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•	 Interpretative mathematics education research cannot 
directly elucidate processes of emerging understanding 
in real mathematical interaction simply by mere obser-
vation. Research-based understanding of processes of 
understanding in mathematical interaction requires 
research methods and theories as a rational, scientific 
nexus for integrating empirical observations from math-
ematical interaction into a coherent theoretical frame-
work (see Sect. 2).

This “twofold problem of understanding” is subjected 
to the impossibility of the direct mediation of meaning in 
communication in a dual way. The interacting participants 
cannot directly transmit their meaning and understanding to 
other participants; and the researchers cannot gain insight 
and understanding of real interaction processes by means 
of direct access: “Everything said is said by an observer” 
(Maturana 1988a).

Enactivism offers special explanations of how processes 
of knowing and learning (mathematics) can be understood: 
“cognition and knowing are explained within enactivist 
theory as active processes that occur directly through the 
interaction between the cognizing subject and the envi-
ronment, rather than as a construction of representations 
of the environment by the cognizing subject” (Goodchild 
2014). What are specific conditions and constraints of the 
‘mathematical environment’ in teaching–learning situations 
that the cognizing subject (students and teacher) directly 
interacts with? Further analysis will show that there is 
not one unique ‘mathematical environment’ that students 
directly interact with. Two main notions of the ‘mathemati-
cal environment’ could be: (1) the ‘mathematical environ-
ment’ has a more or less concrete, thing-like quality; (2) 
the ‘mathematical environment’ has to be engaged with as 
an abstract and structure-based entity. In the end it turns 
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1 � Introduction: setting the scene

This paper will contribute to the problem of understanding 
in mathematical interaction in a twofold perspective:

•	 Mutual understanding among participants in mathematical 
interaction is not directly achievable. It requires the embed-
ding of occurring messages into a rational background of 
common conceptual views and actions (see Sect. 2).
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out that mathematical “… cognition and knowing … as 
active processes that occur directly through the interaction 
between the cognizing subject and the environment …” has 
to be situated within a broader environment of mathemati-
cal knowledge as an object of interactive teaching–learning 
processes.

2 � Mathematical interaction: how understanding comes 
about in communication

Students’ learning of mathematics in teaching processes is 
enclosed in language and communication. All sorts of com-
municative actions—speaking, depicting and gesturing—
are taken as the main sources of human interaction and 
meaningful exchange; but how is understanding realized 
within this complex communicative setting? What under-
standing of meaningful understanding between teachers 
and students have we as mathematics educators to elabo-
rate? Could human understanding in interaction imply as 
an intended ideal situation that all participants’ thinking is 
the same?

When looking at the mathematics classroom and its cul-
ture with its planned direct transmission of elements of 
mathematical knowledge from the teacher to the students, 
language and communication are mostly seen as technical 
supports for making understanding immediately possible.1 
The German sociologist Niklas Luhmann has sharply criti-
cized such a view. He first explained the concept of ‘trivial 
machine’ and ‘non-trivial machine’ within his sociological 
theory of communication: “… trivial machines are those 
which transform an input impulse according to a certain 
rule into an output, in a way that whenever one puts in the 
information or the energy quantum the machine operates 
and generates a certain result. If one puts in another input 
the machine again operates and generates, unless it has sev-
eral functions available, another result …” (Luhmann 
2002a, p. 97 ff.). And he continues: “Non-trivial machines 
… always switch on their own status and put interposed 
questions in between, Who am I?, What have I just done?, 
What is my state of mood?, How strong is my interest 
still?, and so on, before generating an output. A self-refer-
ential loop is built in” (Luhmann 2002a, p. 98).

Luhmann takes this distinction between ‘trivial’ and 
‘non-trivial machine’ not simply as the opposite between 

1  To be clear: researchers in mathematics education would com-
pletely disagree with such a conception of teaching as a transmission 
of unambiguous mathematical knowledge (see Ernest 2010). But in 
everyday mathematics teaching the teaching–learning processes of 
mathematical knowledge often transform to interactions in which 
mathematical knowledge is intended to be directly transported from 
the teacher to the students (see the criticisms made by von Glasers-
feld 1995, p. 83).

negative and positive. He explains that the functioning as 
a ‘trivial machine’ in social interaction within certain insti-
tutions is expected and required: “… we often want social 
systems to act as trivial machines. If you imagine a court 
in which a judge applies the law, he functions as a trivial 
machine. Always when a certain input is put in, a cer-
tain distinction is resulting” (Luhmann 2002a, p. 98). But 
teaching and learning in school cannot be understood in a 
way that the students have to function as ‘trivial machines’: 
“I have harvested extensive resistance of pedagogues when 
I told them that they wanted to educate their students as 
trivial machines, when these had to give correct answers to 
certain questions. When the answer is wrong, it is wrong, 
when it is correct, it is correct. When the answer is wrong, 
the machine has made a mistake, when it is correct, it is 
good. In this system it is not planned that for instance the 
student puts the question into question or looks for a crea-
tive way out, so considering the aesthetics of mathematical 
formulae like concrete poetry distributed on a sheet, he or 
she makes something which only could be explained when 
knowing his or her actual mood” (Luhmann 2002a, pp. 
98–99).

Although in everyday life it seems in many cases nec-
essary that trivial machines function reliably, teaching and 
learning processes should not be reduced to the function-
ing of trivial machines. “The learning student should not 
be seen as a trivial machine, and …  the re-setting of the 
learning process to self-organization is indispensable …” 
(Luhmann 2002a, p. 106).

