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squares are to be considered as particular rectangles (we 
will refer to a definition of rectangles that includes squares 
as being inclusive). There is evidence that such conflict per-
sists in older students (Hershkowitz 1990; Lehrer, Jenkins 
and Osana 1998; Clements, Swaminathan, Zeitler Hannibal 
and Sarama 1999; Clements 2004; Lin and Yang 2002; Bat-
tista 2007; Koleza and Giannisi 2013; Fujita 2012).

In Mariotti and Fischbein (1997) mathematical defini-
tion is considered a true didactical problem, because of the 
conflict between perceptual experiences—and in particular 
visual Gestalts1—and theoretical needs, between the figural 
and the conceptual aspects. For example, when the child 
deals with squares and non-square rectangles, a conflict 
arises: actually, “from the figural point of view squares and 
non-square rectangles look so different that they impose the 
need of being distinguished at least as much as triangles 
and quadrilaterals” (Mariotti and Fischbein 1997, p. 224). 
So the didactical problem of mathematically defining “rec-
tangles” (inclusively with respect to squares) is related to 
the possibility of constructing harmonization between the 
figural and conceptual aspects, between “the need to differ-
entiate imposed by strong figural structures and the require-
ment to unify, to generalize imposed by the geometrical 
conceptualization” (Mariotti and Fischbein 1997, p. 245).

Moreover, it is through developing theoretical control—
and not simply growing in age—that a student is able to 
overcome his/her initial attachment to prototypes (Fisch-
bein 1993). In the case of a square or a rectangle, the pro-
totype frequently has sides that are horizontal and vertical, 

1  Visual Gestalts refer to theories of visual perception, developed in 
Germany in the 1920s, that attempt to describe how people tend to 
organize visual elements into groups or unified wholes when certain 
principles are applied.

Abstract  In early years schooling it is becoming com-
mon to propose activities that involve moving along paths, 
or programming robots to do so. In order to promote con-
tinuity towards the introduction of geometry in primary 
school, we developed a long-term teaching experiment 
(with 15 sessions) carried out over 4  months in a first 
grade classroom in northern Italy. Students were asked to 
program a robot to move along paths, to pretend to act as 
robots and to represent the sequence of commands and the 
resulting paths. In particular, in this teaching experiment, 
an overarching mathematical aim was to sow the seeds for a 
mathematical definition of rectangles that includes squares. 
Within the paradigm of semiotic mediation, we intended to 
foster the students’ transition from a dynamic perception of 
paths to seeing paths also as static wholes, boundaries of 
figures with sets of geometric characteristics. The students’ 
situated productions were collected and analysed together 
with the specific actions of the adults involved, aimed at 
fostering processes of semiotic mediation. In this paper 
we analyse the development of the situated texts produced 
by the students in relation to the pivot signs that were the 
beginnings of an inclusive definition of rectangles.

1 � Introduction and rationale

Rectangles and squares represent a paradigmatic example 
of the conflict between the perceptual experience and the 
theoretical needs of a mathematical definition (on this deli-
cate issue also see Kaur 2015; Tsamir et al. 2015), where 
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and the square is just as wide as tall, while the rectangle 
is “long”, “fat” or “tall”. Reaching a level of harmonious 
interaction between an inclusive definition of “rectangle” 
and figural aspects of the prototypes allows the student 
to “control the meaning of the figure by its formal con-
straints” (Fischbein and Nachlieli 1998, p. 1197), and, for 
example, to recognize rectangles with different dimensions 
(including congruent dimensions), different positions or 
other different visual influences all as examples of “rectan-
gles”. This is how a student can overcome his/her blinding 
attachment to particular prototypes, especially in the cases 
of concepts to which a variety of figures (as in the case of 
squares and rectangles) corresponds. The process is much 
more straightforward when, instead, the student deals with 
concepts to which invariant figures correspond, for instance 
right angles (Fischbein and Nachlieli 1998, p. 1209).

Such process of harmonization of figural and conceptual 
components must be fostered through specific interven-
tions, because research shows that it does not occur sponta-
neously, and attachment to prototypes is not overcome with 
age alone.

These results are consistent with those of notable stud-
ies conducted decades earlier by Luria (1976), who showed 
that naming and classifying geometrical figures depends 
heavily on the level of instruction received by the inter-
viewed subject (pp. 31–47). In particular, he showed that 
the laws of “natural geometric perception” defined in 
Gestalt psychology are in fact dependent on the culture that 
subjects are exposed to. This allows us to state that even 
the perception of what Fischbein refers to as an “invariant 
figure”, such as the right angle, seems to be such only for 
people who live in a “carpentered world”, in a culture of 
right angles and lines, where these geometric features are 
culturally important.

These findings highlight the fundamental role of instruc-
tion in guiding perception along the lines of a cultural 
theory we want students to become a part of, and they 
lead us to believe it is important to design early (cultural) 
interventions to be initiated during the first years of formal 
instruction, and to be carried out in a continuous manner 
throughout the course of primary school. Unfortunately 
there are many widespread bad practices in school which 
reinforce the separation between squares and rectangles 
(for instance, activities with attribute blocks, where squares 
and non-square rectangles are classified in different sets).

Everyday language may act as an additional obstacle 
towards the development of a mathematical definition: for 
instance, in both Italian and English (and in other European 
languages) the names quadrato [square] and rettangolo 
[rectangle] hint at a complete separation of the figures into 
two different classes (square and not-square rectangles). 
We note, however, that this is not necessarily the case in 

all languages. In fact, in Chinese, the sequences of ideo-
grams for the words “square” ( )  and “rectangle” 
( ) contain two out of three same ideograms, those 
that indicate “sides” and “shape”, while the first indicates 
“exact” (for the square) and “long” (for the rectangle). 
So, linguistically, a square is seen as a “shape with exact 
sides” and a rectangle as a “(same) shape with long sides”. 
In this case language makes explicit that square and rec-
tangle are two kinds of a same thing, deeply related to 
each other and not separated into distinct categories (also 
see Lin and Yang 2002). In fact this is typical of Taoism 
in which a central idea is the evolution of events as a pro-
cess of change and the ideology of “grasping ways beyond 
categories” or to “categorize in order to unite categories” 
( ) (Bartolini Bussi et al. 2013).The 
rationale behind the design of the study we present is that 
there can be means for constructing the meaning of squares 
and rectangles, generalizing the perception of square and 
not-square rectangular shapes, other than everyday lan-
guage (that reinforces the conditions for an obstacle against 
an inclusive definition). A viable means can be program-
ming the bee-bot in order to produce particular traced-
paths that allow students to focus their attention on certain 
aspects of the path, such as changes of direction (in the 
context of the bee-bot, turns left or right of 90°), which can 
be put in meaningful relationships with (characterizing) 
parts of figures (such as right angles). It is exactly upon the 
shared geometrical property of squares and rectangles of 
having four right angles that we foresaw the possibility of 
capitalizing: we expected it to allow the sowing of seeds 
as a variety of acts of spatial experiences that could be 
developed into a “library” of paths and gestures, accompa-
nied by verbal descriptions and drawings for developing a 
meaningful inclusive definition of rectangles (see Bartolini 
Bussi et al. 2007 for a similar analysis in the context of cir-
cles). We advanced the hypothesis that the bee-bot might be 
particularly appropriate for fostering appreciation of the “4 
right angles” property because of how the semiotic activity 
may be promoted. In particular, the activity can naturally 
assume body syntonic features as well as ego syntonic ones 
(Papert 1980). The former, specifically, refers to Papert’s 
vision that learners would be able to relate the behaviour of 
the microworld objects to their own sense and knowledge 
about their own bodies. We will see how this is possible 
with the bee-bot.

