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symmetry as a transformation requires a more dynamic 
approach in which a particular motion is used to trans-
form one initial figure into another. As Jagoda and Swo-
boda (2011) argue, while everyday experiences are filled 
with static symmetric shapes (hearts, stars, etc.), they do 
not, in general, involve recording consecutive moments 
of an object’s movement. Thus, the teaching and learn-
ing of symmetry requires tools, tasks and communicative 
opportunities that enable children to focus both on the 
action of symmetry transformations and the result of such 
transformations.

While transformations do not appear explicitly in many 
curricula until later elementary or middle school (Grade 8 
in the CCSS; Grade 4 in most Canadian provinces), sym-
metry can function powerfully as a tool to describe, recog-
nise, classify and create both two- and three-dimensional 
figures. Indeed, the NCTM Standards for Pre-K through 
Grade 2 encourage students to “apply transformations and 
use symmetry to analyse mathematical situations”. In the 
Western and Northern Canadian Protocol, symmetry is for-
mally introduced in Grade 4 (ages 9–10) where students are 
asked to identify and create symmetric figures as well as 
draw one or more lines of symmetry. However, in Grades 
K-3, students can use symmetry to sort, compare and con-
struct figures. Interestingly, the psychological research sug-
gests that young children attend to symmetry much earlier 
than formal schooling. Given that young children already 
have a strong capacity for identifying symmetry (Seo and 
Ginsburg 2004; Schuler 2001), it makes sense that this 
concept could be explored much earlier and more robustly 
through the first years of schooling (Bryant 2008).

Early experience with different forms of reflectional 
symmetry (not just vertical line symmetry) and dynamic 
conceptions of symmetry may enable students to develop 
more flexible spatial abilities so that when they engage in 
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1  Introduction

Symmetry is a central idea in mathematics (Weyl 1952; 
Schattschneider 2006); it is an object of study in and of 
itself, but it is also used as a powerful way of solving prob-
lems. While often treated as a static concept, the notion of 
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middle school geometry, they are not constrained by pro-
totypical images of symmetry (Hoyles and Healy 1997). 
Further, dynamic geometry environments (DGEs) can pro-
vide transformation-based experiences of symmetry that 
are difficult to enact with physical manipulatives such as 
Miras and paper-folding. In the next section we provide 
an overview of student understanding of symmetry, which 
has mainly focused on the middle- and high-school grades, 
with particular attention to studies involving the use of dig-
ital technologies. We then outline the theoretical framing 
for our research and describe the teaching experiment we 
undertook, providing a detailed description of the function-
ality of the dynamic sketches we designed, and analyse the 
children’s emerging conceptions of symmetry.

2 � Research on the learning of symmetry

Reviewing the limited literature available in the field, we 
acknowledge that children have a developmental ability to 
discriminate between symmetrical and asymmetrical fig-
ures. Schuler (2001) suggests that visual discrimination of 
symmetry has a developmental component and that there 
is a marked increase in the use of symmetry with each age. 
Bornstein and Stiles-Davis (1984) link the developmental 
progression of 4 to 6-year-olds with types of line symme-
try. Namely, they found that 4-year-olds discriminated only 
vertical line symmetry, 5-year-olds, vertical and horizontal 
line symmetry, and 6-year-olds, vertical, horizontal and 
oblique symmetry. However, their study focuses exclu-
sively on the visual identification of symmetry, rather than 
on the relationship between the various elements involved, 
such as the line of symmetry.

Clements and Sarama (2004) propose that children 
should work with symmetry in the Pre-K through Grade 
2  years and offer a developmental trajectory for transfor-
mations and symmetry in which children begin at the Pre-K 
level to create shapes that have line symmetry, then work 
in kindergarten and grade one to identify symmetry in 
2D objects. In Grade 2, children should identify the mir-
ror lines of shapes with line symmetry. In their approach, 
children make “flips” with pattern blocks, visualise these 
flips and predict the outcome of flip motions. Drawing on 
Duval’s dimensional deconstruction, Perrin-Glorian, Mathé 
and Leclerc (2013) also support children’s learning of sym-
metry in the early grades, but insist on the importance of 
using tools (such as rulers) in order to draw learners’ atten-
tion to 1D objects that are involved in reflection (such as the 
line of symmetry, but also the segments that are reflected). 
They argue that such an approach plays a crucial role in 
enabling a continuity between the geometry of primary and 
secondary school. Their proposal is exemplified by a series 
of “restoration” tasks in which tool-based construction is 

used to explore reflectional symmetry beginning in kinder-
garten and progressing throughout the grades (from ages 
6 to 15). The DGE-based trajectory we will describe here 
also centrally features the use of tools, but takes a differ-
ent approach in that the reflections have already been per-
formed and the goal is to investigate their behaviour. This 
will entail different developmental possibilities, which we 
elaborate below.

Computer-based environments have been shown to help 
the learning of transformations and symmetry, especially 
at the middle and high school level. Early research fea-
tured the use of Logo environments (Edwards and Zazkis 
1993; Hoyles and Healy 1997). At a much earlier grade 
level, Clements et al. (2001) show that the effects of Logo 
microworlds on symmetry were particularly strong for kin-
dergarten children. These learners wrote commands to cre-
ate symmetric figures, tested their symmetries by reflecting 
their figures and discussed their actions. The researchers 
argued that the children had to be more explicit and precise 
in their creation of symmetric figures than they would have 
to be in a (paper-based) free-hand drawing environment. 
This possibility for more explicit, precise communication 
features also in the research carried out at higher grades.