Teaching and learning mathematics in classroom inter-
action cannot function in the way of trivial machines. 
Mathematical communication in learning processes cannot 
be strictly regulated as an input–output game with definite, 
correct answers. Further, communication is in general not 
a direct mediation of meaning from one to another person: 
“… neither individuals nor the interaction system of teach-
ing are trivial machines that produce the desired results 
when the correct input is inserted …” (Luhmann 2002b, 
p. 157). And Bauersfeld emphasizes that the mathematics 
classroom constitutes a multifaceted culture:

… teaching takes place as a culture: its members 
form a typical ‘habitus’ by adaptation (Bourdieu) 
which brings about and makes possible a conflict-free 
and at the same time adequate action in this culture. 
(Bauersfeld 2000, pp. 124–125)

The understanding of how students as non-trivial 
machines learn mathematics in the culture of a mathemat-
ics classroom is in accordance with a view on mathemati-
cal knowledge that Freudenthal has always emphasized: 
“Every mathematician knows … that besides ready-made 
mathematics there exists mathematics as an activity. But 
this fact is almost never stressed, and nonmathematicians 
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are not at all aware of it” (Freudenthal 1973, p. 114). And 
he continues: “The opposite of ready-made mathemat-
ics is mathematics in statu nascendi. This is what Socrates 
taught. Today we urge that it be a real birth rather than a 
stylized one; the pupil himself should re-invent math-
ematics…. The learning process has to include phases of 
directed invention, that is, of invention not in the objective 
but in the subjective sense, seen from the perspective of 
the student” (Freudenthal 1973, p. 118). This perspective 
on mathematical knowledge being a process rather than a 
product in teaching–learning processes is a fundamental 
assumption taken in the following explanations.

Essential dimensions of the mathematics classroom 
culture are ‘communication/interaction’ and ‘mathemat-
ics’. This seems obvious, but it implies two critical issues: 
‘communication’ does not simply function as a technical 
discussion and ‘mathematical knowledge’ is not concretely 
to be grasped with the senses. But how do interactive pro-
cesses happen in reality? How is understanding realized in 
discourses amongst the participants? Luhmann introduces 
the strict separation between psychic and social processes 
and in this way denies the possibility of a direct exchange 
of understanding between persons: “Pedagogy will hardly 
admit that psychic processes and social processes operate 
in completely separate manners. However, the individuals’ 
consciousness cannot reach other individuals with its own 
operations. … But when communication is to come about, 
a completely different, also closed, also autopoietic system 
has to become active, as a social system which reproduces 
communication by communication and does not do any-
thing else than this” (Luhmann 1996, p. 279). 

The concept of the ‘autopoietic system’ has been 
introduced by Maturana and Varela (cf. for exam-
ple Maturana and Varela 1987 (in English: 1992)). It 
describes self-referential systems, which mean living 
systems which exist and develop autonomously and 
which produce and re-produce those elements that are 
needed for their existence in order to maintain them. 
… Luhmann has extended the concept of autopoietic 
systems to systems within society. The essential prop-
erty of such non-biological systems is a specific kind 
of operation that only takes place and is re-produced 
in this system. The main non-biological systems in 
society are the social and the psychic system. What 
is the core difference between a social and a psychic 
system? Psychic systems are based on conscious-
ness and social systems are based on communication. 
(Steinbring 2009, p. 51)

The elements that are re-produced within biological 
autopoietic systems are molecules (see Mgombelo and 
Reid 2015). In social systems the elements that are re-pro-
duced are the messages (exchanged by the participants in 

communication); in psychic systems the re-produced ele-
ments are the thoughts of an individual. According to Luh-
mann, psychic systems are based on consciousness and the 
elements of this autopoietic and self-reproducing system 
are thoughts: “Besides social and living systems, psychic 
systems or consciousness systems are one of three levels 
of the constitution of autopoietic systems. The operations 
of consciousness are thoughts that reproduce themselves 
recursively within a closed network without contact with 
the environment” (Baraldi et  al. 1997, p. 142). The func-
tioning of the processes of re-production of the elements 
in the social and psychic autopietic systems is based on 
meaning. [In German, Luhmann speaks of Sinn and not 
of Bedeutung. The word Bedeutung (meaning) has a more 
objective property. The word Sinn (in a way: sense) is more 
the kind of meaning an individual has in mind.] “For mean-
ing constituting systems everything has meaning because 
everything can only be communicated (or thought of) on 
the basis of meaning. … On the one side one can only 
observe the world within the medium of meaning. On the 
other side meaning only realizes oneself in social and psy-
chic systems” (Baraldi et al. 1997, p. 171).

Accordingly, social and psychic systems (or conscious-
ness) systems operate with meaning [Sinn] and living sys-
tems do not operate in this way. There is a break from the 
theoretical approaches of Maturana and Varela who would 
deny the existence of non-biological autopoietic systems:

There have been proposals suggesting that certain 
human systems, such as an institution, should be 
understood as autopoietic (Beer 1980; Zeleny and 
Pierre 1976). From what I have said I believe that 
these proposals are category mistakes: they confuse 
autopoiesis with autonomy. (Varela 1981, p. 15)

On the one side the social and psychic autopoietic sys-
tems are strictly separated because the operations of one 
system cannot directly act on the operations of the other 
system: “A social system cannot think, a psychic system 
cannot communicate” (Luhmann 1997, p. 28). On the other 
side there exists a specific relationship between both sys-
tems: “These two kinds of systems are, however, connected 
to each other in a particularly tight relation and mutually 
form a ‘portion of necessary environment’: without the par-
ticipation of consciousness systems there is no communica-
tion, and without the participation in communication there 
is no development of the consciousness” (Baraldi et  al. 
1997, p. 86).

According to Luhmann the participants of a social (com-
municative) system reciprocally exchange by messages (or 
actions) ‘signifiers’ that point to information or ‘signifieds’. 
The messenger only can contribute a ‘signifier’ but the ‘sig-
nified’ intended by the messenger—that only could lead 
to an understandable ‘sign’—remains open and relatively 
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vague, and it can only be generated by the receiver of the 
message through articulation of a new ‘signifier’. The 
receiver cannot assign the possible signified strictly to the 
speaker but he or she has to construct a signified himself/
herself in the course of the ongoing social communication.

