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offer, both vertically across various ages and horizontally 
across the differentiated needs of learners within a particular 
grade. Through the specific task we discuss in this article, we 
sought to enrich learners’ conceptual networks for optimisa-
tion and rate of change, two topics required for calculus and 
many other fields of study. We developed geometric repre-
sentations that could support new inferences and key under-
standings, and that could scaffold these advanced concepts so 
that they could be meaningfully addressed by learners of vari-
ous ages and mathematical backgrounds. This objective was 
motivated by our broader research on geometry learning and 
spatial visual reasoning, which has shown how pre-service 
teachers were able to make sense of optimisation and rate 
of change in more connected, conceptual ways when they 
engaged with representations that elicited a geometric, spatial 
visual approach. This present research stems from our consid-
eration of the following interrelated questions:

i.	 How can we think about the restructuring of typically 
computation-based tasks so as to support and foster 
geometric approaches and spatial visual reasoning?

ii.	 How can restructuring create interconnected and acces-
sible avenues for engaging with “advanced” mathemat-
ical concepts for students of varying ages and mathe-
matical preparation?

In this article, we develop a model for restructuring 
advanced mathematical tasks with a network of spatial 
visual representations which supports geometric reasoning 
for learners of disparate ages, stages, strengths, and prepa-
ration. We analyse decisions and considerations to shed 
light on how attention to cognitive, content, and pedagogi-
cal facets of learning experiences can interweave to support 
geometric ways of knowing. In particular, we focus on the 
“open box problem”, which centres on optimising rates of 

Abstract  In this article, we develop a theoretical model 
for restructuring mathematical tasks, usually considered 
advanced, with a network of spatial visual representations 
designed to support geometric reasoning for learners of dis-
parate ages, stages, strengths, and preparation. Through our 
geometric reworking of the well-known “open box prob-
lem”, we sought to enrich learners’ conceptual networks for 
optimisation and rate of change, and to explore these con-
cepts vertically across curricula for a variety of grades. We 
analyse a network of physical, geometric spatial visual rep-
resentations that can support new inferences and key under-
standings, and that scaffold these advanced concepts so that 
they could be meaningfully addressed by learners of vari-
ous ages, from elementary to university, and with diverse 
mathematical backgrounds.

1  Introduction

Spatial visual reasoning is recognised as an essential skill for 
functioning in the modern world (National Research Coun-
cil (NRC) 2006; Newcombe 2006) and plays a central role in 
learning and expertise in mathematics (Natsheh and Karsh-
enty 2014). In fact, developing one’s spatial visual reasoning 
can have a direct positive effect on mathematics achievement 
(Uttal et al. 2013). Spatial visual and geometric approaches 
allow for wider accessibility of “advanced” mathematical 
concepts than typical mathematics investigations usually 
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change of volume, and whose reconceptualisation from a 
number-crunching exploration to a geometric investiga-
tion (Whiteley 2007a) afforded new and powerful ways for 
learners to reason with and about this important content. 
We introduce and develop the construct of a task network, 
wherein accordance with the 22nd ICMI study on task 
design, we use the term task to mean a teacher designed 
purposeful ‘thing to do’ using tools for students to activate 
an interactive tool-based environment to produce mathe-
matical experiences. As we illustrate below, a task network 
can be a powerful tool for teachers and teacher educators 
in providing engaging mathematical learning experiences 
that can enrich lessons while respecting the constraints of 
curricular agendas. Such an approach has implications for 
teacher preparation, both within faculties of education and 
departments of mathematics.

2 � A spatial visual approach to the open box problem

Initiated by Whiteley (2007a) and developed in Whiteley and 
Mamolo (2011, 2013), the origins of this research began with 
a perceived need to foster relational understanding (Skemp, 
1976) of key content in university and senior high school 
mathematics students. The open box problem is a long-
standing favourite for introducing rates of change and opti-
misation to secondary school students (Ontario Association 
of Mathematics Educators (OAME) 2005). The approach 
promoted by official curriculum documents in Ontario is one 
of computation and data display, and was found to be dis-
connected from the key underlying conceptual structure of 
optimisation problems, even amongst university graduates 
(Whiteley 2007b). The problem is presented in Fig. 1.

To recast this problem from a numeric activity to a geo-
metric one, the concepts of optimisation and change in vol-
ume were represented by tactile models to invite compari-
sons, through its affordances, of changes in volume between 

two boxes. Explorations of volume are inherently geomet-
ric, and indeed are often included in geometric strands of 
curricula in various parts of the world. The intention was 
to invite geometric reasoning in the form of geometric 
transformations, physical movements, symmetry, and com-
parison of dimensions that could give direct and convinc-
ing evidence as to whether the volume lost is smaller than 
the volume gained between two similar boxes––leading to 
locating the potential maximum (where there is no change). 
In resonance with Sullivan and colleagues’ (Sullivan et  al. 
2013) notion of a purposeful representational task, the recast 
problem uses a tactile model or representation to demon-
strate a mathematical idea, which was then explored, along 
with a network of associated representations. Through this 
engagement, students develop a mathematical concept with 
multiple representations and actions which move among the 
representations in a relational mode. The key representa-
tions developed for this task included pairs of plastic boxes 
cut out from identical rigid square pieces of plastic sheets. 
As in the original task, we cut the corners out of each square 
sheet of plastic (Fig.  1a). Each box is held together with 
elastic bands (Fig. 2a) so that with their removal, the boxes 
can be deconstructed into their original nets. Deconstruct-
ing the boxes into their original nets both allows for com-
parisons of area of different surfaces and for a spatial visual 
representation of the differences in cuts from the corners, as 
presented in the original problem. In addition, previously 
made worksheets and complementary activities we made for 
Geometer’s Sketchpad (Jackiw 1991) are available on the 
wiki site on Optimising with Geometric Reasoning (White-
ley 2011). For a detailed discussion of the materials and 
their affordances for conceptual development, see Whiteley 
and Mamolo (2011, 2013).