In the following section the context of the teaching 
experiment is described, followed by the theoretical frame 
of semiotic mediation, and a presentation of the research 
questions and methodology used for the study. The data 
presented and discussed refer to one class and they repre-
sent critical episodes in an ideal trajectory from the semi-
otic activity around the production of early tasks to a final 



393Geometry in early years

1 3

poster with important shared discoveries (a sort of initial 
“theory” of the shared discoveries2). These aim at sowing 
seeds for reaching a (inclusive) mathematical definition of 
rectangles, while focusing on the classroom as a whole.

2 � Theoretical frame

The Italian standards (for students aged 3–14) give empha-
sis to the development of space knowledge and geometry, in 
parallel with number knowledge (MIUR 2012). An impor-
tant keyword, crossing all the students’ ages, is mathemati-
cal laboratory that aims at the construction of mathemati-
cal meaning. In a mathematical laboratory (often realized 
in the classroom) physical or virtual artefacts are present 
to foster students’ personal involvement in the activity 
under the teacher’s guidance. A typical teaching experi-
ment involving artefacts lasts several sessions, from several 
weeks to a few months, and it relies on a constant coop-
eration with teachers (the so-called “teacher-researchers”), 
made possible by the on-going involvement of the same 
mathematics teacher with the same group of students for 
many years. These extended periods with the same group 
of students make teachers less anxious about the short-term 
effects of their teaching and encourages them to take care 
of and to observe long-term processes (Bartolini Bussi and 
Martignone 2013). From decades of studies on laboratory 
activities, the theoretical frame of semiotic mediation was 
developed.

We summarize only some elements of the Theory of 
Semiotic Mediation, focusing on the teacher’s role (Barto-
lini Bussi and Mariotti 2008). The teacher is in charge of 
two main processes: the design of activities; and the func-
tioning of activities. In the former the teacher makes sound 
choices about the artefacts to be used, the tasks to be pro-
posed and the pieces of mathematics knowledge at stake, 
according to the curricular choices. In the latter, the teacher 
exploits, monitors and manages the students’ observable 
processes (semiotic traces), to decide how to interact with 
the students and what and how to fix in the individual and 
group memory.

In this teaching experiment, the chosen artefact is the 
bee-bot, a small programmable robot (see below). Task 
design is realized drawing on previous experiments made 
at pre-school level (Bartolini Bussi 2013) and also at pri-
mary and secondary school level (Bartolini Bussi et al. 
2011).

The design process is represented by the left triangle 
of Fig.  1 (tasks–artefact–knowledge), where the semiotic 
potential of the artefact is made explicit (that is, the links 

2  For a similar process, see for instance the “theory of gears” as 
reported in Bartolini Bussi et al. (1999)

between tasks, the pieces of mathematics knowledge and 
the chosen artefact).

The other parts of the scheme concern the functioning in 
the classroom. When students are given a task they start a 
rich and complex semiotic activity, producing traces (ges-
tures, drawings, oral descriptions, written texts and so on). 
The teacher’s job is first to collect all these traces (observ-
ing and listening to students), to analyse them and to organ-
ize a path for their evolution towards mathematical texts 
that can be put in relationship with the pieces of mathemat-
ics knowledge. The teacher acts as a cultural mediator, in 
order to exploit, for all the students, the semiotic potential 
of the bee-bot, in the left triangle of Fig. 1.

In this last process, Bartolini Bussi and Mariotti (2008) 
identify three main categories of signs: artefact signs, math-
ematical signs and pivot signs. Artefact signs “refer to the 
context of the use of the artefact, very often referring to one 
of its parts and/or to the action accomplished with it […]”; 
mathematical signs “refer to the mathematics context”; and 
pivot signs “refer to specific instrumented actions, but also 
to natural language, and to the mathematical domain” (Bar-
tolini Bussi and Mariotti (2008), p. 757).

Pivot signs can act as bridges between the artefact signs 
and the mathematical signs. For example, if we use count-
ing sticks (sticks bundled up in a set of 10), an artefact sign 
could be “bundles” or “to tie/untie”. The corresponding 
mathematical signs could be “tens” or “grouping/ungroup-
ing”. For some time (even weeks) children may use only 
artefact signs (for example: “I have tied ten counting 
sticks”) or construct hybrid sentences (for example: “I have 
tied a ten”) or directly use mathematical signs (for exam-
ple: “I have grouped a ten”). In collective mathematical dis-
cussions we can observe a variety of utterances related to 
different uses of these signs.

Fig. 1   A diagram of the main processes involved in semiotic media-
tion
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Pivot signs, if correctly identified or introduced by the 
teacher, and intentionally used during discussion orches-
tration, can be particularly useful for fostering a transition 
from situated “tests” to mathematical texts. Pivot signs 
develop and are enriched by their relationships with other 
pivot signs, hence building a network of pivot signs (for 
example, the “bundle” of ten sticks may be related to sin-
gle sticks/units or to bundles of bundles/hundreds) and so 
on. Mathematical signs are not intended to suddenly sub-
stitute artefact signs; in fact the latter may survive for some 
time, especially for lower achievers or in cases in which 
the formal mathematical definition and the reasoning of the 
corresponding concepts require long-term processes to be 
achieved.

The methodology proposed for the classroom process 
is described by Bartolini Bussi and Mariotti (2008) as the 
didactical cycle (see Fig. 2).

The activities of the teaching sequence include the 
following:

1.	 Activities with artefacts in which classroom discussions 
are promoted to allow the same artefact to be looked 
at from different perspectives. In this phase there is a 
typical sequence of tasks proposed: the warming up 
task (What is it?) that fosters the emergence of a narra-
tor voice; the artefact task (How is it made? How could 
you describe it to a classmate?) that aims at identifying 
the artefact’s components and naming them in a correct 
way and at describing the spatial relationships between 
them, fostering the emergence of a constructor voice; 
the instrument task (How does it work? How can you 
make it work?) that fosters the emergence of the user 
voice; the justification task (Why does it work in this 
way?) that fosters the emergence of the mathemati-
cian voice; new problems (Could we use this artefact 
to solve a new problem?) designed to foster the emer-

gence of a problem poser and solver voice (Bartolini 
Bussi 2013).

2.	 Individual production of signs (gesturing, speak-
ing, drawing, writing, etc.). Students are individually 
engaged in the process of the production and elabora-
tion of signs related to the previous activities with arte-
facts (Bartolini Bussi and Mariotti 2008).