An example might help to better understand this diffi-
cult communicative interplay. The participants articulate 
alternately messages (speaking, pointing, gestures, actions, 
…) that might refer to intended information and meanings. 
For example, the young student Annika states: “I have cal-
culated 8 by 4 that was 12.” The messenger, Annika, pro-
vides a message by stating a ‘signifier’ but her intended 
‘information’ (or meaning) remains open and is in question. 
Obviously the correct meaning of her message cannot be 
the arithmetical equation 8 ÷ 4 = 12, which is a ‘wrong’ 
statement—in the context of trivial machines.

The receiver of the message, the teacher, articulates 
a further message and in this way a potential understand-
ing should be made possible by producing a new ‘signi-
fier’ taking the role as signifying at the old signifier thus 
making it a new ‘signified’. The teacher states: “You have 
said … 8 divided by 4 equals 12.” The receiver of the mes-
sage, the teacher, cannot strictly attach the possible infor-
mation to the messenger, Annika. Her message now opens 
possibilities of an interactive constitution of understanding 
and meaning. In our example this could be: “You know, 
the equation 8 ÷ 4 = 12 is not correct! Explain! I cannot 
understand you!”

The generation of joint and reciprocal understanding 
in mathematical interaction is not directly possible. The 
personal intended meaning Annika has in her head is not 
directly transferable to her teacher. Her thoughts, the ele-
ments of her psychic autopoietic system, cannot directly 
operate on the teacher’s thoughts. But, how can joint under-
standing be realized in communication?

In his book The Origins of Human Communication 
(2008) Michael Tomasello identifies necessary conditions 
for the achievement of understanding in human communi-
cation. Human language “… rests on a nonlinguistic infra-
structure of intentional understanding and conceptual com-
mon ground, which is in fact logically primary…. If we 
want to understand human communication … we cannot 
begin with language. Rather, we must begin with uncon-
ventionalized, uncoded communication, and other forms of 
mental attunement, as foundational. Excellent candidates 
for this role are humans’ natural gestures such as pointing 
and pantomiming” (Tomasello 2008, p. 58ff.). Accordingly, 
essential basic elements for the realization of understand-
ing in communication are ‘a conceptual common ground/a 
common praxis of actions’ and ‘pointing and symbol ges-
tures’. In our example of Annika and her teacher we will 
see how their conceptual common ground and their praxis 
of actions within the elementary arithmetical context of 

natural numbers and operations of addition, subtraction, 
multiplication and division together with gestures enables 
the development of joint understanding.

Tomasello’s concept of ‘a conceptual common ground/a 
common praxis of actions’ that is compressed here in the 
term ‘rational nexus’ is related to Maturana’s ‘domain of 
explanations’:

When two or more autopoietic systems interact recur-
rently … there is a co-ontogenic structural drift that 
gives rise to an ontogenically established domain of 
recurrent interactions between them which appears to 
an observer as a domain of consensual coordinations 
of actions or distinctions in an environment. This 
ontogenically established domain of recurrent inter-
actions I call a domain of consensual coordinations of 
actions or distinctions, or, more generally, a consen-
sual domain of interactions …. (Maturana 1988b, p. 
18, 8.ii.a)

And further, there is a connection between Tomasello’s 
ideas on language and Maturana’s. Maturana sees lan-
guaging—using language—as a special kind of consen-
sual co-orientation of actions which occur normally in the 
interactions of living systems and give rise to a consensual 
domain—a joint praxis of action:

There are circumstances in which an observer can see 
that under the expansion of a consensual domain of 
co-ordinations of actions there is a recursion in the 
co-ordinations of actions of the organisms that par-
ticipate in it. … Due to this, I claim that when this 
occurs, language happens, and that the phenomenon 
of language takes place in the flow of consensual co-
ordinations of consensual co-ordinations of action 
between organisms that live together in a co-onto-
genic structural drift. (Maturana 1988a, pp. 46–47)

The emergence of understanding in communication 
is neither directly possible nor transferable from one to 
another person. Every participant in communication has 
to construct his/her own and personal understanding (Luh-
mann). Further, understanding in communication presup-
poses a conceptual common ground and a joint praxis of 
actions (Maturana, Tomasello).

Every participant in communication cannot understand 
the occurring messages of other participants on their own 
terms but he or she has to try to sensibly embed the heard 
messages into his/her (individual) rational nexus (or net-
work) of conceptual common views and a comprehensive 
praxis of actions. A single message cannot be understood 
directly by itself, or in the way it is communicated. The 
receiver of a message has to integrate this single piece of 
information into a possible coherent network or nexus in 
which the information gets meaning by relations to other 
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elements of this nexus. The example of Annika and her 
teacher will help to clarify this basic idea.

Example (taken from Fromm and Spiegel 1996, p. 109), 
‘Annika calculates 60 ÷ 4’ (Grade 3):

7 A:	� First, I have calculated 8 by 4 that was 12,
8	� and then I have the remainders of it, that was 2 

with each,
9	� and then I have … and that was then again 12
11 T:	� Well, I now must interrupt you once.
12	� Namely you have said, 8 divided by 4 is 12.
14 A:	� Hmm, I mean 8 by 60.
15 T:	� 8 divided by 60 … does it work?

Taking the perspective of ‘trivial machines’ Annika pro-
duces an incorrect output: ‘8 ÷ 4 = 12’ is ‘wrong’ and the 
task ‘8 ÷ 60=’ conceptual difficulty there’ is for elemen-
tary teaching a not acceptable—and therefore ‘wrong’—
mathematical problem. From the perspective of ‘non-trivial 
machines’ the interpretative analysis of the further course 
of interaction between Annika and her teacher offers a 
reconstruction of how Annika might have produced her 
own understanding within her personal rational nexus of 
conceptual views and actions. During the course of interac-
tion the teacher seems to have no real access to Annika’s 
rational nexus.

The qualitative analysis shows and gives evidence 
that Annika might have reasoned in the following way 
(here shortly summarized): “10 fits 6 times into 60 
[60 = 6·10]”, “8 is in 10 (with remainder 2) [10 = 8 + 2]” 
and 8 ÷ 4 = 12 can be reinterpreted as “4 is 2 times in 8 
hence (at least) 12 times in 60”. Moreover, with the help 
of 60 = 6·10 Annika calculates how many remainders of 2 
(10 − 8) have to be considered still: “… the remainders of 
it, that was 2 with each, and then I have—and that was then 
again 12.”