In this present study, we identify learning experiences 
and representations that can support and prepare younger 
students in their spatial visual exploration of the open box 
problem and associated spatial visual reasoning. In our 

Fig. 1   The open box problem Given a square sheet of material, cut equal squares from the corners and 
fold up the sides to make an open-top box. How large should the square 

cut-outs be to make the box contain maximum volume? 
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broader research, we examine variances in learner under-
standings and difficulties when engaging with this task 
using a network of purposeful representations. In this, 
we sought to introduce learning experiences and repre-
sentations that could scaffold the open box problem for 
increasingly earlier grade levels. With each occasion, the 
implementation of our spatial visual approach remains con-
sistent: we give two ‘nearby’ boxes to each student. Within 
each pair, boxes differ by 1 cm in the size of the cut of the 
corners (or equivalently in their height). Volume compari-
sons via explorations of change of volume are done through 
the use of purple and red foam inserts. The purple foam 
inserts surround the four outside sides of the inner box, and 
at the top of the inner box is a red foam insert (Fig.  2a). 
The pieces of foam physically represent where volume is 
being lost (purple) and being gained (red) in moving from 
the outer box to the inner box (Fig. 2b). The foam affords 
students ways of physically ‘pulling’ the changes in volume 
out of the model and comparing loss and gain directly to 
identify which box is bigger. For example, in Fig. 2b, the 
lost volume (purple) is clearly less than the volume gained 
(red), thus it can be concluded that the inner box has a 
larger volume.

Rate of change and optimisation are key mathematical 
concepts that weave through much of the secondary and 
tertiary curricula around the world and are topics that are 
utilised in many fields of study including engineering, the 
sciences and business studies. The understanding of these 
concepts also supports the learning of other advanced 
mathematical topics such as derivatives (Weigand, 2014). 
The learning of rate of change and optimisation is usually 
addressed computationally first by listing and comparing 
measurements and then eventually through derivative cal-
culations in calculus. Traditionally, students have found 
rate of change and optimisation especially challenging 
because of lack of conceptual understanding of these topics 
(Herbert and Pierce 2008; Moreno-Armella 2014). Reform 
efforts in calculus have recommended utilising spatial vis-
ual tools to increase student understanding of conceptual 
ideas (Berry and Nyman 2003). While students of calculus 

hold many misconceptions of some of the conceptual 
underpinnings of these topics, geometric contexts can pose 
additional layers of difficulty for rate problems (Martin 
2000). Considering the difficulties underlying conceptual 
understandings that key concepts in calculus pose for learn-
ers in higher education, researchers (e.g. Cuoco and Gold-
enberg, 1997; Tchoshanov et al. 2002) have recommended 
building the underlying conceptual understandings of cal-
culus, including rate of change and optimisation, as early as 
elementary school.

As mentioned, our geometric approach to exploring 
optimisation was first developed by Whiteley for secondary 
and tertiary students (and their teachers) as a way to give 
a meaningful re-examination of the usual computational 
approaches to optimisation through spatial representations 
of key ideas and reasoning with their relationships. When 
implemented with sufficient time, they provide an alterna-
tive way to ‘make sense’ of why the solution found should 
be the optimum shape. In that context, further activities 
with imaging smaller cuts lead to an exact solution, still 
based on the fundamental idea of comparing change in vol-
ume of nearby boxes. We have found that younger elemen-
tary students are intrigued by the question of ‘which box 
is biggest’, and when invited to compare change in vol-
ume, knew to pull out the red and purple foams, and over-
lay them, to discover which box had the greater volume. 
This representation offers much younger students access to 
reasoning about some key ideas in optimisation without a 
symbolic or computational approach.

3 � Affordances of spatial visual approaches

Our approach was motivated by research which connects 
the spatial visual abilities of students to future school suc-
cess in math and science (e.g. Newcombe 2010), as well as 
by research which indicates that spatial visual approaches 
help build conceptual understanding for calculus (e.g. 
Tall 2007). Spatial reasoning, visual reasoning and spatial 
visual reasoning have been used interchangeably in the 

Fig. 2   Models
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research literature. We rely on Presmeg’s (2006) definition 
of spatial visual reasoning:

“When a person creates a spatial arrangement (includ-
ing a mathematical inscription) there is a visual image 
in the person’s mind, guiding this creation. Thus visu-
alization is taken to include processes of construct-
ing and transforming both visual mental imagery and 
all of the inscriptions of a spatial nature that may be 
implicated in doing mathematics” (p. 206).

Children come to school with informal spatial visual 
reasoning skills and with abilities to understand abstract 
ideas, often before they are introduced in the curricu-
lum (e.g. Bryant 2008; Sinclair et al. 2013). In and out of 
school, young children actively use spatial visual reasoning 
in geometric contexts (e.g. navigating, searching, estimat-
ing and determining which is the ‘bigger piece’ of cake). 
Continuing to develop spatial visual reasoning, and con-
necting it explicitly to mathematics, may be necessary for 
achievement and understanding in mathematics (Arcavi 
2003; Koehdinger 1992). However, not all students rely on 
or prefer utilising spatial visual reasoning in performing 
mathematical tasks (Presmeg 2014). Arcavi (2003) points 
to three different reasons for why spatial visual tasks may 
be demanding for children in school: (i) the potentially 
high cognitive demands of spatial visual processing, (ii) 
the views different cultures have about the nature of math-
ematics, and (iii) the roles spatial visual processing plays 
in different cultures. The lack of attention to strengthening 
spatial reasoning in schools contributes to the high cogni-
tive demand in essential ways––making the cognitive load 
higher when the reasoning feels novel to the student. In 
our context, we developed a network of supporting tasks 
to reduce the cognitive demands of the open box problem. 
The network was designed to support spatial visual reason-
ing and knowledge embedded in school curricula, while 
attending to the needs and prior experiences of students of 
diverse backgrounds.