Battista (2008) describes the way in which DGEs offer 
not only a variety of examples, but, more importantly, a 
continuous transformation of the draggable objects.1 
Indeed, there is strong evidence to show that dynamic con-
figurations in DGEs support students’ transition from an 
exclusively spatio-graphical field to a more theoretical one 
by helping them attend to the visual invariance of the 
dynamic diagram, which can be verbally mediated through 
classroom discussion or teaching intervention (Battista 
2008; Laborde et al. 2006; Sinclair and Moss 2012; Kaur 
2015). In his study of Grade 5 children using the Shape 
Maker microworld designed in The Geometer’s Sketchpad 
(Jackiw 2001), Battista (2007) theorised the effectiveness 
of dragging in terms of a two-folding assumption. The first 
relates to the “unconscious visual transformations” by 
which humans structure space (p. 150). Battista’s second 
assumption, which he called the transformational-saliency 
hypothesis, relates more centrally to dragging. This hypoth-
esis essentially states that people notice invariance. Drag-
ging thus changes the way shapes are perceived, moving 

1  The historical-epistemological root of this kind of transformation 
can be found in Ponselle’s principle of continuity which states that “if 
we suppose a given figure to change its position by having its points 
undergo a continuous motion without violating the conditions ini-
tially assumed to hold between them, the […] properties which hold 
for the first position of the figure still hold in a generalised form for 
all the derived figures” (cited in Greaves 2002, p. 45). In particular, 
continuously dragging an object will maintain the mathematical rela-
tions that were used to construct the object.
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from a static visual apprehension to a temporal attention to 
what remains invariant.

Most of the research involving the use of DGEs has 
focused on the middle and high school grades. With respect 
to transformations, Hollebrands (2003) found that high 
school students developed a deeper understanding of them 
as functions through a seven-week instructional unit using 
Sketchpad that involved construction tasks as well as black-
box microworlds. However, she did not focus specifically 
on symmetry. Also at the high school level, Falcade et al. 
(2007) showed how Cabri-Géomètre (Baulac et  al. 1988) 
could help students grasp the notion of function; they 
focused on the affordances of the trace tool as a semiotic 
mediator that could introduce the twofold meaning of tra-
jectory, both global and pointwise. This study is highly rel-
evant to our own in that symmetry involves both global and 
pointwise (in the form of blocks) meanings with the former 
described in terms of the property of a given figure and the 
latter described in terms of the mapping of one part of the 
figure to the other.

3 � Theoretical perspectives

In this section we outline two theoretical perspectives we 
draw on, both of which have their roots in a Vygotskian 
tradition. They emphasise the role of tools (including lan-
guage) in the learning process as well as the role of the 
teacher as an expert participant in the target discourse. The 
first is a “communication” perspective that operationalises 
the notion of thinking, in particular changes in thinking by 
attending to changes in discourse. The second is a “semi-
otic mediation” perspective that enables us to understand 
how tools within the DGE—such as dragging—mediate the 
children’s understanding of symmetry.

3.1 � A communication approach: thinking is talking

Sfard’s (2008) communicational framework is helpful for 
analysing children’s developmental thinking about sym-
metry in the classroom. Her non-dualist approach disob-
jectifies thinking as part and parcel of the process of com-
municating. Sfard’s approach highlights the way in which 
talking stops being ‘expressions’ of thinking and becomes 
the process of thinking in itself. This communicational act 
can be intrapersonal when thinking within oneself or inter-
personal when communicating to someone else. With this 
view, children’s mathematical thinking can be operation-
alised by observing their discourse. While mathematical 
thinking is often considered a cognitive and individual pro-
cess, we take children’s talk and embodied actions in social 
settings to be the very unit of our analysis of children’s 
mathematical thinking. This is, of course, the theoretical 

assumption that we adopt to situate thinking in practice and 
in social context (e.g. Sfard 2008; Lave and Wenger 1991). 
The view that thinking and communicating are insepara-
ble processes—that occur within a community of practice 
(Wenger 1998) such as the classroom—is a lens that we use 
to explore our data and not a claim that we seek to verify in 
this paper.

For Sfard (2008), learning occurs when there is a change 
in discourse. Her four features of mathematics discourse—
word use, visual mediators, endorsed narratives and rou-
tines—can be used to analyse one’s mathematical thinking 
and learning by identifying change in their discourse over 
time. Sinclair and Moss (2012) showed how a group of 
kindergarten children shifted their discourse on triangles 
by changing the way they used the word ‘triangle’; at first, 
the word was used like a proper noun, in which ‘triangle’ 
described the three-sided shape in its canonical orientation, 
and then, after working in a DGE, the word was used as 
a family name to describe the different kinds of triangle 
that share the common feature of having three sides. In this 
paper, we are interested in whether or not there is a change 
of discourse about symmetry when children, along with 
their teacher, interact in a DGE.

Word use is a main feature in mathematical discourse; it 
is “an-all important matter because […] it is what the user 
is able to say about (and thus to see in) the world” (p. 133). 
Although Sfard’s four features of mathematics discourse 
are effective for analysing written, static discourse such as 
textbooks and written student work, they sometimes fail 
to account for the full set of resources that young children 
use to communicate. Spoken discourse is multimodal and 
communicational acts are not limited to the use of words 
and visual mediators as in the written discourse. In particu-
lar, gestures have been shown to be a central form of com-
munication that complement speech (Kendon 2000) and 
are co-produced with abstract thinking (McNeill 1992)—
and could be seen as functioning either as words or visual 
mediators in the discourse of the mathematics classroom. 
Research has shown that gestures can sometimes precede 
speech (Goldin-Meadow 2003) in mathematical devel-
opment, or can be co-produced with speech, sometimes 
redundantly, but sometimes also contributing their own 
distinct meaning, thereby reducing the amount of speech 
needed (Goldin-Meadow et  al. 2001). Gestures can be 
especially helpful in communicating visual and temporal 
mathematical meanings (e.g. Ng and Sinclair 2013; Núñez 
2003; Sinclair and Gol Tabaghi 2010), which makes them 
all the more important in the computer-based classroom 
environment. Inasmuch as gestures become visible to the 
gesturer, as well as other members of the classroom, they 
can also be seen as acting as visual mediators that are cre-
ated and acted upon to enable mathematical communica-
tion. However, unlike most of Sfard’s examples of visual 
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mediators (geometric figures, symbols, number lines, etc.), 
these are importantly embodied and mobile.