The interactive understanding emerging between Annika 
and her teacher cannot be reduced to a direct exchange of 
‘correct’ words. This communication constitutes a “social 
system” in Luhmann’s terms; messages are exchanged, and 
one message provokes the mediation of another message—
the reproduction of the elements of the autopoietic interac-
tion system. The elements of the two psychic systems—the 
thoughts of Annika’s and the teacher’s consciousness sys-
tems—cannot be directly observed, and Annika’s thoughts 
cannot directly couple with the teacher’s thoughts and vice 
versa. Understanding what Annika and the teacher might 
think about needs a common conceptual background and 
a joint praxis—according to Tomasello—for placing the 
communicated message into a rational network. Under-
standing the other person requires the one person to recon-
struct, from the messages the other person communicates, 
one’s own interpretation by embedding these messages 

into one’s own nexus of conceptual views and actions. 
Thus, in trying to make sense of the messages, one receives 
Annika’s message “I have calculated 8 by 4 that was 12” 
as seeming to be a statement without ‘correct’ meaning 
within the ordinary context of elementary arithmetic. And 
the teacher seemed to have put in her nexus of understand-
ing of how to correctly perform the division operation. In 
the end, with more insight into Annika’s complex rational 
nexus of arithmetical concepts and arithmetical operations 
this message got meaning and could be understood as an 
idiosyncratic description of: “8 contains 2 times 4, 8 is at 
least 6 times a factor in 60, so 4 is (at least) twice often a 
factor in 60, hence 12 times”.

This section has clarified the ‘twofold problem of under-
standing’—the impossibility of a direct mediation of mean-
ing between individuals, and the impossibility of research 
insights by mere observation—by referring to fundamental 
concepts of Luhmann’s social theory and to Tomasello’s 
ideas of how understanding in communication can come 
about by constructing a rational nexus of a conceptual 
background within a joint praxis. Analogously, mathemat-
ics education research has developed theoretical perspec-
tives and methods for reconstructing interactive processes 
of negotiating mathematical meaning and understanding 
in teaching and learning processes. Maturana character-
izes this basic issue in the following way: “… what distin-
guishes an observer in daily life from an observer as a sci-
entist is the scientist’s emotional orientation to explaining 
his or her consistency in using only the criterion of vali-
dation of scientific explanations for the system of explana-
tions that he or she generates in his or her particular domain 
of explanatory concerns, and his or her commitment to 
avoid confusing phenomenal domains in his or her genera-
tion of scientific explanations” (Maturana 1988a, p. 36).

3 � Mathematical interaction: imperceptibly operating 
nexus of meaning and patterns of classroom 
communication

For a long time mathematics teaching was unconsciously 
understood as a clear and simple process of direct transfer 
of mathematical knowledge from the teacher to the stu-
dents. Within this teaching–learning process the students 
were expected to function like ‘trivial machines’. There 
was no real observance of the problem of communication 
and of how mathematical meaning can be developed in 
interaction.

The research group around Heinrich Bauersfeld at the 
IDM (Bielefeld) promoted the so-called ‘interpretative 
classroom research’ as a corrective for a kind of mathemat-
ics teaching as the ‘mediation of an inconvertible subject 
matter’:
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… the ‘turn to everyday life’… with its criticism of 
‘holiday didactics’… contained the claim of assign-
ing a greater meaning than before to the features of 
everyday instruction. In ethnographic observations of 
instruction and interpretative studies, one saw a cor-
rective for conceptions of instruction which emerge 
at the didactical desk; one was disillusioned by the 
effects of the school reforms (see among others the 
‘New Mathematics’) and wanted to understand bet-
ter the surprising stability of everyday instruction, 
its own progress and its traditions. At the same time, 
there was the hope of being able to better connect 
with the experience and the problem awareness of 
the practitioners through softer methods of empirical 
research. (Voigt 1996, p. 384)

The interpretative mathematical interaction research 
paradigm emphasized two perspectives that had been dis-
regarded in the German-speaking mathematics education 
community until then (Voigt 1994, p. 74):

•	 An individual psychological perspective emphasizing 
the autonomy of the learner and his/her cognitive devel-
opment

•	 A collectivistic perspective that understands mathemat-
ics learning as a socialization of the (young) students in 
a given mathematical culture.

Within the context of the ‘individual psychological per-
spective’ one theoretical construct is the ‘subjective domain 
of experience’: “The learning students (the ‘subjects’) 
make experiences within a certain domain, for example by 
performing activities. In social interaction with others … 
these activities obtain sense for the learners, they recognize 
what meaning these activities have. … These meanings are 
tightly connected with the perceptible means, the material 
and the introductory examples” (Hasemann 2003, p. 50). 
Another example is the construct of ‘frame’. A subject 
directly takes within a social situation a personal ‘frame’ 
as a horizon of sense-making; it is an individual view a 
person takes, for spontaneously interpreting a (new) social 
situation. Frames are rarely taken consciously; in most 
cases they are activated in social interaction on the basis 
of already lived or similar experienced situations (Krum-
mheuer 1984).

These two examples show that meaning and understand-
ing in mathematical interaction cannot be directly trans-
ferred but must be seen as a personal construction within an 
(individual) rational nexus, not a ‘correct output triggered 
by a precise input’.

‘Patterns of mathematical communication’ are a central 
field of interpretative research within the ‘collectivistic 
perspective’. The reality of classroom interactions is much 

too complex to be modelled entirely and exhaustively as 
reciprocal effects of variables. But: “… the putative chaos 
of teaching … [could] emerge as a relatively well ordered 
event. Order in teaching here is not understood as a con-
trolled network of intervening variables—but as a forma-
tion induced by the actors in the teaching process. The hid-
den regularities, the patterns and routines of interaction, 
permit the participants to behave in an ordered manner …” 
(Voigt 1984, p. 46).