3.	 Collective production of signs (e.g. narratives, mim-
ics, collective production of texts, and drawings). Stu-
dents are engaged in mathematical discussion under 
the teacher’s guidance about the previous activities 
(artefact manipulation and sign production) to compare 
and to share personal signs (Bartolini Bussi and Boni 
2009).

3 � The chosen artefact: the bee-bot

The bee-bot is a small programmable robot, especially 
designed for young students. Its ancestor is the classi-
cal LOGO turtle, originally a robotic creature that moved 
around on the floor (LOGO Foundation 2000). It is not nec-
essary to have an external computer to programme the bee-
bot, as the command buttons are on its back (see Fig. 3).

When the programme is executed, the bee-bot moves on 
the floor: the execution of each command is followed by a 
blink of the eyes and by a short beep-sound. We have intro-
duced this small robot in dozens of classrooms (pre-schools 
and first/second grade classrooms) within two on-going 
projects of teacher development: BAMBINICHECON-
TANO for pre-school (Bartolini Bussi 2013), under the 
supervision of the first author; and PERCONTARE (ASPHI 
2011) for primary school (Baccaglini-Frank and Bartolini 
2012; Baccaglini-Frank and Scorza 2013), under the super-
vision of the second author.

In spite of its very simple appearance, the bee-bot hints at 
many sets of meanings and mathematical processes, partly 
related to mathematics and partly related to computer sci-
ence, for instance: counting (the commands); measuring (the 
length of the path, the distance); exploring space, construct-
ing frames of reference and coordinating spatial perspectives 
(Falcade and Strozzi 2009; Baccaglini-Frank et al. 2014); 
and programming (e.g. Papert 1993; Noss and Hoyles 1996), 
planning and debugging. In a long-term teaching experi-
ment, all these sets of meanings are at stake, sometimes in 
the foreground and sometimes in the background. Which 
ones to focus on depends on the adult’s teaching intention 
(see Sect. 3). Our teaching experiment was designed to capi-
talize on the bee-bot’s potential for fostering awareness of 
the “four right angles” property of generic rectangles.

The bee-bot walks on the floor and traces paths that can 
be perceived, observed, described with words, with gestures, 
with drawings, with sequences of command-icons and so on. 

Fig. 2   Diagram of the didactical cycle
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Paths constitute a large experiential base to “study” plane fig-
ures—not all figures, but only those that can be traced using 
the available commands. These are polygons with sides 
measured by a whole number of steps and with right angles 
only. With the additional restriction of the traced shape being 
convex, the bee-bot can be programmed to turn only left or 
only right, and therefore the polygons are always rectangles 
(including squares). Moreover, in experiences where “pre-
tending to be the bee-bot” is essential, children embrace the 
robot’s perspective: they move with the bee-bot and they see 
with its eyes. In particular, when walking along a closed con-
vex path and ending up where they started, the children will 
turn 360o in four equal “chunks” during which their orien-
tation (and ending facing the same direction as when they 
started) is perceived as essential. These are some features 
that define the bee-bot’s high semiotic potential with respect 
to the emergence of an inclusive definition of rectangles.

4 � The research questions

Within the described framework and with the objectives 
outlined above we advanced the following specific research 
questions:

1.	 How might a long-term process of semiotic mediation 
that exploits the semiotic potential of the bee-bot with 
respect to the development of an inclusive definition of 
rectangles look for first graders?

2.	 In particular, which kind of pivot signs (if any) can be 
identified and exploited during such long-term process?

5 � Methodology: the teaching experiment

The class was described by the teacher as being average 
and relatively homogeneous: it has 18 students (aged 6–7). 

Three adults were involved during the classroom activi-
ties: Roberta Munarini, the classroom teacher (T), is a very 
experienced teacher-researcher, accustomed to taking part 
in advanced teaching experiments and open to welcoming 
student–teachers during their internships; her expertise is 
invaluable when critical choices have to be made, both in 
the choice of tasks and in the management of tasks. Fed-
erica Baroni is a very good student–teacher (S), with a 
master’s degree in education for pre-school, enrolled now 
in the primary school programme and doing her internship. 
Anna Baccaglini-Frank, a researcher (R), is active both as a 
participant in some critical phases of the experiment and as 
an observer.

Several sessions (15) were carried out at the beginning 
of the school year, for 4 months (more or less once a week) 
either in the classroom (C) or in the gym (G), with a care-
ful alternation of whole-class or small-group activity (with 
adult’s guidance) and some individual activity. Each ses-
sion was carefully observed by one of the adults involved 
(T, S, R), with the collection of protocols, photos, graphi-
cal productions and videos. Transcripts of discussions were 
prepared by the student–teacher. The tasks were designed 
by the research team, drawing on the initial intention and 
on the needed changes to be introduced after classroom 
experiment.

Due to space constraints it is not possible to report on all 
the activities, so we will focus on certain sessions in which 
the production of signs was particularly rich with respect 
to our objective (further details in Bartolini Bussi and Bac-
caglini-Frank, 2014).

6 � Findings: the evolution of signs

In this section we give details on selected activity ses-
sions, describing particular signs that the children 
produced.

Fig. 3   The bee-bot’s back and 
enlargements of the buttons
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6.1 � The early signs

The first session of the teaching experiment involved 
approaching a new artefact through classroom discus-
sion. Students were encouraged to produce drawings. As 
expected, students’ attention was focused mostly on the 
narrative aspects (the possible adventures of this small toy) 
and on the hypotheses as to its “nature” (Is it an animal? Is 
it a bee? Where are its wings? Is it a “walking bee”? Where 
could it live? Why has it come to our school?). This activity 
helped the children to enter a relationship with the bee-bot, 
at an ego-syntonic level, which probably helped to foster 
their later identification with the robot at a body-syntonic 
level (see Sect. 1).

In the second session our aim was to help the children 
focus on some geometrical and technical features of the 
artefact: the shape, the presence of some buttons (the com-
mand icons) on its back and of others on its belly (on–off). 
The observation of this session revealed a very rich inter-
twining of words, gestures (sometimes used for missing 
words) and, later, upon request, of drawings. The drawings 
hinted at narratives, highlighting an affective dimension 
rather than a geometrical-technical one. Figure 4a–d show 
some examples of drawings.

6.2 � Programming the bee-bot: the first signs 
for representing sequences of commands and possible 
paths for the bee-bot

After these two early sessions a much more complex semi-
otic process started with a stronger entrance of symbolic 
representations. Students introduced sketches hinting at the 
command-icons and at the traces of the bee-bot’s paths that 
sometimes involved counting (steps). The process was led 
by the tasks which focused the attention on the paths (What 
does it do?) rather than on the artefact. The students were 
able to focus on paths (imaginary trace marks) even when 
the bee-bot actually did not leave any concrete trace mark 
(see Fig. 6a–d, later).

In one session, students were given two bee-bots that had 
been programmed with the same sequence ahead of time. 
The students watched the twin bee-bots move together, 
starting facing in the same or in different directions, and 
then separately. Then the memory of one of the bee-bots 

was erased (CLEAR command-icon) and the students were 
asked to re-programme it so that it would move in the same 
way as the other bee-bot and to describe what they did. 
The students’ productions concerned both global and local 
aspects. Global aspects refer to the perception of a path as 
a whole (as if the bee-bot had drawn it on the floor), whilst 
local aspects refer to special points of the path. An example 
of the former is the expression “it did an L”; an example of 
the latter is “they switched the turn”.