Although the subject of geometry presents a most fitting 
place to teach spatial visual reasoning, geometry teachers in 
North American classrooms face distinctive challenges that 
begin in elementary school and extend throughout pupils’ 
education. Numeracy-focused curricula with rote and shal-
low approaches to geometric facts, an over-reliance on reg-
ularly shaped prototypes, and vague connections between 
geometric concepts with limited support of geometric and 
spatial reasoning are some of the concerns often cited by 
advocates of richer geometric approaches to mathemat-
ics. These concerns emerge alongside the usual challenges 
in mathematics education of meeting the disparate needs 
of often de-motivated, disenchanted students in an over-
populated, under-supported classroom (Moss et  al. 2015). 
In response, differentiation, the purposeful reshaping of 

teaching practices to offer multiple approaches in learning 
environments or materials, has become a key instructional 
strategy in equitably meeting the needs of all learners in the 
classroom (Strong et  al. 2004; Tomlinson 1999). In what 
follows, we develop the construct of a task network, which 
allows for the flexible restructuring of advanced mathemat-
ics concepts to support and foster spatial visual reasoning 
for improved academic achievement and differentiation 
across grades and learning needs.

4 � Theoretical underpinnings and a model for task 
networks

In developing our notion of a network of learning expe-
riences, we again found ourselves networking––this 
time with the theoretical underpinnings that inform our 
understanding of the mathematical content, pedagogi-
cal approaches, and cognitive processes of and for math-
ematics learning. These considerations formed the bases 
of our thinking and analyses of networked learning experi-
ences, and we apply them with terminology borrowed (and 
adapted for our purposes) from graph theory to develop a 
model for conceptualising task design, with particular refer-
ence to the design of geometric spatial visual tasks. As with 
other networks, ours can be modelled by a mixed graph, 
with nodes that are linked by either directed edges (i.e. 
there is an orientation flowing from one node to another) or 
undirected edges (i.e. there is no orientation, and the flow 
can go back and forth between nodes). We elaborate on 
this metaphor further below, and first provide an overview 
of each of the theoretical underpinnings, which we then 
integrate. In considering mathematical content, we rely on 
Simon’s (2006) construct of key developmental understand-
ings; conceptual blending as developed by Fauconnier and 
Turner (2002) sheds light on the processes used by learn-
ers to conceptualise new (for them) mathematics; and we 
recast Anghileri’s (2006) framework of scaffolding inter-
ventions for use in task design.

4.1 � Key developmental understandings

Simon (2006) introduces the construct of KDUs “to empha-
size particular aspects of teaching for understanding and to 
offer a construct that could be used to frame the identifica-
tion of conceptual learning goals in mathematics” (p. 360). 
The construct was developed through the coordination of 
social and cognitive perspectives on learning mathemat-
ics with the intent to shed new light on ways of thinking 
about understanding. KDUs involve a change, or concep-
tual advance, in students’ mathematical reasoning that often 
cannot be acquired as the result of an explanation or dem-
onstration. It is an important advance in the development 
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of a concept, and “identifies a qualitative shift in students’ 
ability to think about and perceive particular mathemati-
cal relationships” (p. 363–4). Simon (2006) provides as an 
example the understanding of fraction as a quantity, and 
notes that this KDU is distinct from the formal definition of 
a rational number. In particular, KDUs afford new ways to 
think about and perceive mathematical relationships, which 
otherwise might not be available.

In their work with adult learners, Sinclair, Mamolo, and 
Whiteley (2011) identify KDUs for spatial visual reason-
ing in tasks related to proportional change. We highlight 
ones that apply more broadly to spatial visual reasoning 
with geometric tasks, such as making connections between 
3-D and 2-D representations, and noticing mathematically 
significant details and ignoring “distractors” such as physi-
cal imperfections of 3-D models. In the context of spatial 
visual approaches to optimising rates of change, we note 
that the ability to think about changes in volume as enti-
ties which may be compared, and that the result of the 
comparison reveals information necessary for obtaining 
the optimum volume, is an important KDU. In the con-
text of task design, we draw on KDUs to inform the pro-
visions and representations included within the task that 
may be manipulated or acted upon by the learner so that he 
or she may develop the required understanding. Thus, for 
our task, we made deliberate choices in the representations 
of mathematical relationships and ideas to help foster and 
support thinking about change in volume as an entity. We 
see a KDU as a new inference––a new piece of mathemati-
cal understanding––that is accessible to individuals through 
their negotiation of new learning experiences. The theory 
of conceptual blending informs our understanding of how 
such an inference may develop, and thus also influences 
choices in task design.

4.2 � Conceptual blending

Fauconnier and Turner (2002) offer a theory of conceptual 
blending to describe how new inferences can arise when 
two representations and associated ways of reasoning (or 
‘input spaces’) are brought together in a ‘blended concept’. 
The blend can be thought of as a mapping which combines 
features of the input spaces and projects them onto a third 
(newly formed) mental space––the output space. In a blend-
ing process, some features of the input spaces are mapped, 
while others are not, thus directing focus of attention and 
reducing the overall cognitive load for further reasoning. 
Blends are used to conceptualise actual things such as com-
puter viruses, fictional things such as talking bananas, and 
impossible things such as time travel. Although sometimes 
bizarre, “the inferences generated inside them [concep-
tual blends] are often useful and [can] lead to productive 
changes in the conceptualizer’s knowledge base” (Coulson 

and Oakley 2005 p. 1513). Blending is not a metaphorical 
or analogical map, rather it is a specific way to combine 
and infer from and about information from two or more 
input spaces (Fauconnier and Turner 2002). The partial rep-
resentations from an individual’s perceptions and concepts 
that are contained in the prior mental spaces blend by “the 
establishment and exploitation of mappings, the activation 
of background knowledge, and frequently involve the use 
of mental imagery and mental simulation” (Coulson and 
Oakley 2005 p. 1513).