We expand Sfard’s notion of visual mediation because 
of the temporal nature of DGEs, which enables children 
to observe and manipulate visual objects that are mov-
ing and changing over time. Analogous to the difference 
between written and spoken discourse that we noted 
earlier, there is an important distinction between visual 
mediations from static versus dynamic visual mediators. 
Mediations from static visual mediators evoke images 
of static mathematical objects such as triangles or arte-
facts such as a number line. In contrast, mediations from 
dynamic mediators may evoke mathematical relation-
ships and properties for their potential to represent math-
ematical objects of an invariant property continuously. 
DGEs can produce “a seemingly limitless series of con-
tinuously-related examples, and in so doing, to represent 
visually the entire phase-space or configuration potential 
of an underlying mathematical construction” (Jackiw and 
Sinclair 2009, p. 414). For example, a child may realise 
new mathematical properties by dragging a vertex of a 
triangle or a point on the number line dynamically. This 
visual mediation is enabled by the dynamism of the DGE 
and triggered by the signs that are produced upon drag-
ging in the DGE.

3.2 � Semiotic mediation

As discussed in the previous section, dynamic visual medi-
ators evoke mathematical relationships and properties more 
readily than static visual mediators. For this reason, we 
draw on the theory of semiotic mediation as a theoretical 
framework to discuss the complex semiotic process when 
a sign, such as a visual mediator, is realised. Vygotsky 
(1978) distinguishes the dialectical relationship between 
signs and tools as follows: practical tools are those used 
in the labour, whereas signs are symbolic tools used in the 
psychological operation. However, as he writes, “The sign 
acts as an instrument of psychological activity in a manner 
analogous to the role of a tool in labor” (p. 52).

Externally oriented tools may be transformed into inter-
nally oriented ones through the process of internalisation. 
Internalisation is directed by semiotic processes and rests 
on a system of signs involved in the social activity, that 
is, signs such as words, drawings and gestures (Wertsch 
and Stone 1985). As expounded in the theory of semiotic 
mediation (TSM) described in Bartolini Bussi and Mariotti 
(2008), the signs generated by the use of a tool, through 
the complex process of internalisation accomplished after 
social interchange, may shape new meanings. There-
fore, semiotic mediation is a process of meaning-making 
through internalising the signs that are produced from an 
external, intrapersonal activity.

In the lens of semiotic mediation, the functionalities 
offered by the DGE produce many signs (Mariotti 2009). 
An external, goal-oriented activity such as “dragging” and 
“tracing” in a dynamic sketch can be internalised to shape 
personal meanings. The teacher’s role is to exploit such 
opportunities by facilitating a meaningful social exchange 
during the use of the corresponding tools. This perspective 
is shared by Falcade et al. (2007) in their teaching experi-
ment with high school students on functions. They suggest 
that the internalisation of the Dragging and Trace tools may 
contribute to introducing function as covariance and the 
notions of domain and range. They argued that the role of 
the teacher is crucial in this process, as she promotes dif-
ferent semiotic activities related to the use of the Dragging 
and Trace tools, and later facilitates a class discussion in 
order to guide students to mediate mathematical meaning 
upon the activities.

Signs evolve throughout a goal-oriented, external activ-
ity, while maintaining some of their origins. Bartolini Bussi 
and Mariotti (2008) identify three main categories of signs. 
Artefact signs sprout from the use of the artefact and are 
least distant from the reference to the artefact; their mean-
ings are strictly related to the experience of using the arte-
fact. Mathematical signs have the highest mathematical 
context and are most distant from the reference to the arte-
fact. Their meanings are mathematical as shared within the 
community. Pivot signs link the artefact signs to the mathe-
matical signs. They are characterised by their shared mean-
ings in instrumented actions and the mathematical domain 
(see also Bartolini Bussi and Baccaglini-Frank 2015 for a 
discussion of pivot signs in their teaching experiments). 
The diversity of meanings associated with pivot signs can 
make them problematic to distinguish from artefact signs 
or from mathematical signs. Bartolini Bussi and Mariotti 
(2008) add that pivot signs “express a first detachment from 
the artefact, but still maintaining the link to it in order not 
to lose the meaning” (p. 757). The polysemy of signs sug-
gests that, in a classroom community, certain words, ges-
tures and uses of visual mediators can mediate meanings 
at the artefact or mathematical level. Arzarello and Robutti 
(2008) have called this collection of signs and their mutual 
relationships a semiotic bundle. In an educational context, 
the goal of the teacher is to orchestrate a transformation 
from artefact signs to mathematical signs in a path that 
students can follow. This can be accomplished through 
the “semiotic game” (Arzarello 2006; Mariotti and Barto-
lini Bussi 1998), which happens in teacher–students inter-
action when the teacher tunes with the students’ semiotic 
resources and uses them to guide the evolution of mathe-
matical meanings.

To summarise, we use Sfard’s communicational frame-
work to study children’s discourse (thinking) while they 
engage in a sequence of lessons on symmetry. In addition, 
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we focus on children’s word use, gestures, and use of dia-
grams during and upon interacting with dynamic visual 
mediators in the form of DGEs. Within this theoretical 
perspective, our aim is to study how the dynamic environ-
ment changes the way the children think of symmetry and 
to identify the particular tools that serve as instruments for 
semiotic mediation in their learning.

4 � Methodology of research

In keeping with TSM, we propose a common methodo-
logical frame involving classroom-based research, which is 
the goal and the source of theoretical reflection. As Mari-
otti (2009) writes, the methodology is consistent with the 
aims of research design that seeks to develop empirically 
grounded theories. It involves long-term teaching experi-
ments within the regular classroom that feature collabora-
tion between researchers and teachers. The study we pre-
sent here is part of a year-long teaching experiment that 
aimed to better understand the effect of long-term use of 
DGE-based activities. This involved collaboration between 
the researchers and both the Grades 1/2 and 2/3 classroom 
teachers in planning sequences of activities. Although the 
year-long research project aimed to study longer-term 
effects, the study of symmetry we report here can be seen 
as a short-term (three 1-h lessons) classroom intervention 
(Stylianides and Stylianides 2013) that aims to address par-
ticular problems in the teaching and learning of symmetry 
in a way that may facilitate adoption in other contexts and 
thus overcome some of the scaling-up obstacles identified 
in other classroom-based intervention studies.