Both aspects appeared also in gesturing: the path was 
represented by a single pointer finger tracing a path in the 
air (tracing gesture), whilst turning was represented by 
moving the right hand (for a right turn) or left hand (for 
a left turn) up and to the right or left in a rotation (turning 
gesture). The turning gesture was mirrored by S, as she rec-
ognized it as relevant, a pivot sign that would become very 
important in the network of pivot signs eventually referring 
to “rectangle” (Fig. 5).

The local aspect appeared especially when students were 
asked to programme one bee-bot (after erasing its memory) 
in order to reproduce the same motion as the other:

Marika:	� I pressed an arrow to go forwards … then it has 
to go forwards again.

Martina:	� We pressed four times forward then turn, then 
two times forward forward. To know what it had 
to do we counted its steps.

The students were asked to produce a drawing repre-
senting the given commands. They produced drawings in 
which numbers and arrows were mixed on the page. In 

Fig. 4   Children’s initial  
drawings of the bee-bot

Fig. 5   S is mirroring the children’s turning gesture
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the different drawings it is already possible to perceive 
different characterizing features of the students’ domi-
nant perceptions. The four drawings shown in Fig.  6a–d 
show the double attempt to draw the shape of the path 
(global representation) and the list of commands (local 
representation).

Anita produced a complex drawing with numbers 
(steps), written descriptions, and arrows arranged to hint at 
the path (Fig. 6a).

Francesca (as she explained orally) has drawn the 
arrows: “3 times forward, 1 turn, 2 times forward”; the turn 
is drawn aside and out of the line as if its status is not yet 
clear (Fig. 6b).

Martina wrote a small “L” (the path) and only num-
bers (repeated sequences of numbers: 12345 or 123456, to 
mean that the little bee restarts) wavering between 6 com-
mands (only the steps) or 7 commands (including the turn) 
(Fig. 6c).

Simona used a kind of shorthand with either repeated 
arrows or a number to tell how many arrows (Fig. 6d).

The graphical representations did not depict angles: 
“turns” are the only aspects (pivot signs relating to angles) 
that were perceived and represented verbally and physi-
cally. However, the perception seemed to be completely 
dynamic and only functional to the change in direction 
of the straight segments of the bee-bot’s paths. In fact the 
students were unsure whether or not to even count the turn 
as a “step” of the command sequence. We remark that this 
may be the case also because the students have not yet felt 
the physicality of the “turn”. Fostering such physicality 
was the objective of later sessions. We also note that at this 

point the paths have a very dynamic connotation for the 
children: their shape is very seldom recognized as a whole, 
although their execution seems to be perceived, implicitly, 
as “a thing” (the children would say “He did it” [It: “L’ha 
fatto”]).

6.3 � Pretending to be the bee-bot

During this session the students were asked to work in 
pairs: one would pretend to be the bee-bot and the other 
would give her commands to move according to some 
undisclosed (to the bee-bot student) path. The intention 
was to focus their attention towards the turn command, that 
seemed to have an uncertain status in the earlier session. 
Typical words used would be “Straight Ahead”, “Left”, 
“Right”, “Backwards”, usually without quantifying the 
number of steps, and frequently combining a translation 
with a change of direction. For example, when a student 
would say “Left” the bee-bot-student would frequently not 
only turn left, but also take a step in that direction, or even 
just take a step to the left without even turning in that direc-
tion. S’s intervention that asked the students to compare this 
particular behaviour with that of the bee-bot is fundamen-
tal because it led the students to attend to the “turn” com-
mand and to start to explicitly consider rotations. One child 
stated: “… so when I turn I move but I don’t walk” [It: “… 
allora quando giro mi muovo ma non cammino”] and she 
gestured the turn with her whole body, while standing on 
the spot. This denotes rotations as important elements per 
se, “motions” without having to be translations or “steps”, 
an important seed for the evolution of our sought definition.

Fig. 6   Students’ initial produc-
tions of the bee-bot’s commands 
and/or path in the “twin bee-
bots” activity
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6.4 � Experience with paths and the “squarized 0”3

In these four sessions, realized in the gym, the students 
physically constructed paths to programme the bee-bot 
to move along and described the paths explicitly with 
sequences of command arrows lined up horizontally. The 
students were learning to trace letters of the alphabet, so 
we decided to elicit considerations about the possibility of 
drawing letters with the bee-bot, and, in particular, signs 
that would eventually refer to angles and sides.

Various signs were produced in verbal, graphical-written 
forms and through gestures. Below we show an excerpt 
from an important exchange between a child and S, from 
which stemmed a pivot sign that was eventually embraced 
by the class and that would eventually be related to “angle”:

S:	� How does the bee-bot turn?
Alessandro:	� It turns like this [he picks up the bee-bot and 

rotates it through a 90° angle].
S:	� But if I want it to do a smaller curve, can I?”
Alessandro:	� No, because he turns completely.
S:	� So can I make him do the curve of “2”?
Alessandro:	� No, because he only does a curve like this [he 

draws a right angle as shown in Fig. 7] … He 
can’t do a little curve like this … or like this.

In this excerpt a combination of gestures (turn), words 
(the oral description) and drawings appear. Figure 7 shows 
a combination of a dynamic and static perception of this 
“piece” of a path imaginarily traced by the bee-bot.

The children generated many signs aiming at distin-
guishing the shapes (letters) which could be drawn from 
the others (the letters with “sharp” points, or the rounded 
ones). Soon the discussion became about the possibility of 
programming the bee-bot to make it draw particular letters. 
During this discussion a student (quickly mirrored by other 
students in the class) named a figure that is the ancestor 
of all the squares and rectangles that the students will talk 
about:

S:	� … Did you do an “O”?
Student:	� No. Then it could do like this this this and this 

[he gestures four consecutive right angles] a 
square “O”. Ah, then it can make a square!

Other students then mirrored the statement using the 
term “squarized Os” and they started talking about how it 
would be possible to make other “squarized letters”, mean-
ing letters that include one or more squarized Os within 

3  We want to translate a non-existing Italian word (“quadratizzato”) 
invented by the students and later used as a pivot sign, so we will use 
a similar non-existing English word.

them (e.g. P, B). These “squarized 0 s” would become the 
main pivot sign around which the network of pivot signs 
would develop. The squarized O was the perfect pivot sign 
to use for the notion of “rectangle” that we were after, 
because it was characterized exactly by the presence of the 
“4 right angles” property.

