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Abstract This paper presents the results of an experiment

in which fourth to sixth graders with above-average

mathematical abilities modified a given problem. The

experiment found evidence of links between problem

posing and cognitive flexibility. Emerging from organiza-

tional theory, cognitive flexibility is conceptualized

through three primary constructs: cognitive variety, cog-

nitive novelty, and changes in cognitive framing. Among

these components, changes in cognitive framing could be

effectively detected in problem-posing situations, giving a

relevant indication of students’ creative potential. The

students’ capacity to generate coherent and consistent

problems in the context of problem modification may

indicate the existence of a strategy of functional type for

generalizations, which seems to be specific to mathemati-

cal creativity.

Keywords Problem posing � Cognitive flexibility �
Creativity � Change in cognitive framing

Mathematical Subject Classification 97C30

1 Introduction

In a previous study focused on students’ behaviors in

problem posing, Singer, Pelczer, and Voica found that the

more the student advances in the abstract dimension of the

problem and its context, the more mathematically relevant

are his/her newly obtained versions (Singer et al. 2011).

The present study draws on this idea. More specifically, a

group of high achievers was asked to modify a given

problem and their proposals were classified based on a set

of criteria; this classification led to a description of creative

behaviors in problem-posing activities. According to Silver

(1994), problem posing refers to both the generation of new

problems and the re-formulation or modification of given

problems.

Beyond individual differences, high achievers in math-

ematics display, as a group, a set of common cognitive

characteristics, which are challenged in competitions based

on problem solving. Are, however, the winners of mathe-

matical competitions indubitably creative? The question is

meaningful because these students are usually highly

trained and tend to approach problems algorithmically by

applying already-known techniques. In addition, success in

mathematics competitions supposes rapid reactions, which

might be a disadvantage for some students, even highly

creative ones (Kenderov 2006).

Consequently, a natural question is: how creative are the

students that participate and win mathematics competi-

tions? To study their creativity, we used problem-posing

sessions: we postulate that this is a simple context in which

the students are in a situation where they can generate

(more or less) structured knowledge. In this context, we

were interested in the nature of the changes the students

proposed on a given problem, in order to understand if and

how they might be creative in this type of task. Preliminary
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research in this direction (Singer and Voica 2011; Singer

et al. 2011; Singer 2012; Singer and Voica 2012; Voica and

Singer 2012) led us to questioning possible modalities to

analyze mathematical creativity through problem posing.

2 Theoretical background

The topic of mathematical creativity has received much

attention in the last decades from researchers who focused

on defining and characterizing it (e.g., Ervynck 1991;

Freiman and Sriraman 2007; Sriraman 2004), or on

establishing possible measurement criteria (e.g., Haylock

1997b).

The literature on the topic generally accepts that there

are correlations between problem solving and creativity

(e.g., Maier 1970; Runco 1994). Silver (1997) argued that

inquiry-oriented mathematics instruction which includes

problem-solving and problem-posing tasks and activities

can assist students to develop more creative approaches to

mathematics.

The link between problem posing and creativity is still

under discussion. Some authors (as, for example, Haylock

1997a; or Yuan and Sriraman 2011) are prudent in con-

sidering that there are correlations between creativity and

mathematical problem-posing abilities. Other authors (as,

for example, Brown and Walter 1993; or Jay and Perkins

1997) sustain that problem posing has the potential to

stimulate creativity, possibly even more than problem

solving. Accordingly, Csikszentmihalyi (1994) wrote that:

‘‘Many creative individuals have pointed out in their work

that the formulation of a problem is more important than its

solution and that real advances in science and in art tend to

come when new questions are asked or old problems are

viewed from a new angle…yet when measuring thinking

processes, psychologists usually rely on problem solution,

rather than problem formulation, as an index of creativity

(…) They thus fail to deal with one of the most interesting

characteristics of the creative process, namely, the ability

to define the nature of the problem’’ (p. 138).

