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1 Introduction

The Twentieth Century can be characterised by a didactic 
approach to pupil error (see Goupille & Thérien, proceedings 
CIEAEM39 1987) and a perspective that views some errors as 
consequences of epistemological obstacles (Brousseau 1997). 
Since then, some researchers have treated the transition from 
arithmetic to algebra as a cognitive obstacle, promoting a char-
acterisation, on the one hand, of arithmetic thinking (e.g., Ver-
schaffel & De Corte 1996) and algebraic thinking (e.g., Kieran 
2007) on the other. In order to move from one type of think-
ing to another, a cognitive obstacle, a didactic cut, must be 
surpassed (Filloy & Rojano 1989; Herscovics & Linchevski 
1994; Vergnaud 1988). This passage from one type of thinking 
to another was thus characterised as problematic.

Some researchers have thought that characterising 
the structure of arithmetic problems and proposing a bet-
ter approach to problem solving would produce a better 
approach to teaching and learning algebra. Thus, Vergnaud 
(1990), with his “theory of conceptual fields”, focused 
strictly on pupils’ problem-solving performance, with the 
work of Bednarz and Janvier (1996) also aligned with the 
same line of thought.

By the early 1990s, an alternative approach had been 
suggested, with Lee and Wheeler (1989) reporting that 
“introducing algebra to beginning pupils as ‘generalised 
arithmetic’ may be a sensible strategy, but there are dis-
tinct pedagogical difficulties to be faced if it is adopted” 
(p. 41). Some years later, two chapters were included in 
the book “Approaches to Algebra” by Bednarz, Kieran and 
Lee (Eds. 1996), as part of a discussion of the importance 
of addressing the generalisation of arithmetic to tackling 
algebra (Mason 1996; Lee 1996). The clarification in Rad-
ford’s analysis (1996) of these two chapters enables a better 
understanding of a generalisation process:
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The above discussion suggests that the algebraic con-
cepts of unknowns and equations appear to be intrinsi-
cally bound to the problem-solving approach, and that 
the concepts of variable and formula appear to be intrin-
sically bound to the pattern generalization approach. 
Thus generalization and problem solving approaches 
appear to be mutual complementary fields in teaching 
algebra. How can we connect these approaches in the 
classroom? I think this is an open question. (p. 111)

Following this train of thought, Wille (2008) stresses the 
important work undertaken in Germany by Malle (1993) 
with respect to the notion of the variable.

In summary, three trends were emerging at that time:

1. Researchers wish to create in pupils a cognitive struc-
ture related to stronger mathematical thinking based on 
problem solving (Carpenter, Ansell, Franke, Fennema 
& Weisbeck 1993; Vergnaud 1990; Verschaffel, & 
De Corte 1996). Their work is rooted in a tradition 
established from the work of Brownell (1942, 1947) 
onwards that is based on solving arithmetic word prob-
lems.

2. Researchers focus on the paradigm of the cognitive 
obstacle related to solving equations (Filloy & Rojano 
1989; Herscovics & Linchevski 1994; Kieran 2007; 
Vergnaud 1988), an approach which leads to a clear 
distinction between arithmetic and algebraic thinking.

3. Researchers opt for an approach around a generalised 
arithmetic that permits an approach to algebraic think-
ing (Kaput 1995; Lee & Wheeler 1989; Lee 1996; 
Mason 1996).

In his seminal work, Kaput (1995, 1998, 2000) proposes 
a new paradigm consisting of the 5 components that char-
acterise algebraic thinking, stressing the important role of 
the first two components as the core of this new approach:

1. (Kernel) Algebra as generalising and formalising pat-
terns and constraints, especially, but not exclusively, 
Algebra as Generalised Arithmetic Reasoning and 
Algebra as Generalised Quantitative Reasoning,

2. (Kernel) Algebra as syntactically-guided manipulations 
of formalisms,

3. (Topic-strand) Algebra as the study of structures and 
systems, abstracted from computations and relations,

4. (Topic-strand) Algebra as the study of functions, rela-
tions and joint variation,

5. (Language aspect) Algebra as a cluster of (a) modelling 
and (b) Phenomena-controlling languages (2000, p. 3).

This new paradigm emerged in the late Twentieth Cen-
tury in the United States is characterised by the Early 

Algebra movement which centred, from a pragmatic point 
of view, on the algebraic tasks that can be undertaken in 
an elementary school math class. Given the weight of con-
temporary research conducted on this approach, perspec-
tives on this subject began to differentiate (see Cai & Knuth 
2011). Regarding arithmetic and algebraic thinking, Rad-
ford (2011, p. 304) states that “…the idea of introducing 
algebra in the early years remains clouded by the lack of 
clear distinction between what is arithmetic and what is 
algebraic”. On the other hand, Lins and Kaput (2004), as 
spokesmen for the Early Algebra group, characterise their 
movement as:

Early algebra is that an algebrafied elementary math-
ematics would empower students, particularly by fos-
tering a greater degree of generality in their thinking 
and an increased ability to communicate that general-
ity. (p. 58)

As part of an ICME working group (2004), these 
researchers began to oppose other researchers by saying 
that, in the past, “sad stories” were told about pupil perfor-
mance (centred on error analysis and cognitive obstacles). 
They go on to say that we can now speak of “happy stories” 
by presenting the results of what primary school pupils are 
able to achieve (e.g., Carpenter & Franke 2001; Blanton & 
Kaput 2011; Britt & Irwin 2011; Schliemann, Carraher & 
Brizuela 2012), and these results demonstrate the boundless 
enthusiasm of this group. Carpenter et al. (1993) report that 
pupils are capable of solving complex word problems. How-
ever, research by the Early Algebra Group that followed the 
learning path to functions (Schliemann, Carraher & Brizuela 
2012) show some precipitation by introducing algebraic 
notation in elementary school in order to develop mathemati-
cal content. They conclude: “The 5th grade lessons focused 
on algebraic notation for representing word problems, lead-
ing to linear equations with a single variable or with varia-
bles on both sides of the equal sign” (p. 115). Thus, research-
ers such as Cooper and Warren (2011) argue that:

The results have shown the negative effect of closure 
on generalisation in symbolic representations, the 
predominance of single variance generalisation over 
covariant generalisation in tabular representations, 
and the reduced ability to readily identify common-
alities and relationships in enactive and iconic repre-
sentations. (p. 187)

The position taken by this study is different from that 
described above. Instead of separating arithmetic from 
algebraic thinking and focusing on that which distin-
guishes them, this study proposes the construction of a 
cognitive structure that enables an articulation between 
these two kinds of thinking. For example, knowing that 
pattern-related generalised thinking has proven fruitful 
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in elementary school (Radford 2011), this study relies on 
generalised arithmetic. This acts as a driver for the con-
struction of the sign that is specific to mathematical think-
ing, and can help in the construction of algebraic thinking. 
This study proposes the development of a type of thinking, 
named here as arithmetic-algebraic thinking.