The example of the ‘funnel pattern’ of the ‘narrowing 
down of actions in view of the answer expectation’ (Bau-
ersfeld 1978) shows how communicative features emerge 
in small-step and question-based mathematics teaching. 
The essential dimensions of the funnel pattern are (cf. Bau-
ersfeld 1978):

1.	 The student does not recognize the mathematical oper-
ation or conclusion.

2.	 The teacher intervenes with a short question. (No or 
wrong student’s answer.)

3.	 The teacher continues to strive for an insightful stu-
dent’s answer. (No or wrong student’s answer.)

4.	 Further absence of the expected answer leads to a nar-
rowing to the mere recitation of the expected answer.

5.	 The interaction process stops as soon as the expected 
answer falls.

As an illustration, the following short episode shows ele-
ments of the funnel pattern (Interviewer, Julia, Johanna):

134 I:	� … Ehm, why do you want to add them? … We 
have nearly almost solved it … hm?

135 Ju:	� You, say it!
136 Jo:	� I don’t understand you …
162 I:	� … Well, and we still have these six kids who raised 

their hands on both questions. What is to be done 
with them? You have, you always wanted … to add 
them …

179 I:	� … How else could you probably calculate this?
193 Ju:	� And then 6 less

The contributions of the interviewer (134: ‘to add them’, 
162: ‘you always wanted … to add them’, 179: ‘How else 
… calculate’) enforce in a way of small interaction steps 
the “the mere recitation of the expected answer” (dimen-
sion 4) and in the end the “the expected answer falls” 
(dimension 5).

The functioning of this extreme form of a funnel pattern is 
based on the discursive scaffolding. The interviewer’s accen-
tuation of ‘to add’ and ‘How else … calculate’ suggest to the 
students to try out the opposite of ‘add’, namely ‘6 less’ or 
‘to subtract’, which is then accepted by the interviewer as 
correct. The functioning of the funnel pattern sometimes is 
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so perfect that the participants of the mathematical commu-
nication do not have to know nor to understand the mathe-
matical problem that was posed in the beginning. A correct 
student’s answer can be forced simply by rhetorical means 
and by strong suggestions and signal words.

The mathematical problem in this example was the fol-
lowing: “In a first grade class with 20 children the teacher 
asks the children who of you have sisters and/or brothers. 
When asking the question: ‘Who of you have a brother?’ 8 
children raise their hands. When asking the question: ‘Who 
of you have a sister?’ 9 children raise their hands. And 
when asking the question: ‘Who of you have a brother and 
a sister?’ 6 children raise their hands. Question: How many 
children have no siblings at all?”

The idea to solve the problem is as follows: You add 
the number of children raising their hand on the brother-
question, 8, and the number answering the sister-question, 
9, which makes 17. Now, 6 children raised their hands on 
the brother&sister-question, denoting that these 6 children 
have also raised their hands on each of the two first ques-
tions, therefore two times. Consequently this number 6 
has to be subtracted—and not to be added, as the two girls 
proposed—which leads to 17 − 6 = 11, the number of chil-
dren having siblings, and 20 − 11 gives the number of chil-
dren in this class, 9, having no siblings at all.

The mathematical problem posed in this interview is a 
demanding one for first grade students. It has a basic com-
plexity that cannot be overcome simply by using direct 
strategies of operating with numbers in analogy to concrete 
actions in the real world. Why calculate −6 and not +6? 
To give a mathematical justification needs an elementary 
model that offers a mathematical structure of its own and 
is not directly to be found in the situated example of the 
classroom with 20 children. Surprisingly, the communica-
tion pattern of the funnel in the end leads to the expected 
answer the interviewer had in mind and looked for and the 
young students did not need to have an adequate mathemat-
ical understanding of the problem or the solution.

Without patterns and routines, everyday social situations 
could not be managed. All sorts of interactions need secure 
patterns based on former experiences. When communicat-
ing with other participants not every social exchange can be 
completely new nor rationally reconstructed at that specific 
moment. In communication, such routines and patterns 
support the “rational nexus of common conceptual views 
and actions” (Tomasello 2008) that is essential for realizing 
understanding between participants in social interaction.

Interaction patterns in mathematics teaching that might 
be helpful otherwise can degenerate, as for instance the 
extreme funnel pattern shows. Dimension 4 of the funnel 
pattern can disconnect the insightful mathematical problem 
completely from the discursive negotiation of the accepted 
‘solution’: the ‘correct’ answer falls and it no longer has 

any link to the problem it should answer. The interaction 
pattern no longer supports the “rational nexus of com-
mon conceptual views and actions” for understanding the 
mathematical problem but reduces the students to ‘trivial 
machines’: “What happens when non-trivial systems … 
are exposed to trivialization? By self-socialization they 
adjust to it. … They learn to cope with it. They build in a 
reflexion circuit that clarifies conditions under which it is 
recommendable to behave like a trivial system” (Luhmann 
2002b, p. 57). Small-step question–answer communication 
is widespread in mathematics classrooms and this strongly 
supports patterns that can lead to trivialization: “The 
teacher … puts a question even though he knows already 
the answer. In everyday social life this is unusual, and in 
case it becomes obvious it is embarrassing. In school this 
is a standardized procedure for the control of trivialization” 
(Luhmann 2002b, p. 78).

Patterns of communication in mathematics classrooms 
might play an ambiguous role. On the one side one needs, 
as always in communication patterns and routines, ele-
ments of a rational nexus of common concepts and actions 
for facilitating meaning and understanding in interaction. 
But the students’ understanding of mathematics could be 
narrowed down and finally reduced to the mere recitation 
of the ‘correct’ answer that could be completely separated 
from an insight into the mathematical problem the teach-
ing–learning process started with.

4 � Mathematical interaction: epistemological 
dislocations in the course of mathematical knowledge 
development

The object of mathematical interaction and meaning-mak-
ing is mathematical knowledge. This object depends on 
particular epistemological conditions. This object of math-
ematical discourse cannot be directly seen with the eyes. In 
some way it has to be imagined.