Also in keeping with the methodology of TSM, we pay 
particular attention to the role of the teacher in exploiting 
the signs generated during interactions with Sketchpad. In 
these lessons, the second author played the role of teacher 
for most of the activities involving the use of Sketchpad. 
The regular classroom teachers were present at all times 
and led many of the follow-up discussions over the course 
of the year. They did not lead the Sketchpad-based activi-
ties because they had little experience in using technology 
in the classroom and wanted to use the research project as 
an opportunity to learn how to use dynamic geometry soft-
ware in their teaching.

4.1 � Participants, data collection and methods

The three lessons on symmetry each occurred 2  weeks 
apart, in a culturally diverse elementary school in West-
ern Canada. The same lessons were taught to two different 
groups of children (a Grade 1/2 split class and a Grade 2/3 
split class—each having about 22 students). Our research 
team consisted of three people: the second author, who had 

been taking on the role of a guest-teacher in the classrooms 
under study, and two research assistants who observed and 
videotaped the lessons as regular visitors of the school. The 
classroom teacher was present in each lesson and helped 
manage various aspects of the lesson. After the first les-
son, the Grade 2/3 teacher led an activity in which the chil-
dren were asked to find symmetric elements in the forest 
behind the school. The children were surprised that there 
were so many examples of vertical symmetry. The Grade 
1/2 teacher led an activity in which the children were asked 
to create a symmetric design using coloured pencils—these 
were drawn in the children’s mathematics journals. Prior to 
each lesson, the guest-teacher and classroom teacher col-
laborated on the lesson plan to ensure that the demands of 
the classes were considered during the delivery of the les-
sons and that the physical settings and classroom routines 
reflected those in the children’s regular classrooms.

Each lesson lasted approximately 1 h and included both 
computer-based activities as well as pencil-and-paper activ-
ities, in keeping with the methodology of TSM in which 
it is crucial to provide opportunities for learners to make 
their own signs. During the computer-based activities, the 
children were seated on a carpet in front of a screen where 
Sketchpad was projected through a desktop computer at the 
teacher’s desk located in the front of the classroom. Dur-
ing the pencil-and-paper activities, they were seated at two 
large tables at the back of the classroom where they nor-
mally do their seated work. The children had not engaged 
in formal work on symmetry prior to starting the lessons, 
and this was their first experience of working with Sketch-
pad in their regular classrooms. However, they had been 
accustomed to the lesson structure of sitting on the car-
pet and having a classroom discussion as initiated by the 
teacher and then moving to seated work on paper. The 
research assistants’ video recorded the computer-based part 
of the lessons from the back of the classroom as well as the 
paper-and-pencil part of the lessons by walking up to inter-
act with the children at their seats. Approximately 8  h of 
videotaping data were collected in total from two cameras 
in two classrooms. In this paper, we report only the results 
from the Grade 1/2 split classroom, with a particular focus 
on the first and second lesson.

All data were transcribed and analysed in terms of the 
teacher’s and children’s word use, gesture and interactions 
with visual mediators (in the form of DGE and paper-and-
pencil diagrams) during the lessons. Our research goals 
were to investigate: (1) the children’s developing dis-
course about symmetry through word use, gestures, and 
use of visual mediators; and (2) the role of technology and 
teacher mediation in the children’s learning of symmetry 
in a semiotic lens. Using a semiotic lens led to several 
methodological choices in the study. First, according to 
Arzarello (2006), a synchronic analysis can be applied to 
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examine the interrelationships between language, gestures 
and diagrams at a certain point in time (see also Chen and 
Herbst 2012). Therefore, all data were transcribed in such 
a way as to highlight the interplay between words spoken, 
gestures and use of visual mediators synchronically. For 
example, the transcripts were accompanied by descrip-
tions of gesturing actions performed simultaneously with 
speech, and certain gesturing actions that seemed impor-
tant were included in the analysis. Second, we performed 
a diachronic analysis to investigate how word use, ges-
tures and use of visual mediators changed over time. We 
compared, in particular, both the teacher’s and children’s 
discourse over the course of the lessons, and we looked 
for evidence of how the children’s evolving discourse was 
mediated by the tools.

4.2 � Design of the sketches

In the present study, pre-made sketches were constructed 
using Sketchpad. The first sketch, which we will refer to as 
the “discrete symmetry machine”,2 consists of eighteen 
coloured squares arranged symmetrically around a vertical 
line of symmetry. These squares move discretely on a 
square grid background. Dragging any square on one side 
of the line of symmetry will also move the corresponding 
square on the other side of the line of symmetry (see 
Fig. 1a, b). The discrete motion, as well as the use of the 
grid, was intended to help the children attend to the dis-
tance between a square and the line of symmetry. Further, 
based on Battista’s transformation-saliency hypothesis, it 
was anticipated that the children would notice the invari-
ance between the distance of the image and pre-image 
squares to the line of symmetry.

In this sketch, the dragging tool is exploited to visually 
mediate discrete movement of the pre-image and image, 
while the grid is used to produce signs relating to distance. 

2  The design of this microworld was inspired by a sketch created by 
Michael Battista.

In addition, it is possible to translate the line of symmetry 
by dragging it as a whole (see Fig.  1c) or to rotate it by 
dragging one of its two defining points to obtain a horizon-
tal or oblique line of symmetry (see Fig. 1d). This dragga-
ble point to rotate the line of symmetry was hidden in the 
first page of the sketch, but made visible in later ones where 
children were asked to create designs that have horizontal 
or oblique reflectional symmetry. In this case, the dragging 
tool is exploited to visually mediate continuous movement 
of the line of symmetry as well as of the image squares (the 
pre-image squares remain fixed when the line of symmetry 
is dragged) (see Fig. 1c).