Eco (1992) argues that it is the process of constructing 
the sign that matters, not the sign per se. In terms of learn-
ing mathematics, Radford’s theoretical approach (2003) 
proposes the process of objectification in the construction 
of the sign. This process specifies the concept of the “semi-
otic means of objectification” and gives importance to the 
manipulation of objects, drawings, gestures, and the use of 
linguistic categories, analogies, metaphors, etc. as a part of 
the objectification process.

From this perspective, and taking into account the notion 
of Mathematical Work Space (MWS) proposed by Kuzniak 
(2011), this study seeks to stress the importance of charac-
terising what could be called arithmetic-algebraic thinking 
(A-AT). This may shed light on the arithmetic process, as 
well as the visual-arithmetic, visual-algebraic, and purely 
algebraic approaches and, most important here, their inter-
actions. Taking a socio-cultural approach to learning math-
ematics (Hitt 2013), this study proposes an analysis of 7th 
grade pupils’ production in an A-AWS when solving a 
mathematical task.

From this new perspective, this study seeks to explore 
the possibility of building a cognitive structure that allows 
the articulation between arithmetic and algebra. This artic-
ulation should enable naturalistic actions related to arith-
metic and visual-arithmetic processes, their transformation 
into algebra, and vice versa. The choice explored here is 
thus based on a natural approach, rather than a “cut” or 
“cognitive obstacle” approach, as has been the case in the 
past.

This study uses paper and pencil (Saboya, Bednardz 
& Hitt 2015; Hitt & González-Martín 2015), follows task 
design (Prusak, Hershkowits & Schwarz 2013), and takes 
a technological approach to the task (see Hitt & Kieran 
2009). It therefore, makes equal use of paper/pencil and 
technology.

2  The use of MWS as a frame to organise the 
construction of arithmetic‑algebraic thinking 
(A‑AT) in an A‑AWS

Since Kuzniak presented his theoretical foundations for the 
building of an MWS in 2011, his model has been evolv-
ing over time, and has been applied to subjects other than 
geometry. This study focuses on both the construction of 
the sign and functional representations (Hitt 2013) in both 
mathematical activity and the construction of an A-AT. 

Researchers chose an approach that, rather than trying to 
impose the sign as in Carraher et al. (2006) and Schliemann 
et al. (2012), focuses on building a rich cognitive structure 
(A-AT) which intersects broadly with arithmetic and alge-
braic thinking (see Fig. 1). From a classical point of view, it 
would be possible to have two cognitive planes, one related 
to arithmetic thinking and the other to algebraic thinking, 
and, in general, focus on one learning direction—from 
arithmetic to algebra. The hypothetical cognitive plane in 
this study demands an articulation between arithmetic and 
algebraic thinking (see Fig. 1). Moreover, this approach 
uses Duval’s concept of visualisation (2003):

Visualize is to produce a representation that, in 
the absence of any visual perception of the objects, 
allows to look as if they were really in front of your 
eyes… (p. 49).

This adaptation of Kuzniak’s model (2011) takes the fol-
lowing into consideration:

•	 A semiotic genesis related to visualisation and the pro-
duction of representations;

•	 An instrumental genesis related to the constructions 
determined by the instruments used (paper, pencil, 
Excel, the Poly applet, etc.);

•	 A discursive genesis determined by the pupils’ anticipa-
tions, verifications, error perceptions, sensibility to con-
tradictions, reflected commitment, and a clear strategic 
choice (discernment).

Previous studies (Saboya 2010; Saboya et al. 2015) 
focused on those aspects mentioned in the third part of the 
previous paragraph, regarding what is known as cognitive 
control when related to validation processes.

The structure of the A-AWS enables an analysis of 
pupils’ production and provides an explanation of pro-
gress made in building an A-AT. Thus, in the 1st stage of 

Fig. 1  The A-AWS after the adaptation of Kuzniak’s model (2011)
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the experiment, semiotic genesis occurs based on visual 
and numerical representations (construction of operational 
schemas related to the representations) in a pencil and 
paper environment. It is in the 2nd stage where the pro-
cesses of instrumental genesis (construction of schemas 
related to the work with Excel, Poly, and paper and pen-
cil environments) is able to help with the activity of gen-
eralization and the connection to early algebraic thinking 
linked to the notion of the variable (unknown) and the pos-
sibility of constructing algebraic expressions, again under 
the process of objectification that does not necessarily 
produce institutional algebraic representations. Accord-
ing to the A-AWS model in the context of this collabora-
tive learning project, discursive genesis related to valida-
tion (pupils at this school level do not know about proof) 
is mainly promoted via team members and large group 
discussions.

Another important aspect is that, in this research, pen-
cil/paper and technological artefacts are essential (Excel 
and the Poly applet), as the use of these artefacts strongly 
depend on the development of activities that include tech-
nology. The notions of institutional representation and 
functional representation are introduced here. These are 
concepts which, at first glance, could be confused with the 
“idoine ETG” (Appropriate Geometrical Working Space, or 
GWS) and “personnel ETG” (personal GWS) notions pro-
posed by Houdement and Kuzniak (2006), but are in fact 
very different (see below).

Kuzniak (2011) refers to Duval’s theoretical framework 
on the notion of the register of representation, which gives 
priority to institutional representations (Hitt 2006). In this 
document, one of ours goals is to show the importance of 
the spontaneous representations in the mathematical activ-
ity. Spontaneous representations are not necessarily insti-
tutional representations, and may not belong to a register. 
Therefore, under this approach, the work carried out by a 
pupil or group of pupils based on spontaneous representa-
tions could be set aside as unimportant.

This paper seeks to present an alternative approach 
based on the role of spontaneous and institutional represen-
tations as defined by Hitt (2013):

•	 Institutional representation: “representations found in 
textbooks or on computer screens, etc.” (p. 10)

•	 Functional representation: “… mental representation 
that emerges when facing a non-routine mathematical 
activity, which is expressed by a representation [sponta-
neously] linked to action.” (p. 13)

This study posits that non-institutional representations 
emerge naturally in the process of solving a complex math-
ematical task. Thus, researchers sought to follow the path 

through which pupils use icons, arguments, and arithmetic 
representations mixed with algebraic representations in the 
process of building the sign-function before arriving at the 
symbols in one or more register of representations—the 
construction of the sign in a process of objectification, as in 
Radford’s (2011) work.

Another aspect of our research, as noted above, is 
related to the use of technology. In this sense, in the MWS, 
artefacts and the notion of instrumental genesis are taken 
into account (Kuzniak 2011, p. 21) in the design of the 
task (Hitt & Kieran 2009; Prusak et al. 2013). Finally, as 
the study is also interested in the problem of the fragility 
of knowledge (Thompson 2002; Karsenty 2003) in the con-
struction of mathematical thinking, researchers considered 
it important to use a collaborative learning-teaching meth-
odology named ACODESA (Hitt 2013; Hitt & González-
Martín 2015) with the intention of enhancing the knowl-
edge built into the resolution of these activities.