Jahnke and Otte assert that mathematics represents 
‘theoretical knowledge’ and this has severe consequences 
for mathematics education as a scientific discipline: “For 
didactics … it is obvious that the didactical problem in its 
deeper sense, that is in the sense that it is necessary to work 
on it scientifically, is constituted by the very fact that con-
cepts will reflect relationships, and not things” (Jahnke and 
Otte 1981, p. 77). This perspective implies a specific under-
standing of mathematical teaching–learning processes 
according to which students have to be active themselves 
and the production of the essential mathematical relation-
ships is a requirement that in the end the learners them-
selves have to perform.

A fundamental demand in the mathematics learning of 
students is to understand and use semiotic representations, 
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visual diagrams and signs as carriers of mathematical ‘rela-
tionships and structures’. At the same time interpretative 
mathematics education research is faced with the problem 
of reconstructing coherent and theoretically based under-
standing of ‘invisible’ mathematical knowledge in pro-
cesses of interaction.

Ultimately, mathematical knowledge is ‘invisible’ 
knowledge:

We do not have any perceptive or instrumental access 
to mathematical objects, even the most elementary… 
we cannot see them, study them through a micro-
scope or take a picture of them. The only way of gain-
ing access to them is using signs, words or symbols, 
expressions or drawings. But, at the same time, math-
ematical objects must not be confused with the used 
semiotic representations. This conflicting requirement 
makes the specific core of mathematical knowledge. 
(Duval 2000, p. 61)

The semiotic representations—in elementary teaching 
even concrete material—have not to be taken themselves as 
the mathematical knowledge. They are carriers of mathemati-
cal ‘relationships and structures’; they can point to the ‘invis-
ible’ mathematical knowledge. Some examples from elemen-
tary mathematics teaching will give some better insight.

Example: Are numbers ‘hidden’ in the learning mate-
rial? What is the ‘three’? (see Fig. 1).

The number ‘three’ can be represented using different 
concrete objects or more abstract material. But the material 
and objects themselves cannot ‘define’ the number three; 
one has already to know the number ‘three’ to be able to 
use the material for representing the ‘three’.

Reuben Hersh has clearly contrasted the empirical with 
the theoretical nature of natural numbers:

The fact that I have five fingers on my left hand is an 
empirical observation. ‘Five’ in that usage is an adjec-
tive. There is no conceptual difficulty there, any more 
than in saying my fingers are long or short. But five 
in pure mathematics is less than the big number I just 
defined [((2 to a very high power) raised to a very high 
power) raised to a very high power], and is relatively 
prime to it, and so on. It possesses an endless list of 
properties and relationships, not only in &&&, but 

also in , in , and beyond. It’s part of an abstract theory 
(Hersh 1998).

The use of coloured chips within the position table even 
more strongly demonstrates that numbers have to be under-
stood via the abstract relation they form with each other 
(see Fig.  2). Here students are faced with the following 
epistemological problems: Where is the zero in the position 
table when using coloured chips? When already knowing 
the abbreviations—O for ones, T for tens, H for hundreds 
and Th for thousands—what is the meaning of the highest 
position (with the question mark)?

The epistemological problem behind the question ‘What 
is the number 10050?’ cannot be solved by searching for 
concrete properties of this specific number or asking what 
is the correct name of this number. Is the number in the 
highest column of the position table perhaps one million, as 
one student supposed? The only and crucial characteristic 
is the relationship that this new number has with its neigh-
bours: it is ten times as much as its ‘right’ neighbour and 
one tenth of the value of its ‘left’ neighbour.

This epistemological characterization of ‘invisible’ 
mathematical knowledge can be modelled with the episte-
mological triangle (Fig. 3):

The epistemological triangle represents a theoretical 
instrument for tackling this problem that one requires 
signs and symbols for mathematical knowledge, but 
that these signs and symbols themselves are not the 
knowledge.
Mathematical knowledge cannot be reduced to signs 
and symbols. The connection between the signs to 

Fig. 1   “Anything can be three!”

Fig. 2   Chips in the position table representing 10050

the activity of the learning subject

reference context 
Sign / symbol

Fig. 3   The epistemological triangle
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code the knowledge and the reference contexts to 
establish the meaning of this knowledge can be rep-
resented in the epistemological triangle. … The rela-
tions between the corner points of this triangle are not 
defined explicitly; they form a balanced system, that 
reciprocally supports itself. In the ongoing develop-
ment of the knowledge, the interpretations of the sign 
systems and the chosen according reference contexts 
will be modified or generalized by the epistemologi-
cal subject or the learner. (Steinbring 2005, p. 92ff.)

The teacher asks what comes then, after a thousand. The 
students answer thousand and fifty! How is this number 
written with numerals, the teacher asks. Svenja proposed 
writing: 10050. This is now questioned: What number is 
given by Svenja’s proposal? This new symbol has to be 
explained. Using the epistemological triangle one can char-
acterize the epistemological requirement as follows.

The reference context that is taken here (see Fig. 4) as a 
rather familiar background that could serve to explain this 
new symbol is the position table. But in this position table 
the very column in question that would enable an explana-
tion itself is new. The only possible solution is to search for 
the internal relationships this ‘empty’ column has with its 
neighbours. The internal decimal structure—and not con-
crete properties of definite denotations—is the epistemo-
logical basis for the existence of the number of this column.

The transition and tension between a thing-like concrete 
and a symbolic relational understanding of the existence of 
mathematical knowledge leads to a fundamental epistemo-
logical problem of learning mathematics: the common con-
ceptual background and the joint praxis of actions—that are 
the basis for developing understanding in interaction—are 
subjected to unexpected dislocations and severe changes 
of the development of mathematical knowledge. What has 
once been a ‘self-evident’ fundamental understanding can be 
destroyed later by modifications to new essential structures 
and more general relations of the new knowledge in question.

