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Abstract I report on how a linear algebra classroom

community reasoned about the invertible matrix theorem

(IMT) over time. The IMT is a core theorem that connects

many fundamental concepts through the notion of equiva-

lency. As the semester progressed, the class developed the

IMT in an emergent fashion. As such, the various equi-

valences took form and developed meaning as students

came to reason about the ways in which key ideas involved

were connected. Microgenetic and ontogenetic analyses

(Saxe in J Learn Sci 11(2–3):275–300, 2002) framed the

structure of the investigation. The results focus on shifts in

the mathematical content of argumentation over time and

the centrality of span and linear independence in classroom

argumentation.

Keywords Linear algebra � Adjacency matrices �
Collective activity

1 Introduction

Consider a discussion from a linear algebra class that had

been investigating properties of linear transformations and

their associated standard matrices:

Instructor: … If the column vectors of A are linearly

independent,1 then you guys are saying it [the

matrix] is invertible2 because of that. Are you

guys able to explain why that should give

invertibility? I think you said something, or

go ahead, Josiah.

Josiah: When they’re linearly independent, there’s

only one path you can take to get to it, so in

order to get back, there can only be one

answer to get back. Whereas if they’re

dependent on each other, then depending on

how you got there, would determine how you

get back … so you don’t have the right

information again.

Instructor: Jesse…Yeah?

Jesse: Also, if they’re dependent, in the RREF,

you’ll have a zero row, so it will be like

you’re losing information when you’re trying

to go back…If they are dependent, then their

RREF will have a zero row.

Instructor: Okay, columns dependent [writes] and so

you’re saying that the RREF of A has a zero

or row of zeros.

Jesse: Right, so then if you try and, if you invert

that, you can’t, because it’s like you’re losing

that information from that row.

Josiah indicated that if the columns of a matrix were

linearly dependent, then one would not have the proper

information to ‘‘get back,’’ whereas Jesse’s statements

indicated that the row-reduced echelon form (RREF) of a

matrix would indicate whether you could ‘‘go back.’’ Both

Josiah and Jesse associated invertibility with the notion of

‘‘going back,’’ but they did so in different ways. How did

these interpretations come to be? How did these notions

come to function as if the community shared a common
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understanding of them? In a broader sense, what other

ways of reasoning about the concepts related to the

invertible matrix theorem (see Fig. 1) developed for this

community?

The following research question brings together and

extends the inquiries that this example brings to light: How

did the collective classroom community reason about the

invertible matrix theorem (IMT) over time? For the com-

munity analyzed in this study, as the semester progressed,

what became known as the IMT (Fig. 1) was 16 concept

statements developed individually and related to one

another through the notion of equivalence. Analysis is

accomplished through the use of adjacency matrices (dis-

cussed further in Sect. 5) to investigate the structure of

student reasoning both in isolation and over time.

2 Relevance of the study

Reasoning—in the sense of making connections across

ideas, representations, and contexts, as well as in terms of

argumentation and justification—is a valuable skill and

part of the practice of mathematics. The IMT is a powerful

theorem in introductory linear algebra because it provides

insights into how key ideas in linear algebra relate to one

another. Research has shown, however, that students

struggle to understand the concepts involved in the IMT,

such as linear independence, span, and linear transforma-

tion (e.g., Dreyfus et al. 1998; Harel 1989). Thus, studying

the development of the IMT, as well as how students

understand and reason about the main ideas of the IMT,

contributes to what is known about how students learn

linear algebra in particular, and more generally how

mathematical connections grow over time.

Furthermore, this study is significant because investi-

gating the ways in which a particular classroom community

reasoned about the IMT is compatible with investigating

what classroom mathematics practices (Cobb and Yackel

1996) relevant to the IMT developed for that community.

The practical constraints placed on a teacher in any given

classroom are such that she must operate as if the ways of

reasoning about the mathematics at the collective level are

shared by all individual members of that community. Thus,

reporting on mathematical activity developed for a partic-

ular linear algebra class at the collective level may allow

other linear algebra instructors to become aware of nor-

mative ways of reasoning that may develop in their own

classroom.

3 Literature review

I include a review of relevant research on student thinking

in linear algebra, as well as various analyses of mathe-

matical development at the collective level. I conclude with

detail regarding the theoretical framing of genetic analysis.

3.1 Student thinking in linear algebra

According to Hillel (2000), linear algebra is often the first

mathematics course that students see that is a mathematical

theory, systematically built and reliant upon definitions,

explicit assumptions, justifications, and formal proofs.

Indeed, Harel (1989) asserts the importance of linear

Fig. 1 The invertible matrix

theorem, as developed in class
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algebra at the college level because it can be studied as ‘‘a

mathematical abstraction which rests upon the pivotal ideas

of the postulational approach and proof’’ (p. 139). In many

universities, however, a first course in linear algebra occurs

prior to an introduction to proof course. Research has

shown that proof-related difficulties, such as struggling

with quantifier usage, tending to reason inductively, or

using various proof techniques inappropriately are not

unique to linear algebra (e.g., Harel and Brown 2008;

Selden and Selden 1987; Weber 2001). As such, Hillel

(2000) focused on what he proposed were student diffi-

culties specific to linear algebra: the existence of several

modes of description, the problem of representations, and

the applicability of the general theory (p. 192).