6.5 � From “squarized 0” to rectangles and squares

In these sessions, realized in the classroom, the student–
teacher, the researcher and the teacher picked up on the stu-
dents’ verbal, gestural and graphical representations of the 
“squarized O” to foster their evolution into “squares” and 
“rectangles” with characterizing sets of geometrical proper-
ties involving sides and angles. As the students described 

Fig. 7   A student represents both a dynamic component and static 
“piece” of a path; the turn to trace a right angle

Fig. 8   A student used a pivot sign (highlighted with circles) for 
“turn/angle” in his drawing of a path for a particular squarized O, 
which R mirrored and re-proposed to the class successfully. The cir-
cles on the sides of the path represent the bee-bot tracing the path
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and represented how sequences of commands could be put 
in relationship with paths traced for squarized Os, a stu-
dent graphically introduced “a turn like this” (highlighted 
arrows in Fig. 8) to indicate the turning points of the path 
for a particular squarized O. R saw in this sign the poten-
tial of becoming a pivot sign for the class with respect to 
the notion of “angle” (external angle): the sign reminds one 
of the command-icon on bee-bot’s back, but it is slightly 
decontextualized and used both in drawings that depict the 
path as a figure and in horizontal sequences of commands 
that represent how the bee-bot was programmed. The stu-
dents re-appropriated quite easily the sign re-proposed by 
R for “turn/angle”.

6.6 � Matching trajectories and sequences of commands

At this point two tasks were given by T concerning the 
relationship between different representations of paths for 
squarized Os (Fig. 9):

Task 1:	� Choose the right sequence to make the bee-bot 
walk on the drawn path starting from the small 
star.

Task 2:	� Choose the right sequence to make the bee-bot 
walk on the drawn path.

As this was a crucial session, T herself orchestrated 
the discussion following some of the students’ individual 
solutions.

We report on the moments of the discussion in which 
important considerations leading to the characterizing “4 
right angles” property of the squarized Os emerged. Here, 
the discussion was on the first task:

	 1.	 T: You said that to do this kind of path … is it an open 
or closed path?

	 2.	 Cecilia: Closed

	 3.	 T: Closed. Our bee had to always do what?
	 4.	 Cecilia: Four angles
	 5.	 T: Four angles. What does “angles” mean?
	 6.	 Cecilia: Angles means the points here.
	 7.	 T: The points. And what do these points correspond to 

in the commands for our bee?
	 8.	 Student: To the turns!
	 9.	 T: To some turns. So you say it needed to have four4 

turns.
	10.	 Alessandro: This way the figure did not stay open.
	11.	 T: This way the figure did not stay open. And those 

four turns, Cecilia, how were they supposed to be, 
you said it before?

[Cecilia has trouble answering immediately, and mumbles 
something incomprehensible.]

12.	 T: The turns so that the bee-bot does this kind of path, 
how do they have to be?

[T refocuses Cecilia’s attention on the “points” she had 
mentioned earlier.]

13.	 Cecilia: All turned in the same direction.
14.	 T: All turned in the same direction.
15.	 Cecilia: So to the right.
16.	 T: In this case to the right. Could it have been only to 

the right?
17.	 Student: Yes, otherwise it would have gone …
18.	 T: Was there a way to make the bee turn to the left?

4  Very early on in the activities the students argued that there needed 
to be four turns because “When she is finished the bee-bot needs to 
look the same way she started.” This argument was supported through 
mirroring by S and T, since it was important for the desired evolution 
of the network of pivot signs around the squarized O.

Fig. 9   Tasks 1 and 2 on choos-
ing the correct sequence (trans-
lated above) to match different 
representations of paths for two 
different squarized Os
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[T lets the students think about her question and dif-
ferent students start shouting out answers. T picks up the 
comment of one student, mirroring and re-launching a 
question.]

19.	 T: It would start from the angle and then what shape 
did it have?

20.	 Student: A rectangle!
21.	 T: If you already know the name, ok, it’s called a rec-

tangle.

[T refocuses the children’s attention on the direction of 
the turns. One student is called to the whiteboard and he 
shows how the bee-bot could have always turned to the 
left.]

22.	 T: So it’s not true that it has to do all the turns to the 
right. It could also do them all to the left.

[Murmuring of many children, and T addresses directly 
one student who was talking to a classmate.]

23.	 T: How do the turns have to be, Laura? Always to the 
left?

24.	 Laura: No. Sometimes also to the right.
25.	 Student: In any case the turns have to always be the 

same.
26.	 T: In any case, for it to be a squarized O, they have to 

always be …
27.	 Students together: The same.
28.	 T: Is that clear?
29.	 Students: Yes.

T systematically mirrored (Bartolini Bussi and Boni 
2009) students’ utterances and oriented the discussion 
towards what is considered important: a first generaliza-
tion for the squarized Os as figures that always have four 
turns-angles (3–14); and the turns have to be in the same 
direction no matter whether it is to the left or to the right 
(18–29). The generalization was reached through the gen-
eration and reflection upon examples of sequences and 
ways of having the bee-bot trace a same squarized O, and 
then it was stated in general terms, with an appropriate 
(mathematically speaking) use of the words “in any case” 
and “always”.

In the discussion after the second task as well, T stressed 
the important property, that is, having four turns/angles. 
Then T led the children to agree upon the terminology 
“sides” and “angles”, mirroring words that had been intro-
duced by certain students, and explicitly putting them in 
relationship with parts of the different representations. T 

also guided the discussion towards the recognition of simi-
larities between the different types of squarized Os (for 
this part of the discussion she has on the board a 2 ×  2 
and a 3  ×  2 rectangle with the respective sequences of 
command-icons).

6.7 � Discussing a poster on “our” discoveries

The children engaged in other activities in which they 
consolidated their discoveries on squarized Os. Then, dur-
ing the last session, T, in charge of the construction of the 
classroom memory, introduced a summary poster with the 
class’s discoveries, that she had agreed upon with R and 
S. The poster is reproduced in Fig.  10 and it aims at fix-
ing “the important things to be remembered for the future”. 
The poster was given to the students both as a large banner 
to put up on the wall, and as a small A4 copy to be attached 
to their notebooks. T’s intention was to pave the way 
towards a more precise mathematical definition to be con-
structed in the second or third grade. She consciously chose 
to offer four examples, none of which were in the canonical 
orientation. This choice was intentional, to try to limit the 
children’s rigid development of the typical prototypes (on 
this issue, with respect to triangles, also see Kaur 2015).

As she walked into the classroom with the rolled-up 
poster, T declared she had written down the students’ 
thoughts and she asked the children to guess at what they 
would see on the poster. Many immediately raised their 
hand and said: “The little bee!”, “The squarized Os!”, 
“Squares!”, “Rectangles!” As she hung up the poster, the 
student who had proposed the sign for the turn (external 
angle or bee-bot’s rotation) said: “Those are my turns!”, 
and a student who had mentioned the squarized Os 
bragged: “See, I was right: those are all squarized Os!”

6.8 � A post-test

During the last week of school (about 4  months after the 
teaching experiment was finished) T assigned three post-
test tasks to investigate what had “stuck” in her students,5 
as she declared in the interview in which she explained 
what she observed.

The post-test consisted of three sheets of paper contain-
ing the same shapes with the same orientation (see Fig. 11) 
but arranged differently. The tasks on each sheet were:

5  Not all students were involved in the post-test activity because it 
was carried out during the final weeks of school, while various end-
of-year activities were taking place. In total 7 of the 18 children were 
selected (2 high achievers, 3 average achievers, 2 low achievers) and 
assigned the post-test.
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1.	 Circle all the squarized Os that you see below.
2.	 Circle all the rectangles that you see below.
3.	 Circle all the squares that you see below.