In this sketch, Sketchpad’s reflection command was 
used to reflect the blocks to the pre-image. Since drag-
ging the pre-image affects the image, the dynamic and 
symmetric configurations produced suggest a functional 
dependency between the block being dragged (inde-
pendent variable) and its reflected counterpart (depend-
ent variable). This idea of symmetry as a function is 
extended from Bartolini Bussi and Mariotti (2008) in 
that “[when] using Dragging tool … the user may expe-
rience the combination of the interrelated motion, the 
free motion of basic points and the dependent motion of 
the constructed points; in other words, the use of drag-
ging allows one to feel functional dependency as the 
dependence relation between direct and indirect motion” 
(p.769, italics in original). The aim of such design is to 
preserve the content of a sign in its subsequent evolu-
tion: from the artefact sign (a block being dragged) to 
the mathematical sign (independent variable with free 
motion). Therefore, by this design, we hoped to shift stu-
dents towards a more dynamic (and functional) one that 
would highlight the invariances constituting the proper-
ties of symmetry. The third lesson introduced a continu-
ous symmetry machine in which the children could drag 
a point, and observe what happened to the correspond-
ing symmetric point, both of which left traces. Due to 
lack of space, we do not report on this component of the 
teaching intervention.

Fig. 1   a The discrete symmetry machine; b after dragging one block away from the line; c after dragging the line towards the left; d after rotat-
ing the line of symmetry
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4.3 � Teaching sequence

1. First lesson. After an initial survey of the children’s under-
standing of the word ‘symmetry’, the teacher introduces the 
“discrete symmetry machine”. Children are asked to observe 
and describe what they notice about how the symmetry 
machine works. They are invited to explain what will happen 
by coming up to the screen and showing their predictions. 
The teacher uses the children’s descriptions and predictions 
to emphasise the motion of the squares in relation to the line 
of symmetry (the square moves along, away from or toward 
the line) instead of words such as up, down, left and right 
which are associated with direction of movement. Using large 
cardboard diagrams of various symmetric and non-symmetric 
configurations (see Fig. 2a–e), the teacher asks the children to 
re-create the designs or explain why the symmetry machine 
could not have created the design. With the latter designs, the 
children were encouraged to talk about the relations of the 
coloured blocks that should be present in order for a design to 
be symmetric, with the intent to direct children’s attention to 
movement, distance and perpendicularity between the squares 
and the line of symmetry. The children are then asked to sit at 
one of the two large tables in the room and to make drawings 
of configurations that the symmetry machine could produce.

2. Second lesson. The second lesson consists of two 
parts. First, the children are invited to explore the discrete 
symmetry machine with a horizontal, then oblique, line 
of symmetry. The teacher encourages the use of the same 

language developed in the first lesson so that the children 
describe how the squares move along, away or toward the 
line of symmetry. Then, a new sketch with only one side 
of the line of symmetry is shown; the children are told that 
the symmetry machine is broken and they must thus predict 
what the other side of the line should look like. The sketch 
includes different pages, each of which has a broken sym-
metry machine with a different type of line of symmetry (see 
Fig. 3a–c). In these sketches, the squares are spread out away 
from each other on one side of the symmetry. This was made 
to avoid relational inference of the positions of the squares 
and therefore to direct more attention on squares in relation 
to the line of the symmetry. The children are expected to use 
the relationships they had discussed in the previous lesson 
to help them decide how to create these symmetric designs. 
The children then move to the tables to complete two given 
tasks. The first contains two parts, each asking the children 
to describe how an asymmetric diagram could be made sym-
metric—one involving a horizontal line of symmetry and 
one with an oblique one. In the second task, the children are 
asked to create their own symmetric designs, one having a 
horizontal line of symmetry and the other an oblique one.

5 � Results of the teaching experiment

We describe the results in two sections, each pertaining 
to one of the lessons described above. The three excerpts 

Fig. 2   a Vertical symmetry; b vertical symmetry; c not symmetric; d horizontal symmetry; e oblique symmetry

Fig. 3   a Broken horizontal machine; b broken vertical machine; c broken oblique machine
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chosen from the first lesson enable us to compare the chil-
dren’s initial talk of symmetry with their evolving dis-
course, where the focus of the lesson was primarily on 
vertical line symmetry. The two excerpts from the second 
lesson illustrate how the children learned to talk about 
properties of symmetry, including horizontal and oblique 
reflectional symmetry.

5.1 � Children’s change of discourse and new ways 
of talking about symmetry

Excerpt 1 is taken from the discussion during the early part 
of the first lesson. It is selected to highlight children’s ini-
tial thinking about symmetry. The teacher began by asking 
the children what they knew about symmetry (before she 
introduced the “discrete symmetry machine”).

Excerpt 1: Children’s discourse before the introduction of 
the symmetry machine

T3	� So your teacher said that you have talked about 
symmetry yesterday? What did you talk about in 
terms of symmetry?

S1	� The line of symmetry is like there is a shape, 
when you make a line across it and you fold it, 
it’s the same.

T	� What’s the same?
S1	� The shape.
S2	� It has to be two equal sides, like a star.
T	� Do you know anything else in our world that has 

both vertical and horizontal symmetry?
S3	� A cross.
S4	� A square.
S5	� A rectangle.
T	� How about letters of the alphabet?
S6	� X.

The discussion on what the children knew about sym-
metry during the first lesson reveals that they thought 
about symmetry as a property of certain geometric 
figures: the word ‘symmetry’ thus applied to particu-
lar objects. Such objects must have “two equal sides”, 
which may be seen as a routine for deciding whether a 
figure is symmetric. S1 also associated symmetry with 
folding.

The children then moved on to work on computer tasks 
involving re-creating symmetric designs and explaining 
why a given design was not produced by the symmetry 
machine. Initially, they explained that the squares should be 

3  T = Teacher; S1 = Student 1, S2 = Student 2, etc.… Ss = All stu-
dents.

“the same” on both sides. They also described the cases that 
were not symmetry by talking about the colour and positions 
of the squares in relation to each other. During this discus-
sion, the children frequently used gestures to communicate 
the positions of the squares. For instance, when asked by the 
teacher to explain why a given design is not symmetric, a 
child walked up to the sketch and said, “Well, I just want 
to say something about the picture, because, this orange 
one is under the purple, then this one should be under the 
purple too.” As he talked about the relation of each of the 
orange and purple squares on both sides of the symmetry, 
he used his right pinky (little) finger to touch each of the 
squares on the sketch. During this part of the lesson, all of 
the children were given the opportunity to come up to the 
sketch to move the squares. However, the teacher insisted 
that the children describe the way they were going to move 
the square in order to help develop a vocabulary of orienta-
tion (up, down, towards the line, away from the line). The 
children successfully completed all items shown in Fig. 2. 
Items such as those shown in Fig. 2c took the most time as 
several children were convinced that the design was indeed 
symmetric. While those who did not think the designs were 
symmetric initially explained what they should look like in 
order to be symmetric, the teacher prompted them to explain 
why the designs were not symmetric. The children eventu-
ally described particular relations between the blocks, say-
ing for example that “when this orange is under the purple, 
then this [orange square on the other side of the symmetry 
line] should be under the purple too”.