3  Research questions

The general research question for this study is how to 
develop a cognitive A-AT structure as an articulation 
between arithmetic thinking (AT) and algebraic think-
ing (AT). More specifically, the study looks at promoting 
another view about the transition from arithmetic to algebra 
and to ascertain the contribution of technology to the devel-
opment of A-AT structure. As an intermediate goal, we are 
promoting spontaneous representations that will support 
the transition from visual to the construction of the sign 
related to generalization and algebraic representations that 
permit pupils to calculate any triangular number and any 
pentagonal number.

4  Methodology

The methodological approach employed in this study is 
based on activity theory (see Hitt 2013; Hitt & González-
Martín 2015), which integrates such aspects of a mathemat-
ics class as collaborative learning, debate and self-reflection 
(ACODESA). The methodology is comprised of 5 stages:

1. Individual work. Individual work initially aims to pro-
vide pupils with the opportunity to represent the prob-
lem or problem situation themselves, on an individual 
basis, before moving on to the team discussion (see 
Fig. 2). The functional representations (most likely unre-
lated to the institutional representations) often appear at 
this stage, and, through them, pupils produce an external 
representation that allows them to take action.



779An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking:…

1 3

2. Teamwork. The interaction between pupils has the pur-
pose of enriching the individual approach developed in 
the first stage. Usually, it is here where the process of val-
idation begins (Fig. 2), as does the work of refining the 
functional representations in a process of communication 
which must be materialized in the productions of institu-
tional representations via this process of communication.

3. Debate (with the possibility of promoting scientific 
debate). The results achieved by different teams are 
weighed and discussed by these teams in order to arrive 
at conviction and consensus. Again, a non-institutional 
representation refinement process appears regularly 
at this stage. It is common for pupils to express their 
agreement during a large group discussion.

4. Self-reflection. The individual reconstruction of knowl-
edge that emerged in team and large group discussion 
is an essential step in the promotion of abstraction in 
the pupils. Researchers took into account the fact that, 
as consensus in mathematics class can be ephemeral 
for some pupils, it is therefore important to return and 
rebuild what had been undertaken in class.

5. Institutionalisation of knowledge. At this point, the 
teacher summarizes what the pupils have produced and 
oversees the efficient use of institutional representa-
tions (see Fig. 2).

This methodology was applied to two populations (this 
paper is restricted to the Quebec population):

A. In Quebec, with 13 pupils from the 7th grade at sec-
ondary school. Two researchers conducted the experi-
ment, and

B. In Mexico, with 14 pupils from the 9th grade at sec-
ondary school. The teacher and a researcher conducted 
the experiment.

From the Quebec population, only 13 pupils agreed to 
participate in the experiment, which comprised two ses-
sions in an extra class (2 and a half hours), an interview and 
one session dealing with individual reconstruction (for 1 h, 
45 days after the experiment). The pupils knew how to use 
Excel. In the first session, an introduction to Excel related 
to the resolution of two word-based arithmetic problems 
was planned. One of the researchers conducted the pres-
entation, and the other filmed it, while, in the second part 
of the experiment, the researchers swapped roles. Only one 
computer was permitted to be used by each team.

5  A priori analysis

In the past, research was conducted on activities dealing 
with polygonal numbers in technological environments at 
different levels in secondary schools, and with teachers. 
Healy and Sutherland (1990), in a technological approach 
activity related to Excel and polygonal numbers, report 7th 
grade pupils’ production related to the expression “trig. 
Δn = na before + position”, and explain that, in order to 
find a triangular number, one simply has to add their posi-
tion to the previous triangular number. This production can 
be classified as a spontaneous representation that emerges 
from a nonordinary activity. Hitt (1994) criticises this 
approach, saying that pupils will not “move” to algebra if 
they remain in a purely technological environment such as 

Fig. 2  ACODESA based on Engeström’s activity theory model
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Excel. In both studies, a tendency to move as quickly as 
possible to the algebraic representations can be observed.

This study focuses on the mathematical task, as defined 
by Prusak et al. (2013) and Hitt and Kieran (2009), that pri-
oritises a sociocultural approach to the co-construction of 
knowledge, the production of functional representations, 
and external production (spontaneous representation) asso-
ciated with the task.

The experiment conducted in Quebec (for the Mexican 
experiment, see Cortés, Hitt & Saboya 2014) presented 
two preliminary word problems—first in a paper–pencil 
environment, and then using Excel, in order to familiar-
ise pupils with the use of the program. The second part of 
the experiment consists of the main activity with triangu-
lar numbers, beginning with a brief history to present the 
origin of polygonal numbers. The five first questions were 
designed to promote the development of spontaneous rep-
resentations by the pupils and the evolution, through col-
laborative work, into institutional representations related to 
triangular numbers, for example Tn = n(n + 1)/2. At the 
time of the experiment, the pupils had not yet discussed 
with their teacher the chapter on generalisation activities 
based on number series. The following section focuses 
on the analysis of the second part of the activity, which is 
related to triangular numbers.

6  Presentation of the activity

After a brief explanation of the discovery of polygonal 
numbers, a triangular numbers activity was suggested to the 
pupils, first with paper and pencil (see Fig. 3), in accord-
ance with the ACODESA methodology (Fig. 2), and then, 
using technology (see Figs. 4, 5). 

7  A posteriori analysis (Quebec population)

7.1  Individual work (step 1 ACODESA)

As mentioned in the previous section, before pupils com-
pleted this activity, two verbal problems were presented 
in the pencil/paper and Excel environment. The purpose 
of this first step was to remind pupils how to use Excel 
(researcher R1). By the beginning of the second part of 
the activity, the pupils were already well familiar with the 
Excel environment. To solve the first two problems (see 
Fig. 3), researcher R2 asked pupils to work individually 
using paper and pencil. Figure 6 shows an example of the 
work of a pupil who demonstrates and explains how she 
proceeded to find the fifth triangular number (Question 1, 
see Fig. 3).

It can be seen that the pupil lacks cognitive control (Sab-
oya 2010; Saboya et al. 2015) over the passage from an 
institutional representation to the visual production of T5. 
Indeed, in the representation of it, each of the three col-
umns from the center is represented by four “rounds” (in 
the pupil’s own words) when they should be constituted, 
respectively, by four, three, two and one “round”. How-
ever, the pupil’s verbal representation explains a general 
procedure, giving a generic explanation referring to any tri-
angular number (an example of early algebraic thinking). 
Furthermore, there is a mismatch between the procedure 
related to natural language and the action when drawing the 
representation, this lack of control over figural representa-
tions was present in others copies.