Hillel stated three different modes of representation

exist in linear algebra: abstract, algebraic, and geometric.

He detailed difficulties students have within the geometric

mode (such as confusion caused by describing vectors as

both arrows and points), as well as difficulties students

have moving between modes. One particularly difficult

aspect for students is to move between abstract and the

algebraic when the underlying vector space is Rn for both.

This would occur, for example, in change of basis prob-

lems. To think of a string of numbers as a representation of

a vector (according to a particular basis) rather than the

vector itself is difficult for students to grasp or even see the

need for grasping.

In a study regarding students’ interactions with trans-

formational geometry in linear algebra, Portnoy et al.

(2006) investigated if participants viewed transformations

as processes or as objects. The authors found that partici-

pants displayed an operational view of transformations, as

‘‘processes that map geometric objects onto other geo-

metric objects’’ (p. 201). The authors conjectured this

view—thinking of them as a process that carries out an

action on other objects—might have contributed to the

difficulty students had writing proofs that relied on think-

ing about transformations as objects themselves. In another

study regarding student understanding of linear transfor-

mations, Dreyfus et al. (1998) found that students seemed

to equate the term ‘‘transformation’’ with the vector

‘‘T(v),’’ as if rather than describing a relation between

v and T(v), ‘‘transformation’’ was an object T(v) that

depended on v.

In addition to this and other research that investigates

student difficulties in linear algebra, there also exists

descriptions of various creative and productive student

work done in linear algebra (Possani et al. 2010; Wawro

et al. 2011). For instance, Larson et al. (2008) reported on

ways that students conceptualized mathematical objects

(such as vectors and matrices) as the class developed

algebraic methods to solve for eigenvectors and eigen-

values of a given matrix. The authors found the class

productively utilized relationships between geometric

interpretations of vectors in R
2 or R3, linear independence,

and determinants to derive conclusions about eigenvectors

and eigenvalues. This is consistent with Sierpinska (2000),

who found that geometric, arithmetic, and structural rea-

soning and the ability to move between them are funda-

mentally important in learning and understanding the core

ideas of linear algebra.

These studies highlight the importance of making con-

nections in linear algebra—between and within modes of

representation for a particular concept, across operations

with and on a concept, and among multiple concepts—both

for content understanding and for facility with proof.

Investigating how a classroom investigated the IMT, a

theorem that connects concepts through equivalence, adds

to what is known in this research area.

3.2 Analysis at the collective level

As compared to a purely individual lens for investigating

mathematical development, some mathematics education

research investigates the emergence, development, and

spread of ideas in a classroom community over time (e.g.,

Elbers 2003; Sfard 2007; Stephan and Rasmussen 2002).

For example, Elbers (2003) focused on how reasoning at

the collective level may influence individual students’

learning, as well as how individual students contribute to

whole class discussion. Defining learning as the changing

participation of students in the classroom discourse, he

analyzed learning by comparing individual work to whole

class discussion to ‘‘get a view of the progress of mathe-

matical understanding both in the classroom as a whole and

in individual children’s minds’’ (p. 82).

In a compatible view of learning and the inseparable

interaction between individual and community, the work of

Cobb and his colleagues (Cobb and Yackel 1996; Stephan

et al. 2003) takes into consideration the social and situated

nature of mathematical activity. Their work analyzes stu-

dents’ mathematical reasoning as acts of participation in

the mathematical practice established by the classroom

community. At the collective level, they analyze mathe-

matical progress by documenting classroom mathematical

practices, which are the ‘‘taken-as-shared ways of reason-

ing, arguing, and symbolizing established while discussing

particular mathematical ideas’’ (Cobb 1999, p. 9). Class-

room mathematical practices, then, do not illuminate any

information about a particular individual student’s mathe-

matical development, nor should it be assumed that the two

must overlap. Rather, the classroom community is the unit

of analysis, documenting the development of practices and

the establishment of meanings at the collective level. One

example of such analysis is the work of Stephan and
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Rasmussen (2002), which analyzes the emergence of nor-

mative ways of reasoning of a university differential

equations course. Their methodology (Rasmussen and

Stephan 2008) relies on various criteria regarding how

mathematical content changes within collective discourse,

such as claims that once needed justified within the class-

room begin to function as if they are mathematical truths.

The focus of the current study is how the collective

classroom community came to reason about the IMT over

time. These results contribute directly to this emerging

research agenda regarding what is known about mathe-

matical development at the collective level. In addition to

the aforementioned work by Cobb and Yackel (1996) and

Rasmussen and Stephan (2008), my investigation into the

emergence, development, and spread of ideas in this

classroom community over time is framed in terms of

genetic analysis.