When T shared her observations with R in an interview, she 
described three tests that in her opinion were representative of 
“interesting types” of answers that her students gave:

Fig. 10   The final poster (translated)
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Type 16: In the first task the student circles the four 
shapes that represent rectangles according to an inclusive 
definition (b, c, e, j); the student recognizes the same 
shapes in task 2 even though they are in different places on 
the sheet, and sometimes even states: “They are the same as 
before!” In task 3 the student only circles the two shapes he 
(correctly) recognizes as squares (b and e).

Type 27: In task 1 the student circles all four correct 
shapes and states: “They are the ones with four equal 
angles.” In task 2 she selects three of the four rectangles (b, 
c, j); and in task 3 she correctly identifies the two squares (e 
and b).

We will briefly comment on these answers in the 
discussion.

Type 38: In task 1 the student circles only b and j, the 
“ones that look more square”; in task 2 the student identi-
fies three of the four rectangles (b, c, j), but not e; in task 3 
the student circles only b.

7 � Discussion

In this teaching experiment our aim was to exploit the semi-
otic potential of the artefact bee-bot with respect to sowing 
seeds for an inclusive definition of rectangles. In particular, 

6  This type of response was provided by the two high-achieving stu-
dents and by one of the average-achieving students.
7  This type of response was provided by the other two average-
achieving students.
8  This type of response was provided by the two low-achieving stu-
dents.

we wanted to observe what a long-term process of semiotic 
mediation would look like for first graders, especially what 
pivot signs (if any) might be identified and exploited during 
such process.

Within the classroom activities proposed it was in fact 
possible to observe the evolution of a network of pivot 
signs associated with the “squarized O”. We will describe 
how this network of pivot signs emerged from the signs 
developed to describe the bee-bot’s paths and to describe 
commands given to the bee-bot, that became more and 
more focused on rectangles, thanks to the design of the 
activities and the guidance of S, T and R.

7.1 � The bee-bot’s paths as wholes

At the beginning students produced drawings containing 
different signs (numbers, words, lists of commands). The 
rationales for the choices were frequently not clear. We 
hypothesize that the students had a global image of the 
experience and that they produced signs based on what 
caught their attention the most and also on their individual 
skills. Very seldom (see the little L in Fig. 6c) did they draw 
the “whole” path, as a figure, even though they described 
the “way the bee-bot walked” as an “L”. Frequently, espe-
cially in this initial phase when specific terminology had 
not been developed and shared by the students, they used 
gestures in the air. One interpretation of this might be that 
the children were compensating for missing words. On the 
other hand, it could be that in this situation the gestures 
were perceived as being more effective at communicating, 
perhaps especially in self-communication (this is consistent 
with findings in Kaur 2015). In this sense the turn gesture 
mirrored by S became part of the shared signs, and it was 
a first instantiation of a sign to eventually refer to the idea 
of “angle”. Still the dynamic aspect of the signs seemed to 
be prevalent. In some cases, although the dynamic compo-
nent was dominant, students perceived the path as whole 
static elements even when there was no permanent sign 
(e.g. no trace left by a marker). We hypothesize that this 
depends very much on the confidence the students had with 
the particular shape (e.g. L) they perceived in the path (or 
that they made the path in the shape of). Also, the pres-
ence of rhythmic eye blinks and sounds produced by the 
bee-bot and ended by a double number of beeps and blinks 
may have fostered the perception of a path, in terms of a 
sequence of steps with a starting point and end point, as a 
body syntonic whole.

The definite transition to seeing paths as “wholes” and 
being able to represent them was fostered by the activities 
in which students programmed the bee-bot to “trace” (even 
though it did not actually leave a mark) particular letters, 
conceived as stand-alone figures. In particular, the children 
came to attend to specific characteristics of the letters when 

Fig. 11   A student’s answer to task 2 from the post-test given by T at 
the end of the year. The letters were added in this picture in order to 
identify the shapes in the comments
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discussing which ones the bee-bot was able to trace or not. 
The conjectures advanced by the children in this context 
were relatively advanced and showed an ability to distin-
guish “curves” from “segments” and “angles”, and even 
to distinguish between angles greater than or smaller than 
right angles, with the right angles being a strong perceptive 
landmark. We believe, however, that this is not evidence 
for the fact that right angles are universally recognized as 
invariant figures, but rather of the fact that the children we 
worked with are immersed in a culture that values right 
angles and lines, a “carpentered world”, as Luria would say 
(1976, p. 31).

7.2 � Paths as sequences of commands

In parallel with the evolution of the signs representing 
paths as figures, the children elaborated signs to represent 
paths in terms of sequences of commands, a separate but 
related semiotic register (Duval 2000), within which impor-
tant properties were identified. Initially these signs were 
copied from the command icons on the bee-bot’s back and 
arranged in various manners (orientation and position on 
the page; see Fig.  6a–d): they appeared to be mixed with 
other signs, including words, expressing the commands or 
actions realized by the bee-bot. Eventually the class agreed 
to write the sequence of commands as arrows lined up in a 
horizontal line.9

When relating the arrow signs to the paths drawn as 
figures, the students would transcribe the arrows into a 
sequence “around” the figure. In these activities a great 
synergy between the different representational regis-
ters emerged, and spontaneously some children gestured 
“turns” with the pivot sign discussed above, while simul-
taneously drawing a sign like the “turn” command-icon on 
the bee-bot’s back at the vertex of the path represented as 
a figure. This way the same sign, simply rotated in differ-
ent places on the whiteboard or on paper, would represent 
both a command in the programmed sequence and a turn 
in a certain point, and the vertex of an angle, in the drawn 
path (see Fig. 8). This pivot sign reminded the children, on 
one hand, of the command-icon on the bee-bot’s back, the 
perceived rotation of the bee-bot, and the action of turning 
in the path on the floor; and, on the other hand, the math-
ematical sign for angle (an external angle, in this case).

When specifically analysing the process of evolution 
of this pivot sign, we noticed that it originated with the 
turn gesture (Fig. 5) and evolved during the experience of 
turning while pretending to be a bee-bot, when the chil-
dren would feel with their own body the action of turning, 

9  This convention is also a design feature in the app Mak-Trace (see 
Baccaglini-Frank et al. 2014).

thanks to the design of the activities that exploited the body 
syntonicity of the bee-bot’s microworld. The process was 
reinforced by the children noticing that when they turned 
they “move” but they did not “walk”: it can be interpreted 
as the children realizing that turning does not involve any 
movement of the centre of rotation. The gesture (with a 
hand and/or with the whole body) was then related to the 
pivot sign developed from the “turn” arrow on the bee-bot’s 
back. This sign was then used systematically in the follow-
ing sessions proposed by R, T and S, and it was reinvested 
in the characterization of squarized Os.