Further examples of mathematical knowledge in school 
are for instance ‘zero’ and ‘negative numbers’. A common 

understanding of zero is for students often to say: zero 
means nothing. The spontaneous empirical reference for 
explaining the mathematical ‘0’ is a special aspect of real-
ity, namely the absence of something, nothing. Later the 
meaning of ‘0’ changes drastically and the new understand-
ing requires a completely new, symbolically structured ref-
erence context. ‘0’ receives a symbolic-relational meaning 
within the decimal system. Zero (‘0’) reaches a new episte-
mological status. It becomes “… a sign for the absence of 
signs” (Rotman 1987, p. 57).

‘Negative numbers’ are a further example for school 
mathematical knowledge that contains epistemological dif-
ficulties for understanding their existence. How can or do 
negative numbers exist? In history the development of an 
adequate understanding required the overcoming of episte-
mological obstacles: “… one remained attached to a ‘con-
crete position’, i.e. one tried to confer somehow ‘concrete 
sense’ to these numbers and their operations” (Hefendehl-
Hebeker 1989, p. 7). The interpretation of negative num-
bers as ‘true’ mathematical concepts required overcoming 
the obstacles by a change of perspective: the existence of 
the new numbers with their operations no longer rested on 
empirical objects and concrete operations but have been 
conceived as an existence that was provided by the internal 
structure of the system of negative numbers itself together 
with their operations (Hefendehl-Hebeker 1989).

The tradition of everyday mathematics teaching has pro-
vided a number of strategies for circumventing epistemo-
logical dislocations. The conceptual mathematical mean-
ings are losing more and more weight compared with a 
growing emphasis on recipes, procedures and algorithms. 
And in the course of interaction between teacher and stu-
dents, routinized communication patterns emerge for mak-
ing possible ‘mutual understanding’ and in this way ‘nego-
tiating the fabrication of correct answers’.

5 � Mathematical interaction: communication, 
epistemological constraints and enactivism

Learning mathematics is an activity that is a component of 
a complexity of communicational and epistemological con-
ditions and constraints. Students interact with mathemati-
cal problems and at the same time speak with the teacher 
and with other students about mathematics. The teacher 
interacts with students doing mathematics. And research-
ers observe teachers and students working and they inter-
act with this environment. With regard to the enactivist 
position one can state that the environment the student is 
directly interacting with when doing mathematics in the 
culture of the classroom is subjected to many factors and 
fundamental restrictions. The two essential dimensions 
affecting the ‘mathematical environment’ are restrictions in 

Fig. 4   10050 in the position table
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communication—a direct transport of meaning is not pos-
sible in communication—and in the mathematical knowl-
edge—mathematics is abstract, incarnated in structures and 
not directly accessible by senses. Sections  3 and 4 have 
elaborated these constraints and the examples presented 
served for further clarification.

The identification of essential issues of the autopoiesis of 
communication and of the specific epistemological condi-
tions of mathematical knowledge in the preceding sections 
has brought us to the following overall view (see Fig.  5). 
The participants—students, teacher (interviewer) and 
researcher (observer)—represent as individuals psychic sys-
tems that re-produce thoughts. The student thinks about the 
mathematical world of signs and symbols, the teacher thinks 
about the student’s way of enacting with mathematics and 
the researcher thinks about the interaction between teacher 
and student(s). All thoughts—the elements of the three 
autopoietic psychic systems—cannot directly couple with 
thoughts of other psychic systems (Luhmann). The interac-
tion between teacher and student(s) represents a social sys-
tem, and the interaction between researcher and the social 
system of teacher and student(s) represents another social 
system; only via communication in social systems is there 
a means of indirectly reconstructing what might have been 
thought about in the frame of psychic systems.

The student(s) interact with a world of mathematical 
signs and symbols and this activity is situated in teaching–
learning processes with the teacher or in an interview com-
munication with an interviewer. Further, a researcher might 
observe this teacher–learner interaction, document it and 
go for a theory-based interpretative analysis.

From an enactivist perspective one could formulate 
the precondition that the engagement of an agent or of the 
(learning) subject with the world (of mathematical signs and 
symbols) is not simply a receipt of the elements of a pre-
given world or the individual construction of a true represen-
tation of the world: “The insight here is that the world is not 
something ‘that is given to us but something we engage in by 

moving, touching, breathing, and eating’ (Varela 1999, p. 8).  
As we live, we literally create our world, and, in turn, our 
identities are created by interaction with the world and other 
beings” (Brown and Coles 2012, p. 221). How can the sub-
ject know about the world? As stated above (Sect. 1): “Cog-
nition and knowing are explained within enactivist theory as 
active processes that occur directly through the interaction 
between the cognizing subject and the environment, rather 
than as a construction of representations of the environment 
by the cognizing subject” (Goodchild 2014).

In our setting (see Fig. 5) we have three worlds: the world 
of mathematical signs and symbols (1) for the learning stu-
dents; the world of the student engaging in mathematics (2) 
for the teacher; and the world of teacher–learner interaction 
about mathematical knowledge (3) for the researcher. All 
three worlds are autopoietic systems (see Sect. 2). Accord-
ing to Luhmann we have to be aware that the psychic sys-
tems of the persons involved—students, teacher/interviewer, 
researcher—also must be seen as autopoietic systems. The 
world of mathematical signs and symbols is constructed by 
reciprocal and internal relationships and not by references 
to empirical properties of the material world. To that extent 
it can be understood as an autopoietic system with internal 
reproductions of new signs and symbols. Further, the com-
municative interactions between psychic systems themselves 
function as autopoietic systems (Luhmann 1996).

As already stated in Sect. 2, autopoietic systems can-
not directly communicate with each other. The interaction 
between autopoietic systems—that are finally closed—can 
be understood as a process of co-emergence in which the 
one system takes the role of the environment for the other 
and vice versa. Both systems bring forth new structures by 
structural coupling: “From an enactivist perspective learn-
ing is seen as a process of restructuring that is triggered by 
interaction that occurs within the complex dynamic system 
of coupling (structural coupling) between person and envi-
ronment” (Goodchild 2014).

An example from an interview study will provide more 
insight into the peculiarities of the mathematical world of 
signs, symbols and diagrams. This example stems from an 
interpretative research study (Anke Steenpaß, see Steen-
paß and Steinbring 2013). The young students in this study 
have been asked in the course of an interview the following 
question: “Which one of the four cards with tasks fits the 
best for the number line?” (see Fig. 6).