3.3 Theoretical framing: genetic analysis

Researchers from both educational and anthropological

fields have investigated the progression of human devel-

opment through genetic analysis. Ercikan and Roth (2006)

state that, when dealing with a genetic explanation, ‘‘a

certain fact is not derived from antecedent conditions and

laws (deduction) or observations and antecedents (induc-

tion) but rather is shown to be the endpoint of a longer

development, the individual stages (phases) of which can

be followed’’ (p. 19). For instance, Saxe and Esmonde

(2005) studied how the function of a particular word

shifted for a central New Guinea tribe over 20 years. They

asked, ‘‘How do new collective systems of representation

and associated mathematical ideas arise in the social his-

tory of a social group?’’ (p. 172). Within the classroom

microculture, Saxe and colleagues investigated how to

conduct analyses that would allow them to describe indi-

viduals’ idea develop in the classroom over time, given that

the classroom is also changing over time. They suggested

analysis through three different strands—microgenesis,

ontogenesis, and sociogenesis. They define microgenesis as

the short-term process by which individuals construct

meaningful representations in activity; ontogenesis as the

shifts in patterns of thinking over development; and soci-

ogenesis as the reproduction and alteration of representa-

tional forms that enable communication among participants

(Saxe et al. 2009, p. 208).

Tiberghien and Malkoun (2009) investigated method-

ologies to both distinguish between individual and collec-

tive analyses of the classroom as well as relate fine-grain

and broader analysis over time. The methods involve three

scale sizes: microscopic (key words or utterances), meso-

scopic (themes over a few lessons), and macroscopic

(longer sequences such as a semester). The authors offer

possible coordination between these distinctions. For

instance, coordination between the microscopic and mac-

roscopic level from a collective perspective could analyze

the number of key words or utterances in relation to the

duration of a theme or sequence (density), or the distri-

bution of utterances most reused during a theme or

sequence (continuity).

The primary means of genetic analysis within this study

were inspired by Saxe (2002), Saxe et al. (2009) and Ti-

berghien and Malkoun (2009). In Saxe et al. (2009), mi-

crogenetic construction occurred when a student turned

forms such as the number line into a particular meaning

and used it to accomplish a goal in activity. In this study,

the constructed representational forms witness their analog

in students’ explanations regarding the IMT, which func-

tion to justify connections within the IMT. In other words,

microgenetic analysis is accomplished by considering the

content and structure of particular instances of reasoning

about the IMT during whole class discussion. Furthermore,

the compilation of these microgenetic analyses serves as

the data for ontogenetic analysis. Considering how these

shift over time, conclusions are made regarding reasoning

about the IMT at the collective level. For instance, which

concepts from the IMT were used most often overall as

students reasoned about novel problems? Were some

concepts from the IMT used consistently over the semester,

whereas others dropped off? This analysis was inspired by

Tiberghien and Malkoun (2009) who consider density and

continuity of ideas as analytical frames in genetic analysis.

4 Methods

In this section I detail the setting, participants, and data

sources for the study. The results section then begins with

an explanation of how adjacency matrices were utilized as

a methodological tool to analyze the data set.

Data for this study came from an undergraduate,

inquiry-oriented introductory linear algebra course. Stu-

dents had generally completed three semesters of calculus

(at least two were required). Approximately half had also

completed a discrete mathematics course, and 75 % were

in their second or third year of university. Their major

courses of study included Computer Engineering, Com-

puter Science, Mathematics, Statistics, and other science or

business fields.

The course was designed based on the instructional

design theory of Realistic Mathematics Education (RME)

(Freudenthal 1991), which begins with the tenet that

mathematics is a human activity. As such, the course was

designed to build on student reasoning as the starting point

from which more complex and formal reasoning devel-

oped. The class engaged in various RME-inspired
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instructional sequences focused on developing a deep

understanding of key concepts such as span and linear

independence (Wawro et al. 2012), linear transformations,

and change of basis. For instance, the class first reasoned

about span by considering ‘‘all the places you could get to’’

with a linear combination of two modes of transportation

(i.e., two vectors in R
2). They investigated journeys that

began and ended at home and developed the formal defi-

nitions of linear independence and dependence out of this

situational experience. The class also used a textbook (Lay

2003) as a supplemental resource.

The class met twice a week for 15 weeks, and each class

session was video recorded. I was the teacher-researcher

during data collection, and I met with the remaining four

members of the research team three times a week to debrief

after class, discuss impressions of student work and

mathematical development, and plan subsequent classes to

be mindful of both the course learning goals and data

collection opportunities for the research study. Data sour-

ces for this study, chosen from this set of video recordings,

included video of whole class discussion relevant to the

development of and reasoning about the IMT. Portions of

classroom discourse were considered relevant if they either

implicitly or explicitly involved the class members actively

engaging in developing ways of reasoning about two or

more concepts from the IMT in conjunction with each

other. The video for each relevant portion was transcribed

completely. From this transcript, arguments were identi-

fied, where argument is defined as ‘‘an act of communi-

cation intended to lend support to a claim’’ (Aberdein

2009, p. 1). For each argument, I identified the claim and

supporting justification given. Each argument was num-

bered and compiled sequentially into an argumentation log

according to the class day on which it occurred. For

example, transcript lines 1–19 in Sect. 5.2 were coded as

the sixth argument on Day 20. The creation of argumen-

tation logs followed the methodology developed by Ras-

mussen and Stephan (2008) for the documentation of

collective activity. For the purpose of investigator trian-

gulation (Denzin 1978), a research team member inde-

pendently created argumentation logs for portions of the

first 3 days of data. We discussed the argumentation logs

by comparing and defending each coding, and a high level

of reliability was reached. I then completed analysis

independently, reporting my finding back to the research

team.

5 Results

Through grounded analysis, these arguments were broken

into separate idea clauses and then coded as either IMT

concept statements or interpretations of those statements.