The representation of sequences of commands as hori-
zontal arrays of command icons (little arrows, straight or 
curved) had the effect of fostering, for some students, the 
shift towards a kind of pre-algebraic notation: “Three steps 
then three then three then three we make a square,” or “two 
forward, turn right, three forward, turn right, two forward, 
turn right, three forward, turn right.”

7.3 � The network of pivot signs around squarized Os

The emergence of the sign “squarized O”, a verbal sign, 
accompanied by a number of figural representations, was 
a very happy episode, upon which R, S and T capital-
ized heavily, seeing in it the potential of sowing the seeds 
for an inclusive definition of rectangles, as desired. This 
sign quickly became a pivot sign and was put in relation-
ship with other signs that had emerged, in particular those 
related to the right angles present in squarized Os. We 
hypothesize that such a sign was proposed and embraced so 
quickly by the whole class because of the children’s immer-
sion in a “digital world”, in which rectangular shaped fig-
ures can be experienced frequently (for example on digi-
tal displays or on supermarket labels to represent “zeros”). 
Possibly, this is an example of how technology affects 
processes of meaning-making. In a different culture it is 
likely that children would not have suggested such a sign, 
nor might they have understood it even if it were proposed 
by an external adult. As Luria described in his studies that 
involved non-educated adults in their thirties (1976), pos-
sible pivot signs (according to our framework) might have 
been “windows with different frames” (Luria 1976, p. 38), 
that is, square or non-square rectangles.

An important characteristic of the squarized Os, that 
was noticed by the students, and re-proposed in whole-
class discussions by T, is their having “turns” all in “the 
same direction” (see the excerpt in Sect. 6.6). Moreover, it 
was possible to exploit again the body syntonicity of the 
bee-bot’s microworld when reflecting upon the number 
of necessary “turns”. While one child initially argued that 
the squarized O was “closed” even after only three turns, 
many children objected to the fact that the bee-bot would 
not have “finished” if it was not “seeing the same things” 
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as when it started, going “the whole way around”. This was 
the reasoning we embraced to reach the characterization of 
squarized Os summarized in the final poster.

The final poster introduced by T (Sect.  6.7) uses some 
of the students’ expressions and the network of pivot signs 
developed around the main one—the squarized O—aiming 
at fostering a gradual transition towards mathematical defi-
nitions. Squares are not yet seen as special rectangles, as it 
is too early to invite students to see the possible inclusion 
of the set of squares into the set of rectangles; however, 
some common features are emphasized as special discov-
eries (Fig. 10), including the denomination of all the bee-
bot’s paths as “squarized Os” (the ancestors of rectangles 
according to the mathematical definition).

Finally, in the post-tests, we gladly noticed how two 
of the three main “interesting types” of answers (types 1 
and 2) included (with one small exception) an equivalence 
between “squarized Os” and “rectangles”. The exception 
was in type 2 where the students selected as a squarized 
O and as a square but not as a rectangle. Unfortunately, 
although we could make inferences as to why this might be 
the case, we do not have enough data to advance meaning-
ful hypotheses on these results at the present time.

8 � Concluding remarks

Although the Italian (and English) language does not fos-
ter the conception of a square as a particular kind of rec-
tangle, the expression invented by the students, “squarized 
O”, actually seems to unify under a same name all convex 
polygons that the bee-bot can trace (in mathematics these 
correspond exclusively to rectangles, including squares). 
In other words, the children seem to have spontane-
ously produced a conception of the common ancestor (in 
the context of the bee-bot’s paths) of the figures we were 
interested in defining. Although this particular pivot sign 
was not expected from the a priori analyses of the activi-
ties, we believe that similar signs can be either produced by 
other students or easily accepted if proposed by an adult (as 
we did in the other classroom). Moreover, because of the 
digital culture in which the children of many countries are 
raised today, we believe that a sign such as the “squarized 
O” could easily be introduced by the teacher and it would 
be picked up swiftly by the students. In this sense this pivot 
sign was a very important finding that we believe a sig-
nificant part of our community can capitalize on for other 
teaching sequences.

Finally, we observe that the didactical sequence outlined 
is only one of many possibilities for a teaching experiment 
aimed at sowing seeds for an inclusive definition of rectan-
gles. A very different—but equally rich—venue is offered 
by dynamic geometry software that can and should be used 

to design similar teaching experiments. In fact, these stu-
dents will very likely also work with dynamic geometry. 
The means by which the semiotic potential of these differ-
ent microworlds can be exploited are, of course, different. 
Efforts should be made by the teacher and by the designers 
of the activity sequences to construct meaningful relation-
ships between the situated texts that can emerge from the 
students’ experiences within these different environments 
around the same mathematical meanings.

Our choices were based on the particularly rich context 
the bee-bot offered for very young students, knowing that 
it would open doors to many other mathematical mean-
ings: we do not believe that otherwise it would have made 
sense to invest this long a period of time on trying to define 
rectangles. In the following years the teacher will pick up 
different seeds planted (for example, those related to intro-
ducing measure or coordination of spatial perspectives) to 
develop other mathematical meanings.

Acknowledgments  We wish to profusely thank: Roberta Munar-
ini for offering to involve her first grade classroom in the project and 
for her so active collaboration in the project, together with Federica 
Baroni; the children in the classes and their parents; Alessandro Ram-
ploud for the intercultural issues included in the paper; our Burmese 
friends, Thein Lwin and Ko Tar, who, thanks to Giuseppe Malpeli, 
were able to watch and comment on some of the activities reported 
in this paper, and initiate a programme of international friendship 
involving Italian and Burmese children.

References

ASPHI (2011). PerContare. http://percontare.asphi.it. Accessed 11 
Sept 2014.

Baccaglini-Frank, A., Antonini, S., Robotti, E., & Santi, G. (2014). 
Juggling reference frames in the microworld Mak-Trace: The 
case of a student with MLD. In C. Nicol, P. Liljedahl, S. Oesterle, 
& D. Allan (Eds.), Proceedings of the joint meeting of PME 38 
and PME-NA 36 (Vol. 2, pp. 81–88). Vancouver: PME.

Baccaglini-Frank, A., & Bartolini Bussi, M. G. (2012). The PerCon-
tare Project: Proposed teaching strategies and some developed 
materials. In F. Dellai, I. C. Mammarella, & A. M. Re (Eds.), 
International Academy for Research on Learning Disabilities 
36th Annual Conference (pp. 194–196). Trento: Erickson.

Baccaglini-Frank, A., & Scorza, M. (2013). Preventing learning dif-
ficulties in early arithmetic: The PerContare Project. In T. Ram-
iro-Sànchez & M. P. Bermùdez (Eds.), Libro de Actas I Congreso 
Internacional de Ciencias de la Educatiòn y des Desarrollo (p. 
341). Granada: Universidad de Granada.

Bartolini Bussi, M. G. (2013). Bambini che contano: A long term pro-
gram for preschool teacher development. In B. Ubuz, Ç. Haser, & 
M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the 
European Society for Research in Mathematics Education (pp. 
2088–2097). Ankara: Middle East Technical University.

Bartolini Bussi, M. G., & Baccaglini-Frank A. (2014, submitted). 
Using pivot signs to reach an inclusive definition of rectangles 
and squares. CERME 9.