At this stage, this pupil (as well than others) has not con-
structed a cognitive structure that would enable him/her to 
articulate the different representations related to the task, 
or to use the arithmetic approach as a temporary cognitive 

1) Look carefully at these numbers. What is the fifth triangular number? Make a representation. Explain 
how you proceeded.  

2) In your opinion, how are the triangular numbers constructed? What do you observe?  

3) What is the 11th triangular number? Explain how you find it.  

4) You have to write a SHORT email to a friend describing how to calculate the triangular number 83. 
Describe what you would write. YOU DO NOT HAVE TO DO THE CALCULATIONS!  

5) And to calculate any triangular number, how do you calculate it (we still want a SHORT message 
here)?

Fig. 3  The first five questions about the activity (paper and pencil)
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structure and as a step to construct an algebraic approach to 
the situation.

Three aspects, then, are noteworthy for the construction 
of A-AT (Arithmetic-Algebraic Thinking), which this study 
seeks to promote:

(a) An evolution of his/her spontaneous representations to 
the institutional representations, taking into account a 
learning approach in a socio-cultural milieu.

(b) Development of a cognitive control schema, as described 
in the theoretical section, based on the mathematical 
visualisation process and the discovery of relationships 
between numbers associated with each triangular number.

(c) A generalisation process. The task design of the activ-
ity was intended to promote different kinds of gener-
alisations: visual, verbal, arithmetic, and algebraic, and 
most importantly, the articulations among them.

The first question (see Fig. 3) sought to force pupils to 
undertake a task analysis from a visual perspective and 
to undertake a figural production, that is, to continue the 
series that began with the first four triangular numbers that 
were presented. However, the intention behind asking them 
to build T11 (the 11th triangular number, see Fig. 3, Ques-
tion 3) was to provoke a change in the register of represen-
tation. The idea is that pupils should not continue to draw; 
instead, they should change the register in order to consider 
generalisation in an arithmetic or algebraic register, or with 
their own spontaneous representations. The spontaneous 
pupil representations obtained were surprising. With regard 
to the second stage of the methodology, pupils were placed 
in teams, and there were four teams in total. The pupils’ 
productions on the blackboard are presented below. The G3 
group reported that they made similar representations to the 
G1 group.

th 7th th

th

rd

th

he calculat

Fig. 4  Teamwork task for using technology

Fig. 5  Task for teamwork using 
paper/pencil and technology 
(optional)

Polygonal numbers (Third part) 
a) As you know, we have here some figural representations of triangular numbers. 

Find a formula to calculate any triangular number. You can use technology if necessary.  
OPERATIONS 

Summarizing: rule, generalization or formula 

 Using your results, calculate the following triangular numbers. 
eulavtnednopserroCnoitisoP

01ralugnairT
02ralugnairT

  With your formula, can you calculate the triangular 120? 
   Triangular 120 = _____________ 
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7.2  First case: group 1 (G1)

To calculate T11, the G1 group used their iconic representa-
tions for the first three triangular numbers and, in a semi-
otic genesis, they switched to the arithmetic register. This 
approach can be classified as a visual arithmetic promoted 
by a semiotic genesis (see the A-AWS model in Fig. 1). In 
the given arithmetic expression, we can see that the pupils 
were visualizing a relationship between each triangular 
number, which is bound to increase by one (“the number 
of balls”) in the vertical column or horizontal row from the 
previous triangular number (Fig. 7).

7.3  Second case: group 2 (G2)

In this group (G2), a double abstraction process was put 
in place based on a visual-arithmetic strategy (Fig. 8). 

There is “one generic abstract triangle” that is applicable 
to “any triangular number” (semiotic genesis, following the 
A-AWS model). The construction of the previous triangles 
has not been used in this strategy. Researchers began with 
the number related to the side of the triangle associated 
with the requested triangular number and then decreased by 
one each time, thus generating an arithmetic expression.

7.4  Third case: group 4 (G4)

A pupil in the G4 group (to whom we refer as pupil G4-1) 
said that the representation on the left-hand side was pro-
duced in his group (Fig. 9). While giving his explanation, 
he suddenly changed his approach, presenting a more con-
venient notation based on a process of iteration. In fact, this 
pupil produced a visualisation process and a transformation 
of the sign-function, in accordance with Voloshinov (1973), 

A T5

s or

T

are

Fig. 6  Individual work, visual representation of “T5 = 15”

Fig. 7  Visualisation process 
and arithmetic production Iconic representation and numbers Arithmetic representation related to 

visualisation and generalisation processes

1+2+3+4+5+6+7+8+9+10+11
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Eco (1992) and Radford (2003). Moreover, if we take these 
two representations into account, one next to the other, we 
are faced with a non-institutional spontaneous representa-
tion, as described by Hitt (2006).

Once T11 was found, the researcher (R2) asked all the 
pupils to explain how to calculate T83 (Fig. 10).

In this dialogue, we believe that the intervention of R2 
is fundamental. Pupils with a strategy that can work to 
calculate any triangular number were asked to designate 
“until your number.” The “question mark” seems natural 
for pupils. R2 then asked if everyone agreed, a question 
which led pupils to propose the use of the letter “x” and 
then “y”. The researcher finally asked if she can use a heart 
(see Fig. 11). It should be noted that these pupils had used 
an empty box to denote missing terms in equalities in pri-
mary school. At the end of his speech, R2 asked pupils how 
to write the “penultimate number” and “before the penul-
timate number”. Pupils then selected the question mark 

as a symbol and declared “question mark minus one” and 
“question mark minus two” (Fig. 11).

At this early stage of the experiment, it can be seen that 
classroom communication is promoting semiotic genesis (see 
Fig. 1) and visualisation processes. Moreover, communica-
tion in the mathematics classroom promoted the evolution of 
the pupils’ spontaneous representations in a process of mean-
ing as described by Radford (ibid.). As mentioned above, the 
work conducted so far is based on pencil and paper.

Subsequently, R2 announced that she is able to calculate 
any triangular number by carrying out three operations:

[…] I tell you that in three shots, I give you your 
number. Whatever number you want, in three opera-
tions I can find it for you…

This assertion, as we shall see, challenged the pupils. 
They returned to work individually and in teams (following 
ACODESA), but this time using technology.

Fig. 8  Visual process, abstrac-
tion and arithmetic production

Arithmetic representation 

11+10+9+8+7+5+4+3+2+1

General iconic representation

Fig. 9  Visualisation process, 
visual production and symbolic 
notation related to an iterative 
processs

Iconic representation Iterative representation

Fig. 10  Construction of sign in 
a communication process in the 
mathematics classroom

Dialogue between pupils and R2 noitaterpretnI
G4-1: You add 1+2+3+4+5+6 etc., until you arrive at your 
number. Ben then the answer is the ... your answer is the 
triangular number. 
R2: Okay. So there I would do 1 + 2 + 3 + ... 
Pupil 1: ... 4 + 5 + 6 ... 
R2: up to my number. 
G4-1: etc, until your number. You add up all that and what 
it gives you is your triangular number. 
R2: How will I write my number I do not know? 
G4-1: Question mark? 
R2: Question mark? Do you all agree? Yes? That's going to 
be my number I do not know? 
Pupil 4: Plus x. 
Pupil 3: Yes x plus? 
R2: x? Do I put something else? Yes? (Points at pupil) 
Pupil 4: Ben any letter. 
R2: Any letter, yes. There? A heart? Can we put a heart? 
G4-1: We can put anything that is not a quantity. 