The nature of the problem is an important issue in a

problem-posing context. However, this was not systemat-

ically taken into account. Starting from the well-known

work of Torrance (1974), recent literature usually explores

mathematical creativity through the following parameters:

originality, fluency, and flexibility (e.g., Leikin 2009;

Kontorovich et al. 2011). To study possible correlations

between mathematical creativity of students and their

ability to pose problems, we searched for a framework that

could better describe these aspects in relation to contem-

porary trends of the knowledge society.

The students enrolled in our study are winners of

mathematics competitions. This quality suggests that they

are good problem solvers. However, in many cases, the

participants in competitions rely on sustained training and

the application of algorithms learned for categories of

problems (possibly up to automation). From the perspec-

tive of contemporary society, we would be interested in

those capabilities that enable students to manage their own

learning and to assume identifying and solving problems

arising in unpredictable contexts. For this reason, we

consider that an analysis focused on key elements of

organizational theory can better target the study of

creativity.

Within the organizational theory framework, the rela-

tionship between problem posing and mathematical crea-

tivity can be discussed in terms of cognitive flexibility.

Cognitive flexibility is seen as a person’s ability to adjust

his or her working strategies as task demands are modified

(Krems 1995). Cognitive flexibility can be conceptualized

as consisting of three primary constructs: cognitive variety,

cognitive novelty, and change in cognitive framing (Furr

2009; Spiro et al. 1992).

Cognitive variety refers to the diversity of mental tem-

plates for problem solving that exist in an organization

(Eisenhardt et al. 2010), or to the diversity of cognitive

pathways or perspectives (Furr 2009). Cognitive novelty

refers to the concepts pertaining to the subject of study and

the students’ overall mastery of content (Orion and Hof-

stein 1994), or to the addition of external perspectives (Furr

2009). Previous experiences, particularly successful expe-

riences, may lead to the phenomenon called cognitive

framing: it is manifested by the persistence of trying to

solve a new problem through the use of a certain strategy,

previously practiced (Goncalo et al. 2010). In certain situ-

ations, it denotes an algorithmic fixation (in the terminol-

ogy of Haylock 1997a).

For the reasons given above, cognitive flexibility might

be a good candidate to help in identifying specific features

of the creative abilities of high achievers in mathematics.

In this study, we explore behaviors that high achievers

express in problem-modification situations, relevant to

describing students’ creativity.

We further explain how the above cognitive parameters

could be used in relation to problem posing. In a problem-

posing context, we consider that a student proves cognitive

flexibility when she or he poses different new problems

starting from a given input (i.e., cognitive variety), gener-

ates new proposals that are far from the starting item (i.e.,

cognitive novelty), and is able to change his/her mental

frame in solving problems or identifying/discovering new

ones (i.e., change in cognitive framing, or even reframing).

Therefore, the more specific questions addressed by this

study are: To what extent do high achievers in mathematics

manifest cognitive flexibility in a problem-posing activity?

What are the characteristics of cognitive flexibility for
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these children? The investigation of these questions will

help us to see how a student’s capacity to generate coherent

and consistent problems in a problem-modification context

might relate to mathematical creativity.

3 Method

3.1 Participants

The participants in the study are 42 students from grades 4

to 6 who voluntarily answered a call for problems, from a

total of 280 students who participated in a summer camp.

The students in the camp were selected from 62,844 stu-

dents via a two-round national competition. In each round

of this competition, students had to answer 30 multiple

choice problems with various degrees of difficulty, taking

into account that wrong answers were costing penalties.

About 10 % of all students in grades 4–6 in the country

(cohorts of a total of approximately 600,000 students)

participated in that competition and the winners (i.e., the

students who achieved the highest scores in their classes in

the second selective round) were invited to the camp.

Therefore, compared with other students of their age, the

participants in the camp possess mathematical skills above

the average of the school population of that age.

3.2 Task description

Among many activities during the summer camp, children

were asked to modify a given problem; we used therefore a

structured problem-posing situation (in the terminology of

Stoyanova and Ellerton 1996). To ensure that the students

based their proposals on the global understanding of the

initially given problem, and not just on a few formal

changes of its text, we asked them to include the solution of

the problem and of their proposals as well. Students were

asked to pose as many problems as they wanted, starting

from the given problem, to explain how they modified the

initial problem, and to submit their proposals 2 days later.