An emergent blended space arises in three ways: 
“through composition of projections from the inputs, 
through completion based on independently recruited 
frames and scenarios, and through elaboration” (Faucon-
nier and Turner 2002 p. 48, emphasis as in original). Spe-
cifically, composition creates new relations not previously 
existent in the separate input spaces, while completion 
allows the composite structure in the blended space to be 
thought of as part of a larger structure in the blend, and 
elaboration, or ‘running the blend’ consists of cognitive 
work performed within the blend to exploit and elaborate 
upon the composite structure (Fauconnier 1997 p. 150–1). 
The blend continues to offer the individual ways to access 
each of the original representations, in a flexible manner. 
In our model for networked tasks developed below, we use 
directed edges to illustrate composition, completion, and 
elaboration of new blends as they arise from new or revis-
ited input spaces.

4.3 � Scaffolding

As indicated, an objective of this research was to restruc-
ture a conceptually advanced task so that it was accessi-
ble and applicable to young students. To do this, we relied 
on scaffolding strategies as they were applied specifically 
to mathematics learning by Anghileri (2006). Anghileri 
extended early work by Wood, Bruner, and Ross (1976) 
who articulated a framework for learning through scaffold-
ing, so as to tailor such provisions to the specific needs of 
mathematics learners. She developed a three-level hierar-
chal framework of interventions that includes (i) environ-
mental provisions, (ii) explaining, reviewing, and restruc-
turing, and (iii) developing conceptual thinking. Anghileri’s 
first level, environmental provisions, is where the teacher 
scaffolds the environment around the learner through provi-
sions such as: classroom artefacts (e.g. manipulatives, wall 
displays, or measuring tools), peer collaboration, sequenc-
ing and pacing, and structured or self-correcting tasks. 
These provisions help realise Wood et al.’s (1976) elements 
of scaffolding, including reducing degrees of freedom 
through structured tasks, direction maintenance through 
deliberately chosen artefacts, and frustration control 
through sequencing and pacing. The next level, explaining, 
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reviewing and restructuring, is meant to scaffold the inter-
actions between the teacher and her students. Some exam-
ples of scaffolds in this level include: rephrasing students’ 
talk, providing meaningful contexts, simplifying and 
modelling, and negotiating meanings. Connecting again 
to Wood et  al.’s framing, recruitment can occur through 
a meaningful context, while rephrasing students’ talk can 
help mark critical features and modelling gives a way to 
demonstrate. Anghileri’s final level, developing conceptual 
thinking, diverges most notably from Wood et al.’s descrip-
tion. It includes developing representational tools (in line 
with Sullivan et  al. 2013), making connections between 
mathematical ideas, and generating conceptual discourse 
where the teacher focuses on and extends the mathematical 
activity through questioning and reflecting.

While Anghileri discusses this framing in terms of 
classroom interactions and the ways teachers may respond 
in the moment to promote mathematics learning, we apply 
her conceptualisation to analyse our process of design-
ing the network of learning experiences. As such, we 
extend this work to illustrate how attention to scaffolding 
practices may inform decisions in task design and devel-
opment, and we highlight the provisions which we view 
as of particular importance to geometric spatial visual 
reasoning.

4.4 � Integrating perspectives for task design

The means by which one theoretical perspective informed 
another is quite subtle and varied. We share our approach 
in combining these perspectives, elaborating on the details 
in the context of our task network model in the following 
section. As task designers, we had specific intentions with 
respect to the mathematical ideas and thinking we hoped 
to cultivate with our students. We recognised there were 
several important understandings and representations that 
could support the open box exploration, and that some of 
these understandings might require a conceptual shift on 
the part of the learners. The occurrence of such a shift can 
be interpreted as a key developmental understanding since 
it develops the concept in the mind of the learner. Then, in 
the process of task design, we asked: how might a student 
be supported in acquiring such a KDU? That is, what dif-
ferent input spaces are, or could be, available for a learner 
to draw from, such that the experiences, images, and repre-
sentations of those input spaces afford the composition of 
a conceptual blend that may yield this KDU? In selecting 
and designing the provisions of the (external) input spaces 
of a task, we look toward scaffolding practices for insight. 
Affordances such as multiple entry points (e.g. Groot-
enboer 2009), purposeful representations (Sullivan et  al. 
2013), and negotiating meanings, inform what and how 
to design a geometric spatial visual learning activity such 

that diverse learners may develop new ways to think about 
mathematical relationships and ideas.

5 � A networking approach––developing a model for task 
design

In our task design research, we found a networking 
approach to be useful on multiple levels:

In negotiating and articulating relationships amongst the 
(intended) content understanding to be developed by the 
learner, the cognitive processes by which such under-
standing may develop, and the pedagogical considera-
tions and affordances that may support such processes;
In selecting and integrating curricular content across var-
ious strands to support meaningful connections amongst 
multiple representations (e.g. numeric, visual, physical). 
Each learning centre for our task focused around one or 
two ideas and spatial visual representations, which con-
tributed to the individual nodes of the network;
In applying and integrating scaffolding practices for 
each individual learning centre.