Excerpt 2: S7’s use of gestures after the introduction of the 
symmetry machine

While the children were working on their drawings during 
the paper-and-pencil part of the lesson, one of the research 
assistants asked several children to explain their drawings. 
The following two excerpts were selected to show the new 
emerging discourse that had developed over the first lesson, 
after the introduction of the “discrete symmetry machine”.

(RA = Research Assistant)

RA	� Let me just see what you have, nice! So, you 
wanna, move this blue…

S7	� If you click on this blue [pointing to blue square 
with her pencil and her left index finger, see 
Fig. 4a], the blue will move [bringing two hands 
together, see Fig. 4b].

RA	� Oh.
S7	� It will move like opposite, like this one will 

move to the windows [moving right finger along 
the paper to her left, see Fig.  4c], and this one 
will move to the wall [moving her right hand 
toward her right, along the paper, see Fig. 4d].
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Excerpt 3: S8’s use of diagrams after the introduction of 
the symmetry machine

While Excerpt 2 focuses on the use of gestures in S7’s new 
discourse, Excerpt 3 is selected to draw attention to the use 
of diagrams in S8’s discourse:

S8	� If I move the orange upward [draws arrows 
1in Fig. 5]; they both would. If I were to move 
the magenta down [draws arrow 2a], the other 
magenta will go down [draw arrow 2b]. If I 

move the blue sideways [draws arrow 3a], it will 
go opposite [draws arrow 3b].

The three excerpts show that the children expressed 
symmetry using very different words compared to the ear-
lier part of the lesson. Using the dragging modality, the 
children talked about the movement of squares with words 
such as “move”, “go”, “opposite”, “upward” vs. “down-
ward”, “left” vs. “right”, “sideways”, and “towards the 
wall” vs. “towards the windows”. These words involve 
motions and directions to describe the movement of the 
squares as a product of the symmetric machine. The new 

Fig. 4   a Pointing to “this” blue square; b blue square moving together; c blue square moving toward the left; c blue square moving toward the 
right (colour figure online)

Fig. 5   S8’s drawing during the 
first lesson Arrows 1

Arrow 2a 

Arrow 2b

Arrow 3a

Arrow 3b
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word use reflects the children’s new ways of thinking about 
symmetry: the line of symmetry is no longer an object that 
“folds” a static shape into two halves, but one that reflects 
what you do on one side of the line onto the other side.

In addition to word use, other forms of discourse were 
developed as the children talked about symmetry with their 
gestures and diagrams. In terms of gestures, they produced 
hand movements depicting symmetric directions of move-
ment. As seen in S7’s use of gestures, she first put her 
hands together at the tip of her fingers to talk about where 
“the blue will move”. Since her gesture (Fig. 4b) was not 
accompanied by any speech, it could be said that she was 
relying solely on her gesture to communicate the sym-
metric movement of the blue squares. She then moved her 
right hand dramatically from right to left (Fig. 4c) and then 
left to right (Fig. 4d) depicting the movement of each blue 
square. This can be taken as her reasoning as to why the 
blue squares “will move opposite”. Such gestures were not 
made before the introduction of the symmetry machine. 
They seemed to emerge in concert from their own diagrams 
and explanations of them.

Besides gestures, the children also used arrows in their 
diagrams to communicate the movement of the squares. The 
inventiveness of this sign is interesting because, traditionally, 
arrows are not typically used in diagrams illustrating sym-
metry. From the way S8 talked about his diagram, we see 
that she was able to use arrows to communicate the move-
ment produced by the symmetry machine. Indeed, she drew 
three sets of arrows while she was talking about the discrete 
movement of all three pairs of squares. The dynamic nature 
of the symmetric machine and the children’s experience with 
it had helped them to talk and draw in this way. The children 
were able to talk about symmetry as having dynamic prop-
erties (“What you do on one side, you will do to the other 
side”) as a result of interacting with the symmetry machine.

In the lens of semiotic mediation, the children’s gestures 
and arrows acted as their own use of signs to communicate 
the movement of the squares. These gestures and visual 
mediators operated effectively as signs in the absence of the 
computer to communicate the symmetric movement. The 
use of these signs is significant for two reasons. First, they 
were spontaneously performed and the children were not 
instructed to use them. Secondly, and more importantly, the 
creation of their own signs in a multimodal means seems to 
suggest that the children have internalised the signs offered 
by the DGE to create personal meanings. Thus, we suggest 
that the children’s talk of the “squares” through gestures 
and diagrams were the result of the process of internalisa-
tion. Besides visual mediation of the dynamic sketch, the 
teacher consistently directed children’s attention on the 
movement of the squares during the lesson, using language 
(signs) that mediate distance and movement in relation to 
the line of symmetry. At the end of Lesson 1, we found that 

the children were able to think about symmetry in terms of 
movement in relation to the line of symmetry although the 
way they related distance in relation to the line of symme-
try was not yet developed. They did so by communicating 
in multimodal ways incorporating signs such as gestures 
and arrows in their drawings.

In summary, there is a change of children’s discourse 
expressing the notion of symmetry. The children devel-
oped new word use and ways of talking about symmetry as 
movement using gestures and diagrams upon interacting in 
a dynamic environment. Words such as “move” and “go” 
had not entered children’s discourse until the introduction 
of the symmetry machine. In addition, hand gestures and 
arrows in diagrams depicting movement of squares in rela-
tion to the line of symmetry were invented to express the 
embodied experience of the children. These gestures and 
drawings were examples of the children’s use of their own 
signs to communicate movement, through internalising the 
signs offered by the teacher verbally and the symmetry 
machine visually.