As a result, we received responses from 42 students, which

are the sample of this research. Subsequently, we have

interviewed 18 respondents. The choice of the respondents

was made according to the nature of the problems they

posed, their comments and solutions.

The following problem was initially given to students as

a reference point. We will identify it as the starting

problem:

A squared kitchen floor is to be covered with black

and white tiles. Tiles should be placed on the floor so

that in each corner is a black tile, there are only white

tiles around each black tile, and the number of black

tiles has to be the biggest possible (in the picture

there are two examples of such coverage). How many

white tiles are needed if 25 black tiles are used?

We considered this starting problem to be of a medium

level of difficulty because in the contest where it was

provided to students (as a multiple choice question), about

31 % of the 31,998 participants in grades 5 and 6 indicated

the correct answer.

From a mathematical view, this problem is based on

three mathematical concepts: area, combinatorics, and

recurrence relations. More specifically, for this problem the

concept of area is connected to the idea of surface coverage

and lies in the need of a compact surface. The problem

question, which does not mean to count piece by piece, but

to identify an effective method of counting, links this

problem to combinatorics. Solving the problem involves

identifying the fourth rank term of a recursive sequence

whose first two terms are given both iconically and ver-

bally in the problem.

3.3 Technical definitions

In general, when a student modifies a given problem,

she/he changes some of the elements of that problem. The

analysis of these changes will be made using the frame-

work of Singer and Voica (2012). According to this

framework, the text of a problem contains, in general: a

background theme, parameters, (numerical) data, one or

more operating schemes (or, simply, operators), constraints

over the data and the operating schemes, and constraints

that involve at least one unknown value of the

parameter(s).

We describe these elements below for the starting

problem:

• The background theme represents the general context in

which the problem happens or is described; it simply

means ‘‘what the problem is about’’. In our problem,

the background theme refers to tiles placed on a kitchen

floor.

• The background theme of a problem is characterized by

one or more parameters; here, these parameters are: the

pattern size, the variation of the total number of used

tiles, and the variation of the number of black,

respectively white, tiles.
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• The data are (numerical or literal) values associated to

the parameters; in our case, 25—representing the

number of black tiles of the pattern.

• The operating schemes are actions suggested by the text

of the problem; in our case, the operating scheme

requires ‘‘coverage without gaps’’.

• The constraints imposed over the data and the operators

are restrictions that state the relations of the background

theme with the data and the operators. In our case, the

constraints are given by the compliance of the described

pattern, i.e., the placement of tiles on a square grid,

where there are only white tiles around each black tile

and in the corners are placed only black tiles, and the

condition of maximality of the number of black tiles.

• The constraints that imply at least one unknown value of

a parameter are those restrictions that state the relations

among the data, the operating schemes, and the problem

question; for us, it is about the relationship between the

number of white tiles and the number of black tiles,

according to the above construction (the number of

white tiles of that pattern, if 25 black tiles are used).

To analyze the intrinsic quality of the problems, we

postulate that a student’s posed problem in a school context

must be clearly formulated and solvable with the age-

appropriate learning abilities. Therefore, we use two cri-

teria, coherence and consistency, to classify students’

proposals. Below, we briefly describe these criteria, to

which we will return with examples in Sect. 4.2.

The coherence of a problem refers to its syntax; it refers

to the rules and principles that govern the structure of a

mathematical problem. More specifically:

• The text components (data, operations, constraints) are

presented or can be identified in the text.

• The text components (data, operations, constraints) are

recognizable as fulfilling their specific functions.

• The data are not redundant, or missing.

The consistency of a problem refers to its semantics; it

supposes the existence of meaningful links among the

elements of the problem. More specifically:

• The problem data are not contradictory.

• The text components (data, operations, constraints) are

correlated.

• The elements of the text satisfy a certain assumed

mathematical model.

• Information provided leads to at least one solution of

the problem (or to the proof that there is no solution)

Within the problems obtained by modifying a given

problem, consistency also requires that:

• At least one of the mathematical elements of the

starting problem is identifiable.

