’s what the 
teacher said.” Some of the students’ questions were unex-
pected by the teacher and required TG to exhibit flexibility 
when managing the lesson (Leikin and Dinur 2007; Leikin 
and Lev 2013). It is also of note that during the discussion 
the students made an effort to formulate their questions 
clearly or reformulate them, so that the teacher and their 
fellow students would understand what they intended to 
ask.

In contrast, the MC students asked mostly clarification 
questions, either in the algebra or in the geometry lesson. 
One of the norms in MC was that the students could ask 
very basic questions and the teacher patiently responded 
to these questions, even in cases when the questions led 
her to repeat what had already been explained. TM treated 
all the students’ questions with respect, but it was evident 
that she was the exclusive mathematical authority. She 
decided what was true or not true, which method was the 
most appropriate for solving a problem, and when it was 
best to solve a problem using different methods. Further-
more, the students worded their clarification questions in 
a rather vague and general way (e.g., “Why?”, “I didn’t 
understand”, “How did we solve this?”, “Again”, “What?”). 
On the one hand, this observation implies that the students 
trusted TM to be able to understand them, but on the other 
hand, it implies that the culture of asking questions was 
not well-developed in MC. Probably as a result of vague 
questions, TM’s responses to the students were also quite 
general. As a rule, she repeated the complete explanations 
of the solution methods. Overall, the students’ questions 
in MC were not especially helpful for raising the level of 
discourse and, as a rule, did not trigger the emergence of 
new ideas or arguments. The discussions based on the stu-
dents’ questions revolved mainly around problem-solving 
techniques.

An additional difference between the classes was related 
to who eventually answered the questions. In both classes, 
most questions were directed to the teacher. However, in 
GC some of the questions to the teacher were redirected 
by her to the whole class. In this way, the class became 
actively involved (e.g., by providing examples and counter-
examples) in answering. In MC, the teacher answered the 
students’ questions even in the cases when the questions 
concerned the solutions suggested by fellow students. In 
this class the teacher was usually in a dialogue with a par-
ticular student, and the rest of the students could not always 
follow the dialogue.

Finally, there are differences between GC and MC 
related to the use of multiple proofs and explanations. In 
GC the approach of presenting different methods and 
explanations was especially prominent in the algebra les-
sons and slightly less so in the geometry lessons. In MC 
the opposite was true. In the geometry lessons the approach 
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of providing different proofs for problems was very promi-
nent, whereas in the algebra lessons the teacher preferred 
the students to solve problems in one specific way.

5.2 � Where do the between‑class differences come from?

We cannot predict what would happen if the teachers were 
to switch classes. Even so, the data enable us to suggest 
that some of the described differences are student-depend-
ent, content-dependent and teacher-dependent.

An expression of student-dependent differences between 
mathematical discourse in GC and MC is associated with 
asking elaboration vs. clarification questions presented 
above. Students in GC clearly exhibited mathematical curi-
osity, persistence and originality of mathematical thought 
when asking questions that were related to, but not neces-
sarily based on, the material that was presented to them. 
Note here that a combination of creativity, persistence and 
high achievements fits Renzulli’s (1986) definition of gift-
edness and thus the revealed difference in asking elabora-
tion questions vs. clarification questions can be considered 
a student-related characteristics of the discourse in GC. 
Moreover since curiosity is considered a special character-
istics of individuals with high intellectual potential (Davis 
and Rimm 2004), we argue that students’ innate curiosity 
enhances the exploratory nature of mathematical discourse, 
while the open type of instructional interaction promotes 
their curiosity (Knuth 2002). Leikin and Lev (2013) and 
Leikin, Waisman, and Leikin (2016) demonstrated that a 
special characteristic of generally gifted students who study 
mathematics at high level is mathematical insight. Curios-
ity and insight can lead to elaboration questions and ideas 
that a teacher may have overlooked in the lesson planning.

An expression of content-dependent differences related 
to observed classroom interactions can be seen in the dif-
ferences between the MC geometry and algebra lessons. 
Each lesson was conducted in the same class of students 
by the same teacher. While in geometry, the teacher opened 
the stage for presentation of different solutions to the prob-
lems, in the algebra lesson she led the students towards 
one, safe [in her view] solution method. We find these 
differences intriguing and plan to conduct a systematic 
study aimed at documenting and explaining differences in 
instructional interactions in algebra and geometry lessons 
conducted by the same teachers.

An expression of teacher-dependent differences can be 
seen, for instance, in the differences between instructional 
interactions in both algebra and geometry lessons con-
ducted by each of the two teachers. It is worthwhile recall-
ing that TG and TM were appreciated by their colleagues 
and principles as expert teachers and that both had more 
than 10 years of experience teaching mathematics at high 
level. Both teachers were attentive to students’ ideas and 

encouraged them to ask questions. However, the differ-
ences in teachers’ styles are apparent.

TG was ready to change her lesson-plan spontaneously, 
and to enter into mathematical territory that was new for 
her (e.g., TG clarifying question [11], her readiness to dis-
cuss the concept of “semi linear” function [episode Y], 
and discussion on the justification of why the two lines in 
Thales’ theorem are not parallel [Episode 3.3]). We assume 
that while TG’s openness to students’ ideas allowed stu-
dents to raise these kinds of ideas, students’ ability to move 
to new mathematical territory allowed the teacher to exhibit 
her flexibility in teaching, and her sensitivity to students.

TM encouraged her students to produce multiple solu-
tions to the problems and to ask “any question”. At the same 
time, once different solutions were presented, and even 
when TM was excited about students’ solutions, she felt the 
need to act as an evaluator (e.g., [61]), and she directed the 
students to a simpler solution (e.g., [32], [35]). We hypoth-
esize that this characteristic of TM’s work was determined 
by her feeling of responsibility for the students’ success. An 
additional teacher-dependent difference between TG and 
TM was that TG encouraged student-to-student commu-
nication, and TM did not. Rather than promoting students’ 
answers to students’ questions, TM responded herself and 
frequently repeated what had already been explained.

We see the differences between teachers’ styles as the 
main study limitation. As mentioned, we cannot predict 
what would happen if the teachers were to switch classes. 
However, since both teachers’ were sensitive to the stu-
dents’ needs, we suggest that if TG and TM would indeed 
be switched, they would adapt their teaching styles to the 
students’ characteristics.

In summary, we argue that while classroom interactions 
reflect complex relationships between teaching, learning 
and the content taught and learned, our study enables us to 
suggest that general giftedness adds meaningfully to class-
room discourse.

We believe that our study opens directions for further 
studies that will be aimed at the analysis of teaching and 
learning for mathematically promising students who are 
motivated to study high-level mathematics, but differ in 
their level of general giftedness, and who study in different 
types of classes. We hope that these studies would eventu-
ally reach unequivocal recommendations as to the ways that 
best suit the needs and learning styles of mathematically 
promising students with different additional characteristics.
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