5.2 � Properties and reasoning about symmetry developed

During the second lesson, the teacher worked closely with 
the children on properties of symmetry using the discrete 
symmetry machine. The aim of the lesson was two-fold: to 
introduce symmetry machines with horizontal and oblique 
lines of symmetry and to construct symmetric figures given 
one side of the symmetry line. Ultimately, the teacher 
mediated a discussion on the conditions of line symmetry. 
She showed examples of asymmetric sketches and asked 
the children to explain what it is in the sketch that makes it 
symmetric or not. The children talked about the “amount of 
space” that should be “the same” between squares on both 
sides of the line of symmetry. The teacher also used lan-
guage such as the blocks are “on the same line” and “the 
same amount of distance between the block and the line of 
symmetry” to help children attend to properties of symme-
try. In addition, she occasionally used her hand and arm to 
gesture the way the squares are not “on the same line” or 
do not have the “same distance”. During this part of the les-
son, the children actively engaged in the construction of a 
symmetric figure by talking and reasoning about where the 
squares should be placed, as seen in the following episode.

Excerpt 4: Class discussion on properties of symmetry

T	� This is somebody who made a very boring 
design… Only two squares. Even if it’s boring, it 
can still have symmetry, right?

Ss	� Yes.
T	� Can you help me make it symmetric with this 

one?
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Ss	� [raised their hands].
T	� So ya, you go ahead.
S9	�   <whispered>  One, two [pointed at the empty 

space between the square and the horizontal line, 
see Fig. 6]. I will move the blue one, right over, 
up there.

T	� Up there, ok. I saw you were doing something 
like that [used her left index finger to point 
towards the empty spaces directly above the blue 
square]. What were you doing?

S9	� I was counting how many squares in the space.
T	� How many did you figure out?
S9	� Two.
T	� So where do you want me to put the other one?
S9	� Right on the top.
T	� Can you use the fact that this is two squares away 

to tell me where to put the other one?
S9	� It’s two squares away from the line, so one, two, 

and three [see Fig. 7].
T	� Ok.

In this episode, we see that besides being able to work 
with horizontal symmetry, S9 also used a toolkit to describe 
some properties of symmetry as guided by the teacher. This 
toolkit is made up of a combination of language, gestures 
and visual mediators and could be used to explain why 
one figure is symmetric and not the other. Figure  8 illus-
trates S9’s speech and accompanying gestures while he 
explained why the blue square should be three units above 
the line of symmetry in the dynamic sketch. He first whis-
pered “one, two” to “count the number of squares in the 
space” between the line and the bottom blue square. His 
gestures acted as pivot signs connecting the instrumen-
tal action of the discrete movement of the square and to a 

mathematical meaning of distance to the line of symme-
try. Then, he explained that “it’s two squares away from 
the line, so one, two, and three”, while he pointed to the 
empty space three units above the line with his right index 
finger. S9’s language and bodily actions illustrate two con-
ditions of symmetry, namely distance and perpendicularity, 
when he explained with both words and hand gestures that 
the square needed to be placed three units directly above 
the line of symmetry. This was initiated by the teacher’s 
acknowledgement of S9’s explanation and her question for 
S9 to explain his reasoning in terms of distance and direc-
tion from the line of symmetry. Here, we note the semi-
otic game played by the teacher in her use of language 
and gestures that tune with those of her students, while 
also moving toward shared, mathematical meanings. This 
was a deliberate move by the teacher to help students learn 
beyond Lesson 1 where the children were mainly drawing 
symmetric figures and discriminating between symmetric 
and asymmetric figures without using language to support 
their reasoning. We found further evidence that the chil-
dren talked about symmetry that involves properties and 
reasoning in Lesson 2. This reasoning is evident in a sub-
sequent paper task when the children were asked “Why is 
the square in the wrong place for a symmetry”, as seen in 
S10’s work:

Excerpt 5: S10’s drawing and reasoning after Lesson 2
Figure 8 shows S10’s reasoning about symmetry using 

two different kinds of signs. First, she used the circles on 
the left figure as signs mediating the distance between the 
square on the left and the vertical line of symmetry. This 
helps S10 to reason that the two squares were not equidis-
tant from the line of symmetry. Secondly, S10’s reasoning 
involved the use of arrows, which were previously used as 
signs in the children’s work in the first lesson. In both her 
drawings in Fig. 8, S10 communicated the “wrong place” 

Fig. 6   “One, two.” S9 counting the number of “squares in the space” Fig. 7   “It’s two squares away from the line, so one, two, and three”
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of the squares by indicating arrows showing her desired 
movement of the squares. In general, the use of arrows was 
dominant for the children completing this task whether 
or not it was indicated correctly. From the nineteen chil-
dren who responded in this particular task, sixteen of them 
responded correctly, fourteen of whom drew arrows and 
two of whom drew the desired placement of square with-
out arrows. Only three children responded to the task incor-
rectly, either by drawing the arrows in the wrong way or not 
drawing anything. Also, analysing the classroom activity in 
which the children had to place the squares in the correct 
place, seventeen of the twenty-two responses were correct, 
and all of the children used hand gestures to indicate where 
the squares should be placed. Our data provides consist-
ent evidence that the children thought about symmetry and 
properties of symmetry in a dynamic and multimodal way.