Curriculum enactment is an important determining fac-
tor in the way understanding develops (Cohen and Ball 
1999), as such we pay special attention to integrating cur-
ricula in our task network. In what follows, we begin with a 
discussion of the first point and develop a model for a task 
network within the context of restructuring a tertiary-level 
activity for applicability across various grades. We illus-
trate ways curricular content may be networked, and then 
offer an analysis of scaffolding practices that supported 
our networking of this material for the purposes of meet-
ing diverse learning needs, as it comprised part of a larger 
mathematical investigation.

5.1 � A task network: the model

An integral feature of our task network is the considera-
tion of the interplay between the intended teaching of the 
task and the constructed learning of the student (Stein and 
Lane 1996). In negotiating and articulating relationships 
amongst the (intended) content understanding to be devel-
oped by the learner, the cognitive processes by which such 
understanding may develop, and the pedagogical consid-
erations and affordances that may support such processes, 
we introduce the construct of a task network. We borrow 
terminology from graph theory and illustrate the construct 
in a generic form in Fig. 3. In Figs. 4, 5 and 6, we model 
particular task networks and analyse them with respect to 
our theoretical framing. Specifically, a task network inclu
des:
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•	 Nodes––these are the fundamental units from which 
graphs are formed. In graph theory, they may be treated 
as ‘featureless’ or they may have an internal structure, 
representing concepts or classes of objects. The nodes 
in our model have structure and represent “learning cen-
tres” which are then networked. This network of nodes 
is what we describe as our task network, and we illus-
trate it with examples below. Zooming in, each node 
may also be represented by a network of KDUs, concep-
tual blending, and scaffolding practices. That is, each 
node was designed around a particular representation 
and context, relevant to the age and stage for which the 
task was restructured. The representation and context 
were chosen to illuminate or support an intended KDU, 
and as such form external or physical input spaces 
which may be projected by the learner in the creation of 
a new conceptual blend (Whiteley 2012). Zooming back 
out again, the intended KDUs for each node were cho-
sen with the task network in mind––every new inference 
accessible to learners through their negotiation of a par-
ticular node was intended to support further inferences 
that could eventually lead into a conceptual understand-
ing of optimising rates of change in a geometric context.

•	 Edges––these connect nodes and, in a mixed graph, may 
be either directed or undirected. A directed edge is one 
with orientation, it can be thought of as an edge that 
proceeds from one node to another. An undirected edge 
has no orientation and links nodes without distinguish-
ing one as a predecessor of the other. In our model, we 
use edges to represent links between KDUs. When the 
edge is directed, it indicates that to acquire a particu-
lar KDU for our task, some previous key understand-
ing must have been developed first. The flow of these 
edges begins in each task network with the tail (in our 
case, a paper folding activity) and ends at the head (the 
open box investigation). This flow is scaffolded in our 
network by the inclusion of ‘intermediate’ nodes which 
are linked to and from the head and tail, as well as 
amongst themselves. For the most part, these interme-
diate nodes are linked amongst themselves with undi-
rected edges––that is, the KDU developed in one node 
need not precede the KDU developed in another. In our 
ongoing research, we explore the implications for stu-
dent learning if these edges are treated as undirected 
versus directed.

•	 Arcs––this is another term for directed edge, yet we dis-
tinguish it for our purposes by applying the terminology 
to the blending process, rather than the progression of 
KDUs. These arcs may flow in the same direction as 
the directed (KDU) edges in our model, they may flow 
in the opposite direction, and they may loop around, 
revisiting some prior node to thicken understanding at 
the head. In our models, when the arc aligns with the 

directed (KDU) edge, we do not distinguish (visually) 
between the two. We suggest that each node may serve 
as an input space for conceptual blending as it relates to 
the KDUs of any other node (in a sense forming ‘loops’ 
or ‘multi-edges’). Thus, within a task network, there are 
multiple possible trajectories a learner may follow to 
acquire the intended KDUs, and correspondingly, mul-
tiple possible blends afforded.

6 � Task networks for geometric reasoning

In this section, we discuss examples of how the construct 
of a task network may be used to develop and analyse a 
network of learning experiences. We begin by identifying 
our simplest network, which served as the basis from which 
more complex, and differently structured, task networks 
were generated. This two-node network was developed for 
advanced learners, and we illustrate our process of restruc-
turing to meet the diverse needs of novice learners at differ-
ent stages in their mathematical preparation. This network 
is linked with directed edges (in green) and arcs (in purple), 
and is depicted in Fig. 4. The tail node is a paper folding 
activity (PF) in which the students cut a square piece of 
paper and create a box they predict will be ‘biggest’. Typi-
cally, we then incite conversations from the beginning by 
asking them to create a different box, with a different vol-
ume, supporting the key developmental understanding that 
one shape of paper can create boxes of different volumes. 
The head node is the open(plastic) box activity (PB) we 
described above, the models for which open up to shapes 
of the cut paper––confirming these represent several ways 
to explore the common boxes. Attending to the head node, 
we sought to develop the key understanding that changes in 
volume may be compared directly (as encapsulated entities 
of loss and gain), and the result of this comparison reveals 
the direction of change of cut of a given box necessary for 
moving towards the optimum volume. For this purpose, 
we considered what available blends might be afforded 
by the task network and the particular representations and 
contexts within each node. The input spaces at this node 
included (i) the word problem of maximum measured vol-
ume (a meaningful context), (ii) the classical approach to 

Fig. 3   Generic task network with nodes (blue), undirected (orange) 
and directed (green) edges, and arcs (purple)
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optimisation through calculus and rate of change (making 
connections to students’ prior knowledge), and (iii) the spa-
tial reasoning (i.e. the variational exploration of change in 
volume represented physically with pieces of foam––repre-
sentational tools). In italics, we emphasise the scaffolding 
practices introduced by Anghileri as they may be applied 
to the task design, and reserve further discussion for the 
following section. As discussed in Whiteley and Mamolo 
(2013), these input spaces may be projected onto a blended 
space which would allow the individual to conceptualise 
change in volume physically by considering surface area 
for loss and gain (ΔV in symbols, pieces of foam in the 
model), and then complete, or run, the blend to focus on 
the sign of the change, with a simple physical comparison 
via foam inserts, to determine which changes will make the 
volume larger.