At a certain moment Sonja decided for the task ‘12 + 7’ 
(see Fig.  7) and she explained by bordering three areas 
containing some scaling bars (these three areas are addi-
tionally highlighted in Fig.  7 by ellipses). Sonja’s frame 
(Krummheuer 1984) for interpreting why ‘12 +  7’ fits to 
this diagram can be summarized as follows. Sonja knows 
that the observable elements in the number line, the scal-
ing bars, are symbolizing numbers. But she takes these bars 

observer
researcher

learner
student(s)

a mathematical
world of signs
and symbols

enacting

teacher 
interviewer

enacting
interacting

enacting
analysing

Fig. 5   Complexity of the interplay between autopoietic systems
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as if they were objects like concrete things with specific 
properties. Every ‘short’ bar means ‘1’ and every ‘long’ bar 
(of middle or long length) means ‘10’. Consequently Sonja 
collected one ‘long’ and two ‘short’ bars for giving ‘12’, 
then four ‘short’ bars and separately three ‘short’ bars giv-
ing together 7, and that makes the task ‘12 + 7’ (for a more 
careful and detailed analysis see Steenpaß and Steinbring 
2013). For Sonja in this case the elements of the mathemat-
ical world of signs, numbers and diagrams are framed as if 
they were empiric things with specific attributes that char-
acterize them. Sonja enacts with the mathematical world in 
a very idiosyncratic manner, thus structuring the diagram 
as a carrier for numbers by bars that have to be collected.

The interpretation made by the student Anne in the same 
research study (Anke Steenpaß) looks quite different. She 
chooses the tasks ‘12 + 7’ (see Fig. 8) and ’99 − 7’(see Fig. 9).

Anne frames her explanation and her inscription in the 
diagram by focusing on the relation and structure between 
the elements (the scaling bars) and not searching for indi-
vidual, concrete attributes of these elements. For instance, 
the ‘12’ is seen as a ‘difference’ between the first ‘long’ 
bar (0) and the second ‘short’ bar right from the second 
‘long’ bar (Fig. 8). And the ‘99’ is directly left from ‘100’ 
that is positioned at the third ‘long’ bar (Fig. 9). The mean-
ing of these graphical elements—used as symbols refer-
ring to something else—is given by its position within a 

structured, systemic network. The single elements do not 
have meaning in themselves but only as particles within a 
system of many elements. In this example Anne enacts with 
the mathematical world of signs, numbers and diagrams by 
bringing the relational structure of the graphical elements 
of the number line to the front.

The example of Sonja and Anne shows different ways 
of how in students’ learning of mathematics the enact-
ments with the world of signs, symbols and diagrams are 
restructured. Sonja framed her world as if it was a world 
of pseudo-things having specific concrete attributes. Anne 
framed her world as a structured system wherein the ele-
ments receive their meaning by manifold relations with 
the other elements of the system. In mathematics learn-
ing this duality between a ‘world of things’ and a ‘world 
of relations’ is a great challenge. The interpretative analy-
sis of both students’ individual framing of the number line 
offered an interesting and productive research insight and 
by no means was there any intention to positively or nega-
tively evaluate the students’ mathematical competence.

The interactive learning of mathematical knowledge 
can be understood as a discursive interplay of ‘hyposta-
sis’ (‘conversion to a thing’ or ‘objectification’) and ‘theo-
rization’  (‘conversion to relations and structures’). Such 
a development might begin with chips used as things (for 
representing numbers). It then can lead to relations and 
structures between things (chips, arranged in patterns). 
And sub-structures can be converted to theoretical objects 
between which new relations and structures can emerge.

On the one side, the philosopher Ernst Cassirer considers 
the necessity of a conversion from ‘objects’ to ‘relations’: 

Fig. 6   Which task fits the best?

Fig. 7   Sonja’s choice: ‘12 + 7’

Fig. 8   Anne’s choice: ‘12 + 7’

Fig. 9   Anne’s choice: ‘99 − 7’
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“… the theoretical concept in the strict sense of the word 
does not content itself with surveying the world of objects 
and simply reflecting its order. Here the comprehension, 
the ‘synopsis’ of the manifold is not simply imposed upon 
thought by objects, but must be created by independent 
activities of thought, in accordance with its own norms and 
criteria (Cassirer 1957, p. 284).

On the other side, human communication cannot deal 
with ‘pure’ structures and relations—human communica-
tion has to make use of communicative means that have 
developed in mankind within a certain environment: “All 
linguistic representation clings to the world of intuition 
and returns to it. …  Even where language progresses to 
its highest, specifically intellectual achievements—even 
where, instead of naming things or attributes, occurrences 
or actions, it designates pure relations—this purely signifi-
cative act does not, by and large, surpass certain limits of 
concrete, intuitive representation” (Cassirer 1957, p. 450).

The seemingly concrete things and objects—the con-
crete learning materials in elementary mathematics teaching 
or every mathematical diagram, as for instance the number 
line—gain a new existence and a modified meaning within 
a mathematical structure. Enacting as a learner of mathemat-
ics with the world of mathematical signs, symbols and dia-
grams requires a permanent conceptual change and modified 
interpretation of the meaning of the elements of this world: 
the meaning alternates between objects, structures between 
objects, new theoretical objects of converted structures, new 
structures between converted theoretical objects, and so on.

The students’ interaction with the ‘mathematical envi-
ronment’ is contained in a communicative complexity. 
From an enactivist position, in autopoietic systems “… we 
literally create our world, and, in turn, our identities are 
created by interaction with the world and other beings” 
(Brown and Coles 2012, p. 221). The theoretical discus-
sion in this paper has elaborated specific constraints for 
the creation of our mathematical world by interaction with 
the world and other beings; communication with other 
beings is a highly complex interplay between two separated 
autopoietic systems and the elements of the mathematical 
world cannot be perceived directly by our senses but con-
sist of ‘invisible structures’ and relations.
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