3.4 Design and procedure

The qualitative analysis used in this study is based on

analytic induction (Johnson 1998). Following the princi-

ples of analytic induction, the problems posed by students

were carefully analyzed in order to determine some general

categories. The students’ posed problems have been ana-

lyzed in two stages: first, with the purpose to get a general

view on students’ approaches; and second, a more focused

analysis based on the criteria that emerged at the first stage.

During the first stage, we looked at: the way of rea-

soning in solving the original problem; the accuracy and

completeness of the statement of the posed problem; the

students’ explanations and comments on how they changed

the starting problem; and the content and structure of their

proposed solutions. Following this analysis, we identified

types of problems, classified according to: the conceptual

or procedural frame the students refer to when modifying

the starting problem; coherence and consistency of the

posed problems; and the mathematical concept most per-

sistent in the modified problem.

In some cases, the proposal we received did not clearly

communicate the student’s view in posing that problem:

more specifically, there were situations where the problem

was incoherent, or the wording contained errors. In these

cases, we related the problem statement with drawings,

solutions, or patterns made by the student (if any), in order

to acknowledge the student’s intentions. In this way, we

were able to include ambiguously formulated problems in a

particular category.

After analyzing the students’ proposals, we invited 18

students for interview. The main criterion for the selection

of students for interview was the developmental potential

of their proposals; thus, we chose students who proposed

correct problems and solutions, but also students who made

some interesting statements, even mathematically incorrect

ones. For this second category of students, we wanted to

see if errors were related to an insufficient explanation of a

mental model, or were deep misunderstandings related to

their mathematical skills and knowledge.

We structured the protocol interviews around questions

such as: What did you change compared with the starting

problem? Can the given data of your problem be changed?

(And, if yes, can you devise new data that fit your prob-

lem?) Are there redundant/insufficient data in your pro-

posal? Can you define a more general situation? Is there

any interesting particular case? What happens if you

change a small/large part of the problem?

We began the interview session by asking students to re-

read their initial proposals. After this reflection time, the

discussion started individually based on the interview

protocol, but allowing children to express freely their own

ideas. During each interview, a variety of supplementary
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questions were addressed, in order to depict students’ ways

of thinking. In addition, each student was asked to devise

new versions of his/her own problem(s).

Each interview took from 10 to 30 min. Some students

came back with new ideas after the interview sessions,

during the next days, and the discussion continued in these

cases. The interviews were video recorded and subse-

quently transcribed.

The initial classification of ambiguous or poorly for-

mulated problems was based on assumptions regarding the

students’ wordings. We used interviews to question stu-

dents concerning their proposals. In all these cases, we

found concordance between students’ intentions (which

they did not translate into the proposed text with enough

clarity) and our assumptions. Although not all the students

were interviewed, we expanded (in the sense of analytic

induction—see Johnson 1998) these findings to the entire

sample, and thus we validated the classifications initially

made.

4 Results

As said above, 42 students proposed changes to the starting

problem, thus generating new problems. Some students

suggested several versions in their initial proposals, and

other students were explicitly asked to do so during the

interviews. Consequently, a total of 66 problems have been

developed by modifying the initial problem.

We analyzed the frequency of the changes for each

component of the problem text (background theme,

parameters, numerical data, operating schemes, and con-

straints). This analysis gave hints about the nature of the

proposed modifications and the way in which these modi-

fications changed the solving of the new problem compared

with the starting one. We thus determined the coherence

and the (mathematical) consistency of each posed problem.

In some cases, the problems obtained as a modification

of the given one were predictable because they were on the

surface, for example a few students only changed the colors

of the tiles used in the starting problem. In many other

cases, however, the changes were more consistent, showing

various strategies that the students were able to use in

problem modification.