As mentioned above, one of our objectives was to 
restructure this task network so that it was appropriate for 
a variety of learners across a variety of grades. We discuss 
two such examples of restructuring, one which was used 
with Grade 5 (Fig.  5) students and the other with Grade 
9 students (Fig.  6a). We highlight these two examples as 
they identify different ways the nodes may be linked in a 
task network. In these cases, the ‘intermediate’ nodes were 
informed by the curricular expectations required for that 
particular grade, and in some cases were constrained by 
them (for instance, when directed to cover certain expecta-
tions and avoid others).

6.1 � Restructuring the open box problem: an example 
for Grade 5

When working with Grade 5 students, we introduced 
three ‘intermediate’ nodes for comparing volumes, linked 
by undirected edges (depicted in orange)––a computa-
tion activity (C), a measuring activity (M), and a filling 
activity (F). Directed edges (green arrows) stemmed from 
the paper folding activity (PF) to each of the intermedi-
ate nodes, and other directed edges stemmed from each of 
the intermediate nodes to the open box activity (PB). To 
reduce the complexity of presenting the model here, we 

do not identify all of the arcs representing possible blend-
ing (depicted in purple), but one may imagine them there. 
Again, each of the nodes was designed to support the vol-
ume comparison KDU, and each afforded its own KDU 
around which scaffolding provisions and blending oppor-
tunities were designed. For instance, the filling activity 
(F) included a story context of a vacation with the family 
in which boxes of snacks were to be prepared in advance. 
The activity involved comparing volumes of boxes by fill-
ing them with rice crispies and comparing the ‘overflow’ 
as the rice crispies were poured between boxes of different 
cuts. For a Grade 5 student, this can be seen as a KDU, as 
it allows a new way to think about volume comparison that 
does not require calculating one volume first and then the 
other. By simply attending to the overflow of rice crispies, 
one can deduce which box is the bigger between the two, 
within a margin of error in the models (such as bulging 
sides), as well as infer the direction of change required to 
move towards an optimum. With respect to the affordance 
for conceptual blending, input spaces included the physical 
representations, the context, and prior experiences baking 
at home (where strategies for measuring ingredients lent 
themselves to this context). Comparing volumes of two 
boxes is the common theme in all of these nodes, and the 
open box models support more exact comparisons when 
the prior pouring comparisons were inconclusive. A goal is 
that all these representations of changing volume blend into 
a richer concept of volume change.

6.2 � Restructuring the open box problem: an example 
for Grade 9

Another important representation that lends itself to a 
richer concept of volume is a graphical one, which is 
appropriate for students who have seen graphic displays, 
even of data (senior elementary, secondary, and tertiary) 
and which can follow physical explorations of volume 
change. In Fig.  6a, we illustrate how this representation 
was networked with the other representations for Grade 
9 students. This representation connects to the KDU 
observed by Sinclair et  al. (2011) of negotiating physi-
cal constraints of 3-D models. Specifically, the open box 
activity (PB) as presented is constrained by the thickness 

Fig. 4   A two-node network

Fig. 5   A task network used with Grade 5 students
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of the foam and because of this affords blends that sup-
port understanding of average rates of change, but not 
instantaneous rates of change. One approach is to make 
the differences of the boxes very small––the thickness of 
Bristol board, for instance. This provides a physical form 
of taking limits of changes in cut size by focusing atten-
tion on comparing surface areas. The G node in Fig. 6a can 
both precede and follow the PB node (creating a loop or 
multi-edge), and allows for an integration of input spaces 
that can support one another. Preceding the PB explo-
ration is an activity that begins with a table of volumes, 
structured by the size of the cut, and graphed as a scat-
ter plot. This representation supported the understanding 
that the extremes (cut nothing, cut half-way to the centre 
of the edge) were of zero volume, and that there would be 
a maximum that was not the (expected) cube. Following 
the PB node, the graphical representation may be extended 
and refined using GSP to depict what happens with smaller 
and smaller steps (cut sizes) until eventually focusing on 
the sign of the local change (qualitative instantaneous rate 
of change) by comparing surface areas (as illustrated in 
Fig. 6b). These graphical representations highlight impor-
tant connections between average rates of change and 
slopes of secant lines, and instantaneous rates of change 
and slope of tangent lines––notions typically reserved 
for university calculus, but which are made visible and 
made a source of reasoning for younger students through 
the networking of geometric spatial visual and graphical 
representations. They allow an elaboration of the concep-
tual blend relating to which boxes cannot be the optimum 
(there is a change which increases the volume) and why 
there is a single ‘max box shape’ (as opposed to the exist-
ence of two differently cut, but equally optimal boxes).