This resulted in 100 distinct codes arranged into 15 cate-

gories (Fig. 2). The main code for each category (except

for ‘‘miscellaneous’’) is a concept statement from the IMT

or its negation, and the remaining codes are arranged as

subcodes under the appropriate main codes. This infor-

mation was then organized for adjacency matrix analysis,

in which codes are vertices in directed vertex-edge graphs

(digraphs) and are connected, when appropriate, with

arrows in such a way to match the implication offered by

the speaker(s).

For a given direct graph, an adjacency matrix is an

n 9 n matrix with one row and one column for each of the

n vertices in the digraph, and each entry aij = k in the

matrix indicates k edges from the ith vertex to the jth

vertex. For example, we say vertex u is adjacent to v (and

v is adjacent from u) if there exists an edge from u to v, and

an entry of ‘‘1’’ in row u and column v would correspond to

one ‘‘u ? v’’ statement such as ‘‘if u then v,’’ or ‘‘another

way to say u is v.’’ Thus, the 100 codes listed in Fig. 2

serve as the rows and columns for adjacency matrix ana-

lysis conducted on the given data set. For example, code F4

references vectors that ‘‘lie along the same line,’’ an

interpretation of statement F. A statement such as,

‘‘because the vectors lie along the same line (code F4), I

can’t go in all the directions with the vectors (code H3), so

the vectors do not span3
R

n (code H),’’ would be short-

handed as ‘‘F4 ? H3 ? H,’’ and a ‘‘1’’ would be placed in

the F4 row/H3 column, and in the H3 row/H column of the

associated adjacency matrix.

Whole class discussion relevant to reasoning about the

IMT occurred on ten of the 31 days of the semester (see

Fig. 3). Within these days, I identified 109 arguments that

were relevant to the class’s reasoning about the IMT. The

clauses of separate ideas within the 109 arguments

informed the creation of the 100 codes (Fig. 2) used in

adjacency matrix analysis, 83 of which were used at least

once during whole class discussion. Analyzing how the

class structured the arguments revealed 452 connections

between codes. For instance, ‘‘because the vectors lie along

the same line (F4), I can’t go in all the directions with the

vectors (H3), so the vectors do not span R
n (H),’’ coded as

‘‘F4 ? H3 ? H,’’ contributes two connections between

ideas because it contributes two adjacencies: (F4, H3) and

(H3, H). In digraph language, the codes are vertices and

connections between them are directed edges for a digraph

T. Thus, T has 83 vertices and 452 edges.

The associated adjacency matrix for digraph T is

denoted A(T)tot. The ‘‘tot’’ subscript stands for ‘‘total,’’

meaning that all arguments for any m 9 n matrices (or n

3 A set of vectors S in R
n is said to span R

n if any vector in R
n can be

written as a linear combination of the vectors in S.
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vectors in R
m, or a transformation from R

n to R
m) were

compiled. This is in contrast to dividing T into sub-

digraphs (and corresponding sub-adjacency matrices) for

arguments specific to m \ n, m = n, or m [ n. Only the

adjacency matrix A(T)tot is given in this paper; because of

its size, the adjacency matrix was partitioned into four.

Fig. 2 The 100 codes used as

the rows and columns for the

adjacency matrices
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Figure 4a is the upper left quadrant of A(T)tot, Fig. 4b is the

lower left, Fig. 4c is the upper right, and Fig. 4d is the

lower right.

Each numerical entry within a cell in A(T)tot indicates

the frequency that particular adjacency occurred, and the

subscript for the numerical value indicates the day on

which it occurred. For instance, the cell in the ‘‘K’’ row and

‘‘F’’ column is ‘‘217124.’’ This means that the implication

‘‘A is not invertible ? the columns of A are linearly

dependent,’’ coded ‘‘K ? F,’’ occurred twice on Day 17

and once on Day 24. Because A(T)tot compiles connections

between vertices for any m and n, care should be given

when making conclusions from A(T)tot. For instance, con-

sider ‘‘the columns of span R
n then the columns are line-

arly independent,’’ coded as ‘‘G ? E.’’ It is a perfectly

valid implication in the m = n type, but it is invalid in the

m \ n type (for instance, a set of three vectors in R
2 can

span R
2 but cannot be linearly independent). My discussion

of the results within this paper reflects that. In particular, I

present three categories of results: shifts in argumentation

over the course of the semester, adjacencies within main

codes and within subcodes, and centrality. Each category

relates to both microgenetic and ontogenetic analyses of

student reasoning about the IMT.

5.1 Shifts in argumentation over the course

of the semester

The first category of results illuminates shifts in argu-

mentation over the semester regarding how the classroom

reasoned about the IMT. By considering where in the

adjacency matrix entries appear, in conjunction with on

which days they appeared (Fig. 4a–d), a sense of the

‘‘travel of ideas’’ (Saxe et al. 2009) is revealed. First, the

subscripts in A(T)tot illuminate the movement throughout

the semester. Through this large grain size, there is a

high concentration of k5 and k9 (where ‘‘k’’ is the integer

value indicating the frequency of the particular adjacency

and ‘‘d’’ is the day on which it occurred) in the upper left

of the adjacency matrix; a concentration of k10 in the I

block; a concentration of k19 and k20 in the M, N, O, and

P blocks; k24 in the Q and R blocks, and k31 scattered

throughout. We consider k5, k9, k19 and k20 in more

detail.