Addition of 1 + 2 + 3 + ... + 83 

Pupils describe the last number in words. 
R2 repeats the question and the pupils repeat their 
answer. 

R2 expresses the issue more directly. 
The pupils propose several symbolisms without a 
problem, starting with "question mark" (?), "x", "y".  
R2 then proposes a heart which does not disturb the 
pupils.  

Pupils are in a process of constructing the concept of 
the variable, as described by Malle (1993) and Wille 
(2008).



784 F. Hitt et al.

1 3

In our methodology, collaborative work is very impor-
tant. The evolution of the functional representations related 
to spontaneous representations and their products follow a 
natural path with institutional representations not imposed 
by the teacher. This approach shows that following ACO-
DESA (see Fig. 2) promotes the construction of signs 
through semiotic, instrumental and discursive genesis in 
accordance with Kuzniak (2011) and Voloshinov (1973), 
in a process linked to Eco’s notion of sign-function (1992) 
and Radford’s (2003) process of meaning. As noted above, 
pupil G4-1 convinced the two girls on his team to drop 
their drawing process and move to a more efficient repre-
sentation. There was a “consensus” within the team, even 
if the girls had difficulties articulating the visual with the 
iterative process (see Fig. 12).

This research focuses on building a stable consensus that 
should be converted into knowledge. According to Thomp-
son (2002) and Hitt and González-Martín (2015), the con-
sensus is ephemeral for some pupils, a point to which this 
paper will return.

7.5  Teamwork—second and third stage of the activity 
with technology

During the resolution of this second stage of the activity, 
a G4 pupil asked R1 whether to wait for the group to con-
tinue, as his team were further ahead in their reflections 

(see Fig. 13). In response, R1 encouraged him to continue 
with the third part of the activity (see Fig. 5).

A few minutes later, the pupil completed his question-
naire with an arithmetic approach (see Fig. 14). This relates 
to the calculation of T83: adding 1 to 83, dividing by 2 and 
multiplying the result by 83 to get 3486.

Several minutes later, pupil G4-1 said he found a strat-
egy and described the strategy by giving an example, T101 
(a “generic example” as described by Balacheff 1987), 
which he obtained by adding 1 to 101, dividing the sum by 
2 and multiplying the result by 101. R1 told him to try his 
strategy with T100, to which the pupil replied: “Whatever 
you want!” Then he added 1 to 100 and divided the sum by 
2. The pupil stopped suddenly, saying: “Oh, we arrive at a 
‘decimal number’!” He then headed towards a girl (a team 
member) and asked, “Does it make sense with a decimal 
number?” R1 then asked them to discuss this whole strategy 
and to check using POLY. It was after this discussion that 
pupil G4-1 added the part on the left-hand side of Fig. 14. 
The steps produced by the pupil in order to calculate T100 
can be observed, where he added 1 to 100, divided the sum 
by 2, and designated the result as “x”, which was then sub-
sequently multiplied by 100 in order to find T100. This last 
expression is the product of the three-fold genesis, accord-
ing to the A-AWS model.

When R1 asked the pupil to find T100, he reached a 
decimal result (100 + 1)/2 and stopped, thinking that 

Fig. 11  Different stages in a 
sociocultural learning environ-
ment in the construction of a 
symbol

Fig. 12  Lack of control over 
the drawing process, but effec-
tive use of the iterative process 
proposed by one G4 team 
member
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something was wrong. Subsequently, pupils used Poly 
to check his conjecture and realized that his strategy had 
worked (Fig. 15).

7.6  Large group discussion

This point in the activity took place just minutes before the 
end of the period allotted for the experimentation. R2 then 
began a large group discussion and pointed to pupil G4-1, 

who raised his hand to indicate his desire to approach the 
blackboard (Fig. 16).

When the pupil was at the blackboard, he chose T46 
and found the result. He was convinced that his strategy 
worked. When R2 asked him to explain how he found 
the algorithm, he mentioned that it was with T83 and T84 
(results he found using Excel). He did not specify to the 
other pupils in the large discussion group that he had 
checked his conjecture using Poly. Fifteen days later, in a 
separate interview, the boy said that it was the Poly applet 
that enabled him to find the relationship.

In summary, we can say the following:

•	 The pupil, using a semiotic, instrumental and discur-
sive genesis, found an arithmetic relationship with 
Excel,

•	 The pupil was motivated to seek a relationship between 
a triangular number and its term (which G4-1 men-
tioned in an interview). When G4-1 divided T83 = 3486 
by 83, he obtained 42, and realised that the result was 
half of 84. Surprisingly, in a reverse process, he arrived 
at (83 + 1)/2 = 42 and 42 × 83 = 3486 = T83. We 
can say that the pupil has articulated arithmetic, with 
early algebra promoting a process of thinking (A-AT) 
in accordance with our model (Fig. 1).

R :

G4-1. Do you prefer to do it like this [like the 
examples in Figure 5] or like that [as he did in 
Figure 7]?  

G4-3/G4-2. Ah well ...  
G4-1. Ah well. Look, give that up!  
G4-2. I do not want to give up my drawing; I will not 

give up my drawing.  
G4-1. Okay, continue to draw and at the same time 

hear me out, okay?  
G4-2. Okay.  
[Explanation of G4-1 to G4-2 and G4-3 of the results 

obtained using Excel] 
1 1  
2 3 
3 6 
4 10 
5 15 
6 21 
7 28 
8 36 
9 45 
10 55 

               11 66 

her

h

Dialogue R2 with G4 group Interpretation

Fig. 13  Teamwork and “consensus” about the “jumps” and its transformations with Excel

Fig. 14  Production by reading from right to left: a generic example 
to find any triangular number
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•	 From this expression (generic example), the pupil men-
tioned that he had a strategy to compute “any” triangu-
lar number (odd triangular numbers).

•	 R1 asked the pupil to calculate T100. The pupil was sur-
prised when he obtained a decimal number when he 
divided the sum of 100 and 1 by two.

•	 The pupil used the Poly applet to verify their conjecture. 
The instrumental and discursive genesis promoted vali-
dation processes.

•	 The pupil wrote in his copy of the questionnaire: 
(100 + 1) ÷ 2 = x and x × 100 = (see Fig. 14). In the 
interview, the pupil said that obtaining a decimal num-
ber bothered him.