6.3 � Restructuring the open box problem: further examples 
and a generalised approach

In this section, we shift focus to view the general within 
the particular (Mason and Pimm 1984)––that is, through 
our consideration of particular examples, we illustrate 
how our construct may be operationalized in general for 
the purpose of restructuring other tasks. Specifically, we 
explicate a process by which an “advanced”, task may be 
restructured in a network to foster and elicit more acces-
sible spatial visual approaches. Key to this is that the task 
designers (as a group) bring multiple representations, typi-
cally spatial visual, to the topic––so that an initial network 
of representations can be explored. These representations 
are chosen with curricular/learning objectives in mind. 
As an example, the networks depicted in Fig. 7 highlight 
how the restructuring of a simple network can yield dif-
ferent possible opportunities via different possible inter-
mediate nodes. Further, in Table 1, we exemplify specific 
spatial visual representations that were networked in tasks 
to support particular KDUs in optimisation, proportional 
reasoning, and groups of symmetries, respectively. In 

Fig. 6   A A network used with 
Grade 9 students. B Graphical 
representations and instantane-
ous rates of change: a not a 
possible maximum (non-zero 
rate), b a possible maximum 
(zero rate)

Fig. 7   Other task networks
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general, each node is designed around a particular rep-
resentation relevant to the age and stage for which the 
task is being restructured. Representations are chosen 
based on their ability to support or illuminate an intended 
KDU. For instance, the KDU of making connections 
between 3-D and 2-D representations could be supported 
by two nodes—one focused on a 3-D exploration with 
filling boxes, and one focused on a 2-D analogue which 
encodes the same information via a flat representation. 
As we describe below, considerations then turn to avail-
able scaffolds that could form parts of external or physical 
input spaces in a projected conceptual blend. Such scaf-
folds could include physical artefacts (e.g. boxes to meas-
ure), contexts (e.g. a family picnic), or opportunities for 
peer–peer teaching. The intent is to make available possi-
ble connections or experiences which can then be consoli-
dated or ‘networked’ in the mind of the learner. Each node 
is then considered in connection to other possible nodes, 
with particular attention paid towards how one node might 
support another and whether the relationship is reflexive or 
hierarchal. In the former case, a KDU associated with one 
particular node need not precede that of another node––
that is, the conceptual blends that may be composed or 
completed at one node need not constitute input spaces for 
blending at another node. In the latter case, the intended 
KDU might require the running of a blend composed in 
one or more prior nodes (e.g. if representations build off 
of one another).The arcs which illustrate the ‘flow’ of the 

network (e.g. Fig. 7) correspond to how the task network 
can be implemented––they highlight the different, but 
complementary, trajectories which comprise the network.

7 � Supporting the network: a look at scaffolding 
within nodes

We now zoom into consider some of the structural features 
of the nodes. These scaffolding practices (and others) sup-
ported our task networks and allowed us to provide entry 
points to multiple learners of diverse mathematical abil-
ity and background. As indicated, we used scaffolding on 
multiple levels––both to restructure a tertiary-level task 
network, and to inform the provisions of particular nodes 
within that network. In each case, the external ‘scaffolds’ 
may be removed––in the former case, nodes for Grade 5 
students may be omitted when using the task with Grade 
9 students, and so on, in the latter case provisions such as 
a particular context may be removed when it is no longer 
needed. We note that while the external supports of the 
scaffolds may be removed, the representations made 
available to the learner via conceptual blending remain 
accessible and useful. In this section, we turn our atten-
tion toward the process of networking scaffolding prac-
tices within particular nodes of our task network for the 
purpose of supporting geometric spatial visual reasoning 
of volume change. Our approach diverges from Anghileri’s 

Table 1   Examples of spatial visual representations for networking tasks



493Developing a network of and for geometric reasoning

1 3

(2006) positioning of scaffolding practices as having a 
hierarchal structure, and extends the applicability of scaf-
folding from supporting classroom interactions to orches-
trating them. In Fig.  8, we illustrate how our theoretical 
underpinnings informed the design and structure of each 
node. Essential to the development of our task network 
was the integration of scaffolding practices, and our pro-
cess began with what Anghileri (2006) describes as level 
3 scaffolding––developing conceptual thinking. This was a 
fundamental goal of ours, and it informed all of our subse-
quent decisions regarding environmental provisions (level 
1) and task restructuring (level 2). Indeed, the hierarchical 
positioning attributed by Anghileri to these three catego-
ries of scaffolding was not something that for us translated 
into distinctive categories or privileged strategies––rather, 
it was through networking strategies that we were able 
to leverage the original task to foster the aforementioned 
KDUs and opportunities for conceptual blending. We illus-
trate our process by focusing on some of the scaffolding 
techniques used for Grade 5 students in the task network 
depicted previously in Fig. 5.

7.1 � Developing conceptual thinking through task 
restructuring

Restructuring is described as a scaffolding strategy in 
which teachers “introduce modifications that will make 
ideas more accessible, not only establishing contact with 
students’ existing understanding but taking meanings for-
ward” (Anghileri 2006, p. 44). Our initial approach was 
to restructure the original open box exploration so that 
students with minimal formal exposure to volume, 3-D 
shapes, and nets could eventually reason meaningfully 
about volume optimisation. We also saw a need to not 
only take meanings forward, but also to extend them later-
ally––making connections with other strands such as num-
ber sense, measurement, and data management. Fostering 
spatial visual reasoning as students (re)addressed geomet-
ric concepts or arithmetic algorithms was an important 

predecessor to the volume comparison strategies (Battista 
2003) afforded by the open box materials, and an essential 
element in promoting conceptual thinking. As Anghileri 
notes, “making connections is crucial as a strategy to sup-
port mathematics learning” (Anghileri 2006, p. 48 empha-
sis as in the original text).

7.2 � Developing conceptual thinking through structures 
provided in the environment

Anghileri (2006) discusses the purposeful arrangement of 
the environment outside of teacher/student communication 
that scaffolds student learning. For example, peer collabo-
rations were seen as important (Cohen 1994) scaffolding 
tools, especially for visual activities with disparate learning 
needs of students, and as such were key components of all 
the tasks and activities. Peer collaboration became a sig-
nificant tool for us in supporting the learning needs of all 
the students, especially for those significantly behind grade 
level.