Given the chronology of concepts developed in class

and what tasks were posed for discussion each day, the

aforementioned concentrations are sensible. First, the

concentration of k5 and k9 in the upper left corner of A(T)tot

indicates frequent explanation within the F category early

in the semester. For instance, on Day 9, a student, Gil (all

names are pseudonyms), claimed you could always create a

linearly dependent set. When asked why, he stated the

following (the adjacency matrix codes are given in bold, as

explained in Sect. 5):

1

2

3

4

If you have anything from 1 or greater vectors, if 1 of those

vectors happens to be 0, it’s dependent (F8 ? F). And then if

you have 2 or more vectors, if 2 of those vectors are the same …
you can use 1 vector to go out and 1 vector to come back, so

linear dependent that way (F5 ? F3 ? F).

In lines 1–2, Gil discusses how having the zero vector in

a set (code F8, Fig. 2) gives linear dependence (code F),

but he does not provide data for that claim. In lines 2–4, he

states a set that has at least two that are ‘‘the same vector’’

Fig. 3 Summary of the 10 class

days relevant to the

chronological development of

the IMT
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(code F5) is linearly dependent (code F) because you can

travel out on one vector and back on the other (F3), which

is geometric interpretation of linear dependence.

This type of argument was common early in the

semester, when the class was developing ways to reason

about linear dependence; however, this reliance on expla-

nations within the F category became less prominent over

time. The various F codes moved away from being adja-

cent to or adjacent from other F codes towards making

claims about (i.e., being adjacent to) other concepts in the

IMT. Through an ontogenetic analysis lens, the commu-

nity’s ways of reasoning about linear dependence became

normative over time as they did not need to unpack what

‘‘linear dependence’’ means each time it was discussed.

This coincides with Criterion 1 (Rasmussen and Stephan

2008) for documenting normative ways of reasoning: when

justifications for claims are initially present but then drop

off.

Second, consider the concentration of k19 and k20 in the

M, N, O, and P blocks; these correspond to discussing one-

to-one (1-1) or onto4 transformations. On these days, there

was a high concentration in the rows for the G and H

categories and in the columns for the M and N categories.

This implies a high frequency of adjacencies from the

interpretations of column vectors spanning or not spanning

all of R
n leading to conclusions about if transformations

are or are not onto R
n. There are far fewer adjacencies from

rows for the M and N categories to columns for the G and

H categories (6 and 2, respectively). This means that ‘‘the

transformation defined by A is not onto’’ was the claim

more often than data. Considered ontogenetically, this is

compatible with a normative way of reasoning of using the

span of vectors to draw conclusions about onto

transformations.

5.2 Adjacencies within main codes

and within subcodes

The concepts involved in the IMT were negotiated at

various times during the semester, and the early-developed

concepts were often integral to the development of latter

ones. Furthermore, the structure of argumentation was not

uniform over time. For instance, one main structure that

surfaced was that when an argument served towards

developing a way of reasoning about a new concept or

implication between two concepts, it involved multiple

uses of the ‘‘interpretation’’ subcodes; the class’s reliance

on subcodes to explain the implication subsequently

dropped off over time.

For instance, on Day 20, the class was parsing out the

relationship between 1-1 and onto (which are properties of

linear transformations) and linear independence and span

(which are properties of sets of vectors). Previously,

Abraham had volunteered, ‘‘If it’s 1-1, the columns of

A have to be linear independent’’ (coded O ? E). The

instructor asked another student, David, how his small

group discussed why that implication might be true:

5

6

7

David: We just went over his explanation, we’re having a

hard time why that works, why that makes it a

multiple solution, it’s not 1-1 (F2 ? P).

8

9

10

Instructor: So he’s saying it makes sense but he’s having a

hard time explaining it…Brad, can you tell me

what your table talked about for this one?

11

12

13

14

Brad: When you reduce matrices linear dependent, you’re

going to have a free variable (F ? J5). When

you have that free variable, there has to be more

than one input to get the same output (?P4).

15

16

17

18

19

20

21

22

23

Instructor: I think that’s a great start. Does that make sense? So

remember those, when you took a matrix and you

row reduced it to the row-reduced echelon form,

if you got a free variable, then that gave you some

leniency for how you could put down a solution

for what was in the span of the vectors

(J5 ? F2). Well, that gives you some variability

as to how you’re going to answer. That variability

is giving you more than one way to get to that

certain output (?P3), not a unique solution

(?P1).