7.7  The bell rang when R2 was engaged in the large 
group discussion

It can be seen that the pupils’ curiosity was piqued when 
the researcher mentioned the possibility of calculat-
ing any triangular number with only three operations, 
about which they wanted to know more when the ses-
sion finished. At this very moment, G4-1 spoke to the 
whole group on how to calculate any triangular number 
(Fig. 17) using various symbols, which demonstrated flu-
ency regarding the notion of the variable. From the theo-
retical approach, this showed a final process of an A-AT 
related to the model.

Fig. 15  Examples of the use of the Poly applet (Cortés & Hitt 2012) with triangular numbers

G4-

R

R :

G4- it

R

G4-

R :

G4-

B

Indeed, this pupil 

Then, in a semiotic, instrumental and discursive genesis, the 
pupils constructed a general process to calculate any 
triangular number. 

Large group discussion Interpretation

Fig. 16  Explanation to the group on how to calculate “any triangular number”
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7.8  Step 4: self‑reflection

Before the self-reflection stage, it was decided to conduct 
an interview with G4-1 (15 days after the experiment) to 
better understand how he had been able to calculate any 
triangular number. Then, 45 days after the experiment, a 
further challenge was made to him: the calculation of any 
pentagonal number (see “Appendix”).

Eight of the thirteen pupils who worked on the experi-
ment were present at the self-reflection stage.

(a) Two pupils (one from the G4 team) used the dot pat-
tern to answer questions (see Fig. 18), forgetting what 
was established in the “consensus”.

(b) Five pupils used an arithmetic addition approach and 
jumps. It should be noted that those pupils have appro-
priated G4-1’s strategy. One of the pupils even used: 
The sum of the previous figure + the triangular num-

ber [position] (similar to the result found by Healy & 
Sutherland). In addition, a pupil from another team 
wrote the expression: (rank + 1) ÷ 2 × row = triangu-
lar number. Moreover, she added that the formula can 
only be used for the odd triangular numbers. This result 
is, in the opinion of researchers, the product of working 
in a socio-cultural environment. It can be seen that this 
pupil retained the result for 6 weeks and, after a process 
of self-reflection (commognition, according to Sfard 
2008), she was able to rebuild and improve the results 
detailed in the large group discussion (see Fig. 19).

(c) While pupil G4-1 gave the wrong result for T11 by 
using the incorrect formula, his spontaneous expres-
sion was correct for the challenge related to pentagonal 
numbers.

To calculate the pentagonal number 34 (see “Appen-
dix”), G4-1 wrote as shown in Fig. 20.

R

G4-

R

R R

G4- :

G4-

R : x + 1

G4- x

y y x

the possibility of calculating shots

” r

G4- s

R R

-

x y their

Large group discussion Interpretation
R2: Wow! Well, it will take a little time there to look 

really, to understand everything, everything,

everything, he did.

Another pupil: But what's the easy formula you use 
With this question, we can see that R2’s assertion about

Fig. 17  Construction of an algebraic representation through a communication process related to the calculation of any triangular number

Fig. 18  An ephemeral con-
sensus for some pupils after 
45 days

Pupil’s work after the consensus (auto-

I do not remember anything 
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Figure 20 shows how G4-1 managed to find a general 
expression for calculating any pentagonal number (see 
“Appendix”). Taking into account the examples, the pupils 
arrived at P4 = 22, then P4/4 = 5.5. So, position + (posi-
tion/0.5−1.5) = 5.5. The pupil checked other examples 
and calculated P5 = 35 to check his procedure (a valida-
tion process without technology). First, G4-1 wrote (prob-
ably following the strategy used on the blackboard):

 After crossing out one part (see Fig. 20), which we do 
not know the reason behind his actions, he finally gave a 
correct expression.

The process of self-reflection is an important phase 
in ACODESA. On the one hand, we can see that some 
pupils went back to their initial position and, indeed, 
returned to the process of drawing balls to respond to 

rang ∗ (rang+ (rang ∗ 0.5− 0.5)) = y,

and rang ∗ y = nombre pentagonal.

questions rather than using a more elaborate strategy. On 
the other hand, there were more pupils who adopted the 
strategy that used jumps to calculate the requested trian-
gular numbers.

In summary, the results of the experiment in the self-
reflection phase show the following:

•	 Consensus is ephemeral. After 45 days some pupils 
returned to their initial strategy;

•	 Pupil’s knowledge is fragile (pupil G4-1 wrote a for-
mula for triangular numbers which he “remembered” 
but had not checked and therefore did not realize it was 
wrong);

•	 Pupils learn to structure their actions (a habitus) as 
described by Bourdieu (1980); and

•	 Researchers found that the pupils’ representations are 
far from the institutional representations as taught in a 
classic lecture-style maths class.

Fig. 19  Individual work in the 
first stage (gauche) and self-
reflection (reconstruction) stage 
45 days later (the intermediate 
stages of his work as related to 
collaborative learning)

Individual work of a pupil (from Team G3) to calculate 
T11 and T83 

Production of the same pupil from Team G3, 45 days after the 
experiment (self-reflection stage related to reconstruction) 

Fig. 20  G4-1’s production from 
the pentagonal numbers activity
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8  Conclusions

The Early Algebra movement has generated two 
trends—one which is related to the construction of a 
path that could lead pupils to algebra as quickly as pos-
sible, and the other which enables a better understanding 
of this different kind of thinking. This study sought to 
present another trend, a new discussion-based approach 
centred on “strengthening the intersection between 
arithmetic and algebra”, proposing that the follow-
ing must be taken into account for A-AT and also the 
A-AWS:

I. Semiotic and instrumental genesis related to the pro-
duction of representations:

	– Pattern-recognition,
	– Visualisation associated with an arithmetic algo-

rithm or an arithmetic–geometric process,
	– Visualisation of a general arithmetic-algebraic 

algorithm.

II. Instrumental and discursive genesis:
	– Activities with technology (e.g. Excel and applets) 

to promote conjecture and validation processes.
III. Discursive and semiotic genesis:

	– Activities that promote validation processes in a 
paper and pencil environment.

IV. Cognitive control structure related to an A-AWS 
model:

	– The activity should be presented so that pupils’ 
conjecture can be corroborated, while teachers 

must take into account the cognitive process men-
tioned in this document that relates to anticipa-
tion, verifications, error perceptions, sensibility to 
contradictions and validation.

	– Arithmetic as a permanent feedback environment. 
It is thus necessary to promote a reversible pro-
cess between algebra and arithmetic.

This is a limited study whose results are restricted to 
triangular and polygonal numbers with a small group of 
pupils from Quebec (for the Mexican experiment, which 
is still in process, see Cortés, Hitt and Saboya 2014). Lit-
erature shows that the patterns are important for use in 
the mathematics classroom to promote generalization 
processes, as highlighted by both Mason (1996) and Lee 
(1996). It would be useful, at this point, to consider how 
these research results can be used to generate large-scale 
arithmetic-algebraic thinking and to build a cognitive struc-
ture linked to a mathematical control activity in which the 
use of technology could play a key role in promoting con-
jecture and validation.