6 � From tools to signs: the role of dragging

It can be said that the children’s new ways of thinking 
about symmetry in terms of word use, gestures and dia-
grams were semiotically mediated both by the use of DGE 
and the teacher’s word use and gestures. In the discrete 
symmetry machine, the discrete movement of squares on 
both sides of the symmetry line produces both artefact and 
mathematical signs. This polysemy of signs can be found 
as children communicated their prediction of a square’s 
movement towards a certain direction as early as in Les-
son 1, where they not only spoke of the movement of a 
particular square (artefact sign) but also related the square 
as a mathematical object with line symmetry (mathemati-
cal sign). For example, S7’s utterances “if you click on this 
blue, the blue will move” illustrate his interpretation of the 
squares as artefact signs. Later, the squares transformed 

as pivot signs when S7 focused his communication on the 
symmetric movement of the squares, as in “it will move 
like opposite, like this one will move to the windows, and 
this one will move to the wall.” These pivot signs seemed to 
transform into mathematical signs in the children’s draw-
ings where arrows were used to express symmetric move-
ment of the square towards, along and away from the line 
of symmetry. The transformation from artefact to mathe-
matical signs is important since it facilitated the children to 
internalise the mathematical signs to create personal mean-
ings. Despite possible criticisms that internalisation in a 
Vygotskian sense is not a visible and objectifiable process, 
our data provide strong evidence that the children were able 
to create personal meaning during their work (both with the 
DGE and with paper-and-pencil). This claim was supported 
by the children’s spontaneous use of signs (squares with 
arrows and gestures indicating movement) in multimodal 
ways and in the absence of a DGE.

Another important catalyst of the semiotic process 
was the teacher’s own use of signs as she led the whole-
class discussions. Her use of words such as “along the 
line”, “towards the line” and “away from the line” evoked 
mathematical meanings of the squares’ movement in rela-
tion to the line of symmetry. We observed that the teacher 
frequently used these words to talk about the movement 
of squares in both lessons. These words may have been 
intentionally introduced by the teacher to help children 
see beyond the squares as pure artefact signs, by focusing 
on the relative position of the squares to the line of sym-
metry. Our findings confirm with previous studies that the 
teacher’s use of language plays a powerful role in shaping 
how students think about the mathematics at hand (Barto-
lini Bussi and Mariotti 2008; Falcade et al. 2007).

Besides word use, the teacher also used gestures as 
semiotic resources to mediate mathematical meaning. For 

Fig. 8   S10’s reasoning of why 
the square is in the wrong place 
for a symmetry
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example, she aligned her arm and hand with the squares on 
opposite sides of the symmetry line when describing that the 
squares should be “on the same line” perpendicular to the 
line. She also used her two index fingers (with one finger 
touching the square and the other touching the line) to act as a 
referent when describing that the squares should be “the same 
distance” away from the line of symmetry. Both her arm and 
hand in these instances have become pivot signs in the pro-
cess of semiotic mediation. In the case of the arm as a tool, it 
serves a purpose much like a straight edge would; it signifies 
straightness. In contrast, the fingers act like a ruler and sig-
nify distance between two objects. Together, the teacher was 
able to mediate the idea that the line of symmetry bisects the 
line that aligns two symmetric objects. However, the notion 
of perpendicularity did not emerge very easily. The children 
could tell visually that there was something wrong if the line 
of symmetry does not bisect the distance between the squares, 
but since they had not encountered the notion of perpendicu-
larity before, they had no way of describing the relationship 
between the line of symmetry and the line connecting the pre-
image and image squares. The use of a grid might have pro-
vided a useful semiotic mediator for this purpose.

This paper has shown that the dynamic nature of the 
geometrical tasks initiated a new discourse for the chil-
dren, which ultimately led to generalising about properties 
of symmetry. However, this was facilitated not only by the 
children’s interactions with DGE, but an important compo-
nent of the process was the teacher’s mediation through her 
language and gestures. As such, we argue that designing 
meaningful tasks with DGE along with supporting teach-
ers in developing appropriate technical and descriptive lan-
guage are necessary to complement an amplified geometry 
curriculum—one that “moves” children from static concep-
tions of symmetry to dynamic and embodied ones.

7 � Discussion and conclusion

Over the course of the three lessons, which included a large 
component of whole-class discussion and interaction with 
the projected images in Sketchpad, as well as opportunities 
for the children to create drawings based on both the discrete 
and continuous symmetry machine, the children changed 
their thinking about symmetry. They began with a static 
discourse on symmetry that was focused on the intrafigural 
qualities of shapes and that featured a small example space 
of shapes with vertical reflectional symmetry. Over the 
course of the lessons, they began to talk about interfigural 
qualities, focusing on the functional relationships of a pre-
image and its image. This shift was occasioned by the pro-
cesses of semiotic mediation in which the dragging tool, the 
language and gestures of the teacher, and the children’s ges-
tures, became shared pivot signs that enabled communication 

about central features of reflectional symmetry including: the 
way in which one side of a symmetric design is the same as 
the other; the way in which one component of a symmetric 
design is the same distance away from the line of symmetry 
as its corresponding image; the way in which a pre-image 
component and its image have to be on the same line relative 
to the line of symmetry; and, the way in which a pre-image 
and an image gives rise to parity.

The children produced new words, gestures and dia-
grams in communicating about symmetry as a result of 
working with the teacher in the dynamic geometry envi-
ronment, which includes both the software and also the 
particular microworlds and tasks that were designed. The 
discrete symmetric machine seemed to help the children 
attend to the way in which an image and its pre-image 
move together according to certain rules (away/toward the 
line or along the line) and the property of equidistance, as 
the space between an image and its pre-image. In terms of 
methodology for future research with young children, this 
paper underlines the value of an analysis that considers lan-
guage, gestures and diagrams as a full set or bundle of chil-
dren’s communication for gaining deep insights into how 
children learn mathematics.

We see an important interplay between the collective 
work with the dynamic computer-based environment and 
the paper-and-pencil individual work at the tables. The for-
mer was not intended to evaluate the children’s understand-
ing but, rather, to provide a way for them to explore that 
understanding through a different medium, in which the tem-
porality of the moving objects would need to be expressed 
through new signs, which were primarily the arrows that 
were used by a large number of students. The diagrams they 
produced occasioned new gestures that enabled the students 
to further develop their dynamic, functional thinking about 
symmetry. We call for an amplified curriculum that includes 
consistent use of DGE in mathematics classrooms to foster 
children’s embodied and dynamic ways to think about geom-
etry and the development of more geometry tasks that focus 
on the dynamic nature of geometry with precise learning 
goals for young children.
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