4.1 Conceptual frames that emerged in modifying

the starting problem

A brief analysis of the proposals shows that students are

particularly innovative in changing the theme of the start-

ing problem: they propose problems that refer to, for

example, athletes in training formation, trees in the orch-

ard, cages at the zoo, etc. We did not pay attention to these

changes that we considered irrelevant to our analysis, i.e.,

we did not make a classification of how the details that do

not have mathematical consequences are changed. We

noted, however, that most of the posed problems (58 of 66)

refer to the arrangement of objects in the configuration

suggested by the starting problem (but not necessarily

identical with that). This brought us to conclude that the

starting problem operating scheme (covering a square grid

with non-overlapping pieces) is the text element most

persistent for students.

A careful analysis concerned the constraints the students

introduced in the text. The operating scheme of the starting

problem is materialized, according to children’s options for

certain constraints, in a few types of configurations that

occurred with relatively high frequency within the set of

the posed problems of our sample. The fact that students

come to pose problems with similar configurations shows

the existence of certain frames of thinking in this group.

We use the term cognitive frame as a conceptual and/or

procedural mental reference system on which an individual

relies when acting and taking decisions.

The analysis described above resulted in the identifica-

tion of five categories of problems, differentiated according

to the dominant cognitive frame the students seemed to rely

on when they modified the starting problem. In the fol-

lowing, we accompany the description of each category

with one significant example, in order to better clarify

specific features.

For some students, the alternation of black and white

tiles in the given figures of the initial problem is strong

enough to lead them to use the most familiar pattern of this

type, namely the chessboard model: in this case, the stu-

dents have changed the tiles alternation rule and the

numerical data. For example, Teofil (grade 6) suggested the

following:

Problem 1. For a pavement one uses white and red

stones. Knowing that a red stone is surrounded by four

white (Figure from below [this was the indication made

by Teofil]) and that there were 63 red stones used, find

the number of white stones that have been used.

We see that Teofil posed a partially ambiguous problem

(because for the red stones in the perimeter, the condition

‘‘is surrounded by four white stones’’ does not apply).

However, Teofil’s drawing clearly shows that he thought of

a model of a chessboard table. Many students of our sample
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resorted to a chessboard table in posing problems. We

considered it as a cognitive frame and, consequently, these

problems were put into the category of chessboard type.

Other students kept the operating scheme and the con-

straints of the starting problem but varied the data. For

example, Emilia (grade 4) suggested the following

problem:

Problem 2. On the square wall of the kitchen there are

green and blue tiles. They are arranged so that each

green piece is surrounded by blue pieces, and the number

of green tiles is the biggest possible. The green pieces

are in the corners. How many tiles are blue, if 36 are

green?

We can see that Emilia actually resumed the text of the

starting problem: her proposal preserved the configuration

from the initial problem, but changed the number 25 to the

number 36. Emilia proved that she understood the role of

each constraint, not only because she mentioned them in

her wording, but also because she rearranged the text,

keeping all the constraints but in different order and for-

mulation. Many students of the sample carefully resorted to

the configuration of the initial problem, as Emilia did. We

considered this as evidence that the cognitive frame in

which they built the new problem is the same as the one of

the starting problem. Therefore, we grouped these prob-

lems in the category of the starting problem type.

Other students went further from the starting problem

model and proposed new configurations of a repetitive/

iterative type (but different from the chessboard pattern).

For example, Alin (grade 5) posed the following:

Problem 3. Fairy’s Flowers planted tulips and roses in

the rectangular garden of her palace in a special way.

Around each rose she planted tulips only (front, rear,

side, oblique). Unfortunately, the garden is small so she

only planted ten roses, and on the edges she planted

tulips. Find out how many tulips are in the garden.

In this posed problem, Alin varies the data and the

constraints of the starting problem. He uses a repetitive

pattern to generate a configuration. Such iterative

descriptions appear in a significant number of the analyzed

papers. We classified these proposals into a new recursion

frame category.

While the above-presented categories and configurations

involve the handling of ‘‘objects’’ (ceramic tiles, animal

cages, sportsmen, etc.) that merely differ by one parameter

(e.g., by color or size), the following categories group

problems that refer to much more varied ‘‘objects’’. Thus,

some students retained from the starting problem only the

operating scheme: filling a square grid, and changed all the

other elements. For example, Paul (grade 4) posed the

following:

Problem 4. We have a 3 9 3 square as in the next figure.