In his response, David voiced that his group struggled

with why ‘‘if the columns of A are linearly dependent’’ then

‘‘the transformation defined by A is not 1-1’’ (lines 5–7), so

the instructor asked Brad to contribute to the explanation as

well (lines 11–23). The implication ‘‘F ? P’’ was still

emerging in this community at this time, evidenced

through the variety of interpretations of these concepts

utilized to justify the proposed implication. Each of the six

adjacencies in lines 7, 12, 14, 20, 22, and 23 involved

interpretations of F or P, as well as ‘‘there exists a free

variable’’ (J5), which served as an intermediary vertex

between interpretations of both F and P. Thus, this argu-

mentation served towards developing a way of reasoning

about a new connection between concepts (namely linear

dependence and not being 1-1) that involved multiple uses

of interpretation subcodes.

b Fig. 4 a Adjacency matrix A(T)tot: upper left quadrant, b adjacency

matrix A(T)tot: lower left quadrant, c adjacency matrix A(T)tot: upper

right quadrant, d adjacency matrix A(T)tot: lower right quadrant

4 T : Rn ! R
m is one-to-one if every x 2 R

n has at most one b 2 R
m

such that T xð Þ ¼ b and onto if every x 2 R
n has at least one b 2 R

m

such that T xð Þ ¼ b.
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Furthermore, consider the implication ‘‘F ? P,’’ which

only occurred three times during the semester, each on Day

20 (see the ‘‘320’’ in row F/column P of A(T)tot in Fig. 4c).

Each occurred after the aforementioned argument, and

none contained any justification of that implication. Thus,

there is an indication that ‘‘if the columns of A are linearly

dependent, then the associated transformation is not 1-1’’

eventually functioned as if shared within this classroom.

A second prevalent structure of argumentation that

surfaced via adjacency matrix analysis was that when the

argumentation made use of relatively well-established

concepts or connections between concepts, the argument

involved mainly the ‘‘concept statement’’ main codes,

rather than substantive use of the interpretive subcodes.

This is somewhat illustrated in the previous example of

‘‘F ? P.’’ As an additional example, consider a portion of

discourse from Day 20.

24

25

26

Instructor: So Lawson was saying something about being

linear independent, is that the same as being able

to say something about being onto?

27 Abraham: It is, if the matrix is square (E ? M, M ? E)

28

29

30

31

32

33

Instructor: Yeah, I think that’s something that we need to get

at. So the one that we had from before was if the

columns of A span R
n (G), so the transformation

T is onto R
m (?M). So now we’re saying, can we

say anything about connecting onto to linear

independence? And Abraham’s talking about we

can if they’re square. So I think I agree, can you

say a little bit more?

34

35

36

37

38

39

Abraham: I just remember if it’s square, we had the

n 9 n Theorem way back when. And if a square

matrix is linear independent (E), it also spans

(?G). And if it spans (G), it’s also linear

independent (?E). And so that means that if it’s

1-1 (?O), it has to be onto (?M); if it’s onto

(M), it has to be 1-1 (?O). Do you know what I

mean, like connecting the ideas?

Abraham stated that Lawson’s claim was true if the

matrix is square (line 28). Lawson’s claim of ‘‘the same as’’

was interpreted as equivalence of the concepts, thus

Abraham’s agreement in line 27 was coded both E ? M

and M ? E. Abraham’s justification of this claim relied on

two more equivalences for square matrices: between span

and linear independence ((G, E), and (E, G), lines 35–37),

and between onto and one-to-one ((O, M) and (M, O), lines

37–39). In addition, this is a different structure of reasoning

than in the example given in lines 5–23. In lines 24–39,

although the claim Lawson suggested and Abraham justi-

fied was novel (that onto and linear independence were

equivalent for square matrices), the justification Abraham

provided involved previously established ways of

reasoning. For example, Abraham referenced the

‘‘n 9 n Theorem [from] way back when’’ to justify his

claim that linear independence implies span for column

vectors of a square matrix. Abraham’s justification in lines

34–39 utilized previously established connections between

main codes rather than subcodes, which are often used to

‘‘unpack’’ or ‘‘interpret’’ the main codes, as in lines 5–23.

5.3 Centrality of concepts over time

The final results presented investigate what IMT concepts

statements (main codes in Fig. 2) or interpretations of those

concept statements (subcodes in Fig. 2) were prominent in

argumentation over time. This is synchronously both

ontogenetic and microgenetic analysis because considering

the behavior of a code over time is ontogenetic but then

investigating individual instances of that code, which

contributed to its behavior over time, is microgenetic. This

analysis is also consistent with what Tiberghien and Mal-

koun (2009) refer to as continuity—the distribution of

utterances most reused during a theme or sequence. To

accomplish this analysis, I use a measure of centrality.

The construct of centrality is used to indicate ‘‘a node’s

degree of participation in the structure of the graph by

measuring the relative connectivity of a node within a

graph’’ (Strom et al. 2001, p. 752). It measures how central

a vertex is—does it serve as a sort of ‘‘hub,’’ connected to

multiple vertices, or is it connected to a low number of

vertices but with high edge frequency? For example, con-

sider two different digraphs with six vertices and seven

edges (Fig. 5). Vertex B is adjacent to four vertices in

Fig. 5a but only two vertices in Fig. 5b. Centrality is one

method of parsing how the participation of B differs in the

two examples.

The out-degree of vertex v (od v) is the number of edges

emanating from vertex v, whereas the out-connection of v

(oc v) is the number of distinct vertices to which these

edges emanate. The in-degree of v (id v) is the number of

edges to v, whereas the in-connection of v (ic v) is the

number of distinct vertices from which these edges ema-

nate. Finally, I measure the centrality of a vertex v by

C(v) = (ic v ? oc v)/2r, where r is the total number of

vertices in the graph. For example, C(B) = (0 ? 4)/

2(7) = 4/14 in Fig. 5a, but C(B) = (0 ? 1)/2(7) = 1/14 in

Fig. 5b. Note that 0�CðvÞ� 1; C(v) = 0 if vertex v is not

connected to the rest of the graph, and C(v) = 1 if vertex

v is adjacent to and adjacent from every vertex (including

itself) in the graph; thus, the closer the value of C(v) is to

zero, the less central the vertex v is in the graph.