Finally, the approach presented in this paper seeks to 
enable pupils to take ownership of the concept of building 
symbolism before constructing the notion of indetermi-
nate or unknown parameters, thus generalising mathemat-
ics and, at the same time, developing a control structure 
(Saboya 2010) for the mathematical activity involved, 
and helping to develop sensitivity to a contradiction when 
solving a mathematical task. Significantly, this study also 
suggests the fragility of knowledge, with its results show-
ing that, while there was progress in some pupils, in oth-
ers there was a setback 45 days after the experiment. These 
results pose the question as to how to promote the strongest 
consensus.

And now a small challenge... the pentagonal numbers!

Here are the �irst 4 pentagonal numbers

1) Can you find the fifth pentagonal number? Explain what you do to find it
2) What would be the 34th pentagonal number? Explain what you do to find it.
3) And the calculation of any pentagonal number?
4) Is there a simple way to calculate any pentagonal number?

Appendix: Pentagonal numbers



790 F. Hitt et al.

1 3

References

Balacheff, N. (1987). Processus de preuve et situations de validation. 
Educational Studies in Mathematics, 18(2), 147–176.

Bednarz, N., & Janvier, B. (1996). A problem solving perspective 
on the introduction of algebra. In N. Bernarz, C. Kieran, & L. 
Lee (Eds.), Approaches to algebra: perspectives for research 
and teaching (pp. 115–136). Dordrecht: Kluwer Academic 
Publishers.

Bednarz, N., Kieran, C., & Lee, L. (1996). Approaches to algebra: 
perspectives for research and teaching. Dordrecht: Kluwer Aca-
demic Publishers.

Blanton, M-L. & Kaput, J. (2011). Functional thinking as a route into 
algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), 
Early algebraization: a global dialogue from multiple perspec-
tives (pp. 5–23). Springer.

Bourdieu, P. (1980). Le sens pratique. Paris: Éditions de Minuit.
Britt, M., & Irwin, J. (2011). Algebraic thinking and without algebraic 

representation: a pathway for learning. In J. Cai & E. Knuth 
(Eds.), Early algebraization: a global dialogue from multiple 
perspectives (pp. 137–160). New York: Springer.

Brousseau, G. (1997). Theory of didactical situations in mathematics. 
1970–1990, In Balacheff, N., Cooper, M., Sutherland, R. & War-
field, V. (Eds. and Trans.) Dordrecht: Kluwer.

Brownell W-A. (1942). Problem solving. In N.B. Henry (Ed.), The 
psychology of Learning (41st Yearbook of the National Society 
for the Study of Education. Part 2). Chicago: University of Chi-
cago press.

Brownell, W. A. (1947). The place and meaning in the teaching of 
arithmetic. The Elementary School Journal, 4, 256–265.

Cai, J., & Knuth, E. (Eds.). (2011). Early algebraization: a global 
dialogue from multiple perspectives. New York: Springer.

Carpenter, T., Ansell, E., Franke, M., Fennema, E., & Weisbeck, L. 
(1993). Models of problem-solving: a study of kindergarden 
children’s problem-solving process. Journal for Research in 
Mathematics Education., 24, 429–441.

Carpenter, T. & Franke, M. (2001). Developing algebraic reasoning 
in the elementary school. Generalization and proof. In H. Chick, 
K. Stacey, J. Vincent & J. Vincent (Eds.), The future of the teach-
ing and learning of algebra (Proceedings of the 12th ICMI 
Study Conference, pp. 155–162). Melbourne: The University of 
Melbourne.

Carraher, D. W., Schliemann, A. D., Brizuela, B. M., & Earnest, D. 
(2006). Arithmetic and algebra in early mathematics educa-
tion. Journal for Research in Mathematics Education, 37(2), 
87–115.

CIEAEM. (1987). Compte rendu de la 39e rencontre internationale de 
la CIEAEM, Sherbrooke.

Cooper, T., & Warren, E. (2011). Students’ ability to generalise: Mod-
els, representations and theory for teaching and learning. In J. 
Cai & E. Knuth (Eds.), Early algebraization: a global dialogue 
from multiple perspectives (pp. 187–214). New York: Springer.

Cortés C. & Hitt F. (2012). Poly. Applet pour la construction des 
nombres polygonaux. UMSNH.

Cortés J-C., Hitt F. & Saboya M. (2014). De la aritmética al álgebra: 
Números Triangulares, Tecnología y ACODESA. REDIMAT, 
3(3), 220–252. doi:10.4471/redimat.2014.52.

Duval, R. (2003). Voir en mathématiques. In F. Filloy, F. Hitt, C. 
Imaz, A. Rivera, & S. Ursini (Eds.), Matemática Educativa: 
Aspectos de la investigación actual (pp. 19–50). México: Fondo 
de Cultura Económica.

Eco, U. (1992). [1975] La production des signes. Paris: Livre de 
Poche.

Filloy, E & Rojano, T. (1989). Solving equations: the transition from 
arithmetic to algebra. For the Learning of Mathematics, 9(2).

Goupille C. & Thérien L. (1987). The role errors play in the learn-
ing and teaching of mathematics. Proceedings CIEAEM39, 
Sherbrooke.

Healy, L., & Sutherland, R. (1990). The use of spreadsheets within 
the mathematics classroom. International Journal of Mathemat-
ics Education in Science and Technology, 21(6), 847–862.

Herscovics, N., & Linchevski, L. (1994). A cognitive gap between 
arithmetic and algebra. Educational Studies in Mathematics, 27, 
59–78.

Hitt, F. (1994). Visualization, anchorage, availability and natural 
image: polygonal numbers in computer environments. Interna-
tional Journal of Mathematics Education in Science and Tech-
nology, 25(3), 447–455.

Hitt, F. (2006). Students’ functional representations and conceptions 
in the construction of mathematical concepts. An example: the 
concept of limit. Annales de Didactique et de Sciences Cogni-
tives, 11, 253–268. (Strasbourg).

Hitt, F. (2013). Théorie de l’activité, interactionnisme et sociocon-
structivisme. Quel cadre théorique autour des représentations 
dans la construction des connaissances mathématiques? Annales 
de Didactique et de Sciences Cognitives, 18, 9–27. (Strasbourg).

Hitt, F., & González-Martín, A. (2015). Covariation between variables 
in a modelling process: the ACODESA (Collaborative learning, 
Scientific debate and Self-reflexion) method. Educational Stud-
ies in Mathematics, 88(2), 201–219.

Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer 
interaction in a CAS environment with tasks designed from 
a task-technique-theory perspective. International Journal of 
Computers for Mathematical Learning, 14, 121–152.