Bartolini Bussi, M. G., & Boni, M. (2009). The early construction of 
mathematical meanings: Learning positional representation of 
numbers. In O. A. Barbarin & B. H. Wasik (Eds.), Handbook of 

http://percontare.asphi.it


405Geometry in early years

1 3

child development and early education: Research to practice (pp. 
455–477). New York: The Guilford Press.

Bartolini Bussi, M. G., Boni, M., & Ferri, F. (2007). Construction 
problems in primary school: A case from the geometry of circle. 
In P. Boero (Ed.), Theorems in school: From history, epistemol-
ogy and cognition to classroom practice (pp. 219–248). Rotter-
dam: Sense.

Bartolini Bussi, M. G., Boni, M., Ferri, F., & Garuti, R. (1999). Early 
approach to theoretical thinking: Gears in primary school. Educa-
tional Studies in Mathematics, 39, 67–87.

Bartolini Bussi, M. G., Garuti, R., Martignone, F., & Maschietto, 
M. (2011). Tasks for teachers in the MMLAB-ER Project. In B. 
Ubuz (Ed.), Proceedings of the 35th conference of the Interna-
tional Group for the Psychology of Mathematics Education (Vol. 
1, pp. 127–130). Ankara: Middle East Technical University.

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic media-
tion in the mathematics classroom: Artifacts and signs after a 
Vygotskian perspective. In L. English, et al. (Eds.), Handbook 
of international research in mathematics education (2nd ed., pp. 
746–783). New York and London: Routledge.

Bartolini Bussi, M. G., & Martignone, F. (2013). Cultural issues in the 
communication of research on mathematics education. For the 
Learning of Mathematics, 33(1), 2–8.

Bartolini Bussi, M. G., Sun, X., & Ramploud, A. (2013). A dialogue 
between cultures about task design for primary school. In C. 
Margolinas (Ed.), Proceedings of ICMI Study 22: Task design in 
mathematics education (pp. 551–560). Oxford: ICMI.

Battista, M. T. (2007). The development of geometric and spatial 
thinking. In Frank K. Lester (Ed.), Second handbook of research 
of mathematics teaching and learning: A project of the National 
Council of Teachers of Mathematics (2nd ed.). Charlotte: Infor-
mation Age.

Clements, D. H. (2004). Geometric and spatial thinking in early child-
hood education. In D. H. Clements & J. Sarama (Eds.), Engaging 
young children in mathematics. Mahwah: Lawrence Erlbaum.

Clements, D. H., Swaminathan, S., Zeitler Hannibal, M. A., & 
Sarama, J. (1999). Young children’s concepts of shape. Journal 
for Research on Mathematics Education, 30(2), 192–212.

Duval, R. (2000). Basic issues for research in math ed. Proceedings of 
24th PME (Vol. 1, pp. 55–69). Hiroshima, Japan.

Falcade, R., & Strozzi, P. (2009). Construction and representation of 
space in 5-year-old children. In O. A. Barbarin & B. H. Wasik 
(Eds.), Handbook of child development and early education: 
Research to practice (pp. 499–520). New York: The Guilford Press.

Fischbein, E. (1993). The theory of figural concepts. Educational 
Studies in Mathematics, 24, 139–162.

Fischbein, E., & Nachlieli, T. (1998). Concepts and figures in geo-
metrical reasoning. International Journal of Science Education, 
20(10), 1193–1211.

Fujita, T. (2012). Learners’ level of understanding of the inclusion 
relations of quadrilaterals and prototype phenomenon. Journal of 
Mathematical Behavior, 31(1), 60–72.

Hershkowitz, R. (1990). Psychological aspects of learning geometry. 
In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition 
(pp. 70–95). Cambridge: Cambridge University Press.

Kaur, H. (2015). Two aspects of young children’s thinking about dif-
ferent types of dynamic triangles: Prototypicality and inclusion. 
ZDM Mathematics Education, 47(3) (2014, this issue).

Koleza, E., & Giannisi, P. (2013). Kindergarten children’s reasoning 
about basic geometric shapes. In B. Ubuz, Ç. Haser, & M. A. 
Mariotti (Eds.), Proceedings of the Eighth Congress of the Euro-
pean Society for Research in Mathematics Education (pp. 2118–
2129). Ankara: Middle East Technical University.

Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of 
children’s reasoning about space and geometry. In R. Lehrer & 
D. Chazan (Eds.), Designing learning environments for develop-
ing understanding of geometry and space. Mahwah: Lawrence 
Erlbaum.

Lin, F. L., & Yang, K. L. (2002). Defining a rectangle under a social 
and practical setting by two seventh graders. ZDM, 34(1), 17–28.

LOGO Foundation (2000). A LOGO primer or what’s with the tur-
tles? http://el.media.mit.edu/logo-foundation/logo/turtle.html. 
Accessed 11 Sept 2014.

Luria, A. R. (1976). Cognitive development: Its cultural and social 
foundations. Cambridge: Harvard University Press.

Mariotti, M. A., & Fischbein, E. (1997). Defining in classroom activi-
ties. Educational Studies in Mathematics, 34, 219–248.

MIUR (2012). Istruzione. http://hubmiur.pubblica.istruzione.it/web/
istruzione/prot7734_12. Accessed 11 Sept 2014.

Noss, R., & Hoyles, C. (1996). Windows on mathematical mean-
ings: Learning cultures and computers. Mathematics Education 
Library (Vol. 17). Dordrecht: Kluwer.

Papert, S. (1980). Mindstorms: Children, computers, and powerful 
ideas. New York: Basic Books.

Papert, S. (1993). The children’s machine: Rethinking school in the 
age of the computer. New York: Basic Books.

Tsamir, P., Tirosh, D., Levenson, E., Barkai, R., & Tabach, M. (2015). 
Early-years teachers’ concept images and concept definitions: 
Triangles, circles, and cylinders. ZDM Mathematics Education, 
47(3) (2014, this issue).

http://el.media.mit.edu/logo-foundation/logo/turtle.html
http://hubmiur.pubblica.istruzione.it/web/istruzione/prot7734_12
http://hubmiur.pubblica.istruzione.it/web/istruzione/prot7734_12

	Geometry in early years: sowing seeds for a mathematical definition of squares and rectangles
	Abstract 
	1 Introduction and rationale
	2 Theoretical frame
	3 The chosen artefact: the bee-bot
	4 The research questions
	5 Methodology: the teaching experiment
	6 Findings: the evolution of signs
	6.1 The early signs
	6.2 Programming the bee-bot: the first signs for representing sequences of commands and possible paths for the bee-bot
	6.3 Pretending to be the bee-bot
	6.4 Experience with paths and the “squarized 0”3
	6.5 From “squarized 0” to rectangles and squares
	6.6 Matching trajectories and sequences of commands
	6.7 Discussing a poster on “our” discoveries
	6.8 A post-test

	7 Discussion
	7.1 The bee-bot’s paths as wholes
	7.2 Paths as sequences of commands
	7.3 The network of pivot signs around squarized Os

	8 Concluding remarks
	Acknowledgments 
	References