For the data regarding the community’s reasoning

about the IMT, Fig. 6 provides the centrality measure for

each main code, subcode, and category (a code grouped

with its subcodes) for the adjacency matrix in Fig. 4a–d.
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The rightmost column in Fig. 6 shows that categories F

and G had the highest and second highest centrality,

respectively, in A(T)tot. Furthermore, Fig. 6 can be read

as a comparison between categories and their negations.

For instance, category E involves ‘‘the columns of A are

linearly independent’’ and interpretations of that, whereas

category F relates to linear dependence. First, comparing

categories and their negations reveals that three catego-

ries as stated in the IMT were more central than their

negations in whole class discussion: ‘‘The columns of A

span R
n’’ (category G); ‘‘The row-reduced echelon form

of A has n pivots’’ (category I); and ‘‘The transformation

defined by A is 1-1’’ (category O). Second, four cate-

gories from the IMT were less central in whole class

discussion than their negations: ‘‘The columns of A are

linearly dependent’’ (category F); ‘‘The matrix A is not

invertible’’ (category L); ‘‘The transformation defined by

A is not onto R
n’’ (category N); and ‘‘The determinant of

A is zero’’ (category R).

Thus, reasoning about the IMT also involved reasoning

about negations of the statements involved in the theorem.

This could have occurred as the justifications for an

implication were given in the form of a contrapositive.

Additionally, some concepts may lend to reasoning about

their negations, such as determinants. The centrality of

‘‘the determinant of A is zero’’ was drastically higher than

‘‘the determinant of A is nonzero.’’ A deeper examination

of the involved arguments reveals that the class reasoned

about how determinants connected to other concepts by

focusing more on matrices with zero determinants rather

than nonzero.

Figure 6 also summarizes the centrality of each indi-

vidual vertex for the adjacency matrix A(T)tot. It reveals

that vertex G was the most central single vertex in class

discourse related to the IMT, followed by vertex F. As a

category (a main code and its subcodes), however, category

F was more central than category G. Thus, although con-

cept statement G (‘‘the columns of A span R
n’’) was most

central throughout the semester, the concept statement and

subcodes for ‘‘the columns of A are linearly dependent’’

were more central than that of span and its associated

interpretations. One explanation for this could be that the

notion of linear dependence had a wider variety of pow-

erful interpretations for this particular classroom commu-

nity than did span.

Figure 6 provides information about a vertex’s connec-

tivity in the various sub-digraph cases (m \ n, m = n, and

m [ n). First, gray font indicates that a particular vertex

was adjacent to or adjacent from other vertices in only one

type of sub-digraph. For instance, all Q and R entries (both

OD/OC and ID/IC) are in gray font because they appear in

the m = n sub-digraph but not the others. It is sensible that

Q and R codes (determinant of A equals zero and does not

equal zero, respectively) were used only in m = n argu-

mentation because determinant is only defined for square

matrices. Second, if the adjacency (u, v) occurred in more

than one sub-digraph, then the cell ‘‘od(u)’’ and the cell

‘‘in(v)’’ would be shaded gray; in other words, (u, v) was

not mutually exclusive across sub-digraphs. The gray

shaded cells in Fig. 6 indicate that for both F and G, neither

in-connections nor out-connections were mutually exclu-

sive across m, n types. Not only were their centrality

measures the highest, indicating their participation in the

structure of argumentation was central by being adjacent to

or adjacent from the highest number of distinct nodes,

codes F and G were adjacent to or adjacent from some of

the same vertices in more than one m, n type. Thus, across

two measures, F (‘‘the columns of A are linearly depen-

dent’’) and G (‘‘the columns of A span R
n’’) were central

ways of reasoning for the collective during the semester.

(a)

A B C D E F
A
B 1 3 2 1
C
D
E
F

(b)

A B C D E F
A
B 6 1
C
D
E
F

Fig. 5 Two examples of a

digraph (and their associated

adjacency matrices) such that

the out-degree of vertex B is 7
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Fig. 6 Summary information for adjacency matrix A(T)tot
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One vertex whose out-connection was mutually exclu-

sive, however, was G2 ‘‘Can use all the vectors to get to

every point/to get everywhere.’’ This vertex was adjacent to

five different vertices, and for any particular vi, (G2, vi)

occurred only within one sub-digraph: (G2, F9), (G2, E8),

(G2, G), (G2, M), and (G2, M3). The language in both F9

and E8 coincide with the travel language of G2, all of which

grew out of the class’s experience with the Magic Carpet

Ride Problem (Wawro et al. 2012). Thus, it is reasonable

that students would, early in the semester, reason that a set

of two vectors in R
2 are linearly independent because they

can get everywhere with the two vectors (G2) but do not

have an extra vector needed to get back home (?E8). It is

also sensible that reasoning about span and linear indepen-

dence over time became less dependent on these situational

ways of reasoning, moving more into general and formal

ways of reasoning. This can be seen through the drop-off of

the E8, F9, G2, and H2 codes and using the ‘‘parents codes’’

E, F, G, and H to make claims about new concepts such as

invertibility or 1-1 transformations (see Fig. 4). Finally, the

travel language of G2 did surface in argumentation con-

cerning onto transformations ((G2, M) and (G2, M3)). As

such, there is indication that interpreting span as ‘‘getting

everywhere’’ was salient throughout the semester for this

particular classroom community.