Part of conceptual thinking in geometry involves con-
nections with other subjects, thus we sought to make our 
task network multi-representational, involving different 
strands from the curriculum. We included multiple spa-
tial visual representations of the ranking of volume of the 
boxes, which were then coordinated via data management 
principles. Students organised the measures of volume 
data into charts and directions of change were provided as 
supports, which paralleled the type of charts often used in 
calculus for investigating first and second derivatives for 
graphing and optimisation. Our representations also over-
lapped with ideas from algebra and patterning when we 
introduced conventions, symbols and tools for recording 
the data on volume.

Our provisions for artefacts included both structured 
tasks and self-correcting tasks. Structured tasks can include 
worksheets, but Anghileri (2006) includes all tasks, even 
those initiated by the student, that have a structure or chal-
lenge imposed on the task. The manipulatives and repre-
sentations that were chosen to support the foam exploration 
had both structured and self-correcting aspects to them. We 
observed the students using self-correcting gestures as they 
used the rice crispies to compare volume. The boxes the 
students made were not as rigid as the model with foam. As 
the students filled their boxes with rice crispies, there were 
visible sources of errors in the bulging sides of the boxes 
and in the rounded mounds of rice crispies at the top of the 
boxes. The visible sources of errors left uncertainty amongst 
the students. This uncertainty supported the desire for more 
accuracy in using the rice crispies. We observed the students 
making a sweeping gesture over the top mound of rice crisp-
ies to ensure that there was no overflow. This spontaneous 
gesture made it likely that the same pattern of ranking would 

Fig. 8   Scaffolding practices provide structure to nodes, are informed 
KDUs, and afford opportunities for conceptual blending
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be found with the rice crispies as with the foam comparisons 
(where that representation has a ‘flat top’ with no overflow).

Students recognised sources of error and used the foam 
comparisons, which were sharper even with different visi-
ble sources of error, to resolve the errors of the rice crispies. 
The purposefully designed representational materials––the 
plastic boxes with foam inserts––supported self-correction 
as well. These materials supported reasoning that was con-
vincing to the students and not reliant on teacher feedback. 
The foam exploration helped verify student conjectures 
about the increase of volume to an expected maximum, and 
then a decrease back to zero as the cut size (height) was 
increased from zero.

7.3 � Restructuring by providing opportunities 
for negotiating meanings

Beginning with an open-ended task was intended to elicit 
interest, promote creativity in problem solving, and encour-
age flexible and communicative approaches (Silver 1997). 
The open-ended nature of finding a box that ‘would be right 
for your families’ invites multiple solutions to the problem, 
and as such allows opportunities for students to negotiate 
meanings and connect mathematical ideas. We intended 
to evoke problem solving through spatial reasoning as the 
students considered the size of their families and connected 
this information back to the question. Negotiating mean-
ing is again strongly connected to the environmental provi-
sions afforded in the task design––namely the element of 
peer collaboration. Students began the exploration in pairs, 
then transitioned to increasingly larger groups, where they 
had to explain their approaches, negotiate goals for solving 
the problem (e.g. finding a largest box), justify their spatial 
visual estimations of size rankings, and then negotiate and 
implement strategies for verifying their estimations. These 
negotiations supported connection-making as well as the 
use of artefacts as representational tools.

8 � Concluding remarks

Geometric spatial visual reasoning plays important roles in 
learning mathematics: it acts as a tool to represent understand-
ing of concepts, and as a process through which to understand 
concepts (Bruce and Sinclair 2015). In developing the con-
struct of a task network for and of geometric reasoning, we 
were able to leverage the benefits of spatial visual approaches 
to mathematics to allow for wider accessibility of advanced 
concepts, specifically, optimisation and rates of change. These 
concepts are rarely introduced formally to young students, 
yet, they are concepts for which many children have an infor-
mal understanding and an interest. Optimisation and rate of 
change are also concepts that allow for multiple approaches 

and connections amongst more familiar concepts in the ele-
mentary school curricula (Cuoco and Goldenberg 1997). In 
particular, by addressing optimisation via rate of change in 
volume, our task networks support important geometric rea-
soning through geometric transformations, including physi-
cal movements, symmetry, proportional reasoning, and visual 
spatial estimation. While relatively little research attention has 
been paid to children’s practices in using and estimating vol-
ume (Vasilyeva et al. 2013), Dorko and Speer (2014) found 
that the difficulties the students experience with volume can 
inhibit achievement in mathematics, and may extend as far as 
university calculus. As such, there is a need for research that 
attends not only to student difficulties, but also to strategies 
and approaches that can help provide alternative representa-
tions that overcome or bypass these difficulties. Our research 
makes an important contribution in this direction by develop-
ing tasks that network ideas of volume and volume change 
across various stages of learning––from elementary to tertiary 
education, as well as by offering a construct for task develop-
ment that can foster connected approaches to other curricu-
lar content both vertically across grades, as well as laterally 
across strands and ways of reasoning.

We suggest that our task network affords possibilities 
for teachers and teacher educators to support connections 
amongst post-secondary, secondary, and elementary school 
mathematics. Further, our research sheds light on how the 
complexities of teaching toward conceptual understand-
ing in geometry and through geometric ways of reasoning 
may be captured and used to advantage in task design. By 
networking theoretical frameworks, we illustrate the inter-
dependent relationships of content (KDUs), cognition (con-
ceptual blending), and pedagogical sensitivities (scaffold-
ing) in teachers’ disciplinary knowledge of mathematics. 
We suggest that such relationships are important to foster 
in teacher preparation, both within departments of math-
ematics and faculties of education. Looking forward, our 
research invites further questions specifically connected to 
these complexities. The question of how learning trajecto-
ries may differ depending on the sequence through which 
learners experience the undirected connections between 
nodes in the network requires further empirical investiga-
tion. At each node in the task network, we may expect dif-
ferent possible and available blends depending on where the 
student began; however, there is no expectation of transi-
tivity and the question of to what degree does extending a 
blend depend on the initial blend composition remains open.
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