Houdement, C., & Kuzniak, A. (2006). Paradigmes géométriques et 
enseignement de la géométrie. Annales de Didactique et de Sci-
ences Cognitives, 11, 175–193.

Kaput, J. (1995). Transforming algebra from an engine of inequity 
to an engine of mathematical power by ‘‘algebrafying’’ the 
K-12 curriculum. Paper presented at the Annual Meeting of the 
National Council of Teachers of Mathematics, Boston.

Kaput, J. (1998). Transforming algebra from an engine of inequity 
to an engine of mathematical power by ‘algebrafying’ the K-12 
curriculum. The nature and role of algebra in the K-14 curricu-
lum (pp. 25–26). Washington: National Council of Teachers of 
Mathematics and the Mathematical Sciences Education Board, 
National Research Council.

Kaput, J. (2000). Transforming algebra from an engine of inequity 
to an engine of mathematical power by “algebrafying” the K-12 
curriculum. National Center for Improving Student Learning and 
Achievement in Mathematics and Science. Dartmouth. (ERIC 
Service No. ED 441 664).

Karsenty, R. (2003). What adults remember from their high school 
mathematics? The case of linear functions. Educational Studies 
in Mathematics., 51, 117–144.

Kieran, C. (2007). Learning and teaching algebra at the middle school 
through college levels: Building meaning for symbols and their 
manipulation. In F. K. Lester Jr (Ed.), Second handbook of 
research on mathematics teaching and learning (pp. 707–762). 
Greenwich: Information Age Publishing.

Kuzniak, A. (2011). L’espace de travail mathématique et ses genèses. 
Annales de Didactique et de Sciences Cognitives, 16, 9–24.

Lee, L. (1996). An initiation into algebraic culture through gener-
alization activities. In N. Bernarz, C. Kieran, & L. Lee (Eds.), 
Approaches to algebra: perspectives for research and teaching 
(pp. 87–106). Dordrecht: Kluwer Academic Publishers.

Lee, L., & Wheeler, D. (1989). The arithmetic connection. Educa-
tional Studies in Mathematics, 20, 41–54.

Lins, R., & Kaput, J. (2004). The early development of algebraic rea-
soning: the courrent state of the field. In K. Stacey, H. Chick, 
& M. Kendal (Eds.), The future of the teaching and learning 

http://dx.doi.org/10.4471/redimat.2014.52


791An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking:…

1 3

of algebra (pp. 45–70). Massachusetts: Kluwer Academic 
Publishers.

Malle, G. (1993). Didaktische Probleme der Elementaren Algebra. 
Braunschweig/Wiesbaden: Vieweg.

Mason, J. (1996). Expressing generality and roots of algebra. In N. 
Bernarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: 
perspectives for research and teaching (pp. 65–86). Dordrecht: 
Kluwer Academic Publishers.

Prusak, N., Hershkowits, R., & Schwarz, B. (2013). Conceptual 
learning in a principled design problem solving environment. 
Research in Mathematics Education, 15(3), 266–285.

Radford, L. (1996). Some reflexions on teaching algebra through 
generalization. In N. Bernarz, C. Kieran, & L. Lee (Eds.), 
Approaches to algebra: perspectives for research and teaching 
(pp. 107–111). Dordrecht: Kluwer Academic Publishers.

Radford, L. (2003). Gestures, speech, and the sprouting of signs: a 
semiotic-cultural approach to students’ types of generalization. 
Mathematical Thinking and Learning, 5(1), 37–70.

Radford, L. (2011). Grade 2 students’ non-symbolic algebraic think-
ing. In J. Cai & E. Knuth (Eds.), Early algebrization, advances 
in mathematics education (pp. 303–322). Dordrecht: Kluwer.

Saboya, M. (2010). Élaboration et analyse d’une intervention didac-
tique co-construite entre chercheur et enseignant, visant le 
développement d’un contrôle sur l’activité mathématique chez 
les élèves du secondaire. Thèse de doctorat non publiée, Univer-
sité du Québec à Montréal.

Saboya, M., Bernarz, N., & Hitt, F. (2015). Le contrôle exercé en 
algèbre: analyse de ses manifestations chez les élèves, éclairage 
sur sa conceptualisation. Partie 1: La résolution de problèmes. 
Annales de Didactique et de Sciences Cognitives, 20, 61–100.

Schliemann, A., Carraher, D., & Brizuela, B. (2012). Algebra in ele-
mentary school. In L. Coulange & J.-P. Drouchard (Eds.), Ensei-
gnement de l’algèbre élémentaire (pp. 107–122). Paris: Éditions 
La Pensée Sauvage.

Sfard, A. (2008). Thinking as communicating: human development, 
the growth of discourse, and mathematizing. New York: Cam-
bridge University Press.

Thompson, P. (2002). Some remarks on conventions and representa-
tions. In F. Hitt (Ed.), Mathematics Visualisation and Represen-
tations (pp. 199–206). Psychology of Mathematics Education 
North American Chapter and Cinvestav-IPN. Mexico.

Vergnaud, G. (1988). Long terme et court terme dans l’apprentissage 
de l’algèbre. In C. Laborde (Ed.), Actes du Premier Colloque 
Franco-Allemand de Didactique des Mathématiques et de 
l’informatique (pp. 189–199). La Pensée Sauvage: Grenoble.

Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches 
en Didactique des Mathématiques, 10(23), 133–170.

Verschaffel, L., & De Corte, E. (1996). Number and arithmetic. 
In A. J. Bishop, et al. (Eds.), International handbook of math-
ematical education (pp. 99–137). Dordrecht: Kluwer Academic 
Publishers.

Voloshinov, V.N. (1973). Marxism and the philosophy of language. 
Translated by Matejka L. & Titunik I. R. Cambridge: Harvard 
University Press.

Wille, A. (2008). Aspects of the concept of a variable in imagi-
nary dialogues written by pupils. In O. Figueras, J.-L. Cor-
tina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceed-
ings PME32 and PME-NA30 (Vol. 4, pp. 417–424). México: 
Cinvestav-UMSNH.


	An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking: triangular numbers
	Abstract 
	1 Introduction
	2 The use of MWS as a frame to organise the construction of arithmetic-algebraic thinking (A-AT) in an A-AWS
	3 Research questions
	4 Methodology
	5 A priori analysis
	6 Presentation of the activity
	7 A posteriori analysis (Quebec population)
	7.1 Individual work (step 1 ACODESA)
	7.2 First case: group 1 (G1)
	7.3 Second case: group 2 (G2)
	7.4 Third case: group 4 (G4)
	7.5 Teamwork—second and third stage of the activity with technology
	7.6 Large group discussion
	7.7 The bell rang when R2 was engaged in the large group discussion
	7.8 Step 4: self-reflection

	8 Conclusions
	References