6 Discussion and conclusions

This study investigated how a linear algebra community

reasoned about the invertible matrix theorem, and much of

the theorem’s ‘‘coming to be’’ is reflected in the ways in

which the community constructed arguments about how

the different concept statements were related. The results

show the classroom community first developed rich ways

of reasoning about what linear dependence means, and the

reliance on unpacking that meaning decreased over time

(Sect. 5.1). Analysis also showed that conclusions regard-

ing ‘‘the transformation is (not) onto’’ most often resulted

from claims regarding the span of vectors (Sect. 5.1). The

collective also first developed a relationship between linear

dependence and transformations that are not 1-1 by

unpacking both concepts through various interpretations,

until a stable relationship between the two was established

(Sect. 5.2). Finally, the notion of centrality in Sect. 5.3

revealed that span and linear dependence were the most

densely connected to the highest number of other concept

statement throughout the semester, and that the ‘‘travel’’

interpretation for span was central throughout. Taken

together, these results illuminate aspects of the research

question regarding the collective’s way of reasoning about

the IMT.

Methodologically, this study adapts and extends the

work of Selinski et al. (2013) by not only using adjacency

matrices on data that spanned the entire semester (rather

than at one moment in time) but also by analyzing at the

collective level (rather than the individual). As such, it

opens a door towards gaining new insights into the math-

ematical ways of reasoning of a classroom community,

both within specific arguments and over time. The method,

however, does involve possible limitations. First, although

the codes are grounded in data, there is an inferential risk

when coding discourse, and the ‘‘if–then’’ structure of

adjacency matrix analysis could be restrictive when argu-

ments do not follow that cleanly. Second, the codes are

only about concept statements in the IMT or interpretations

of those statements. Thus, utterances about other notions,

such as self-reflection (e.g., ‘‘I prefer to reason about

negations’’) or mathematics beyond the IMT (e.g., trans-

lating between matrix equation and vector equation nota-

tion), are not captured in the present study.

These results are compatible with those found via

Toulmin’s model of argumentation (Toulmin 1969) for

documenting collective activity (Cole et al. 2012; Ras-

mussen and Stephan 2008). Recall that vertices F and G

had high centrality measures, indicating their integral

participation in the argumentation structure by being

adjacent to or from many other vertices. Furthermore,

vertices F and G were adjacent to or from other vertices in

each of the m, n sub-digraphs, indicating their importance

in the classroom argumentation in a variety of situations.

Given that the adjacency (u, v) could be read as ‘‘if u then

v,’’ a vertex with a high out-connection means that the

concept statement served as data for a variety of claims.

This aligns with Criterion 3 for documenting normative

ways of reasoning (Cole et al. 2012). High diversity within

a particular cell (such as the (G, E) cell), rather than over a

particular row, indicates that the given implication (rather

than a given concept) served a role in multiple arguments.

While the specifics of the argument that these adjacent

pairs belong to is not provided in the adjacency matrix,

knowing on which days they occurred provides information

about what concepts the pairs are used to reason about.

This allows an analysis compatible with Criterion 2 (Ras-

mussen and Stephan 2008).

In closing, I offer two implications for teaching. First,

the class had two main ways of explaining why concept

statements in the IMT were equivalent: they were indis-

tinguishable and/or defined in terms of each other, or they

are connected through a sequence of if–then deductions.

For instance, consider ‘‘the columns of A are linearly

independent’’ and ‘‘the only solution to Ax = 0 is the

trivial solution.’’ These are equivalent by definition. That is

different than, say, ‘‘the columns of A span R
m’’ and ‘‘the

number zero is not an eigenvalue of A,’’ which requires a
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more substantial effort to demonstrate their equivalence.

Indeed, research on student understanding of proof high-

lights difficulty with identifying assumptions and creating

logical arguments (e.g., Hoyles 1997), with attention spe-

cifically paid to ‘‘how to best enculturate students into a

proving culture while … [taking] account of student views

and ideas’’ (p. 7) in the classroom. The notion of equiva-

lence in general is most likely new for many students, and,

given their limited experience in proof, students would

benefit from conversations that explicitly bring this dis-

tinction to light. Explicitly studying the role of the

instructor in the development of mathematical meaning for

this community is beyond the scope of the present study

and remains a direction for future work.

Second, the concept statements in the IMT are matrix-,

vector-, or transformation-oriented. This orientation shift is

not unlike switching between various modes of represen-

tation (Hillel 2000). Teachers are often not aware when

they ask students to move between modes, and, as Hillel

stated, this is one aspect that makes linear algebra difficult

to learn and to teach. Making explicit that the IMT is a

collection of equivalent statements that all ‘‘say the same

thing but in different ways’’ may help students see the

power of the IMT, as well as how to leverage these sub-

tleties in proof activity.
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