Knowing that on the first line there are odd numbers, on the

second line there are even numbers, and on the third both

odd and even numbers and that the sum of the first column

is 3, the second is 14 and the third is 19, find the sum of all

numbers and the numbers. Use numbers from 0 to 8.

The operating scheme of Paul’s problem refers to filling

in a grid of squares. The 9 ‘‘objects’’ handled by Paul (i.e.,

natural numbers from 0 to 8) are not interchangeable, as

happens in the previous cases (where tiles were identical as

shapes), but are all different and particular, and their layout

on the grid takes into account their differences. In problems

of this kind, students take some more degrees of freedom,

which have the effect of changing/relaxing the constraints.

However, there is a common pattern to these problems:

they refer to a rectangular grid of squares, where placed

‘‘objects’’ are different. We included the problems dis-

playing this layout in the grid frame category.

Fig. 1 Successive drawings

made by Alexandru to explain

the solution of his posed

problem. He first made the

drawings on the first line, then

those on the second line
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We also identified instances where the operating scheme

of the starting problem is deeply changed—this happened

in only three cases. For example, Cristiana (grade 6) sug-

gested the following problem, which only keeps the idea of

recursion from the starting problem:

Problem 5. Maria must continue the sequence: 2, 12,

1112, 3112, 132112,… The teacher gave her some

advice: ‘‘You must empty your mind of all other

mathematical information.’’ Can you help Maria solve

the problem?

In Problem 5, Cristiana retained from the original

problem nothing other than a mathematical concept (the

recurrence relation), which she further used to pose a new

problem. She even addressed a nice advice to possible

solvers to make them focusing on the recursion idea.

In conclusion, we classified the problems of the sample

into five categories, according to the dominant cognitive

frame that emerged from the posed problems and their

solutions. These categories are:

1. problems using the starting problem configuration

(‘‘starting pattern frame’’);

2. problems using the chessboard configuration (‘‘chess-

board frame’’);

3. problems that used a new, different distribution pattern

(‘‘new recursion frame’’);

4. problems based on filling a grid with different objects

(‘‘grid frame’’);

5. problems that do not appeal to a configuration

(‘‘other’’).

Table 1 contains statistical data referring to these five

categories.

The relatively small number of categories into which we

classified the posed problems shows that the modifications

of the starting problem induce certain thinking patterns (at

least in our sample). Thus, some students remained trapped

in the procedure requested by solving the starting problem,

while other students tried to move further from the initial

pattern. The data of Table 1 show that most of the posed

problems (about 77 %) are of a recursive type, being

placed in the first three categories. We can also see that

about half of the problems (47 %), i.e., the problems of the

first two categories, remain in a familiar frame while the

rest of them are based on new frames.

4.2 Coherence and consistency of the posed problems

The emergent categories identified in the previous section

are as yet insufficient to infer that these students developed

a consistent cognitive frame of the problem under discus-

sion. So far we have tried to identify conceptual categories

to include the students’ problems; we now further focus the

analysis on the intrinsic quality of the posed problems,

which we express in terms of coherence and consistency.

In the following paragraphs, we use one of the posed

problems (Problem 4 from above, posed by Paul) to

clarify the use of this taxonomy. Briefly, Paul’s problem

requires the distribution of (natural) numbers in the given

grid, subject to certain restrictions. The connection to the

starting problem is made through the operating scheme,

that is, covering a square grid (which here means placing

a symbol in each square of the grid). Based on Paul’s

solution to his problem we supposed that he intended to

ask for identifying a distribution that verifies the con-

straints of the wording—a supposition that was confirmed

during the interview. We classified Paul’s problem as

consistent since:

• The data are not contradictory. For example, by adding

the sums of the three columns, one really gets the sum

of the numbers to be distributed.

• The data correspond to a valid pattern: nine numbers

must be distributed in a grid with nine boxes.

• In addition, the problem has solution (which is not

unique!), and one of the concepts associated with the

starting problem—namely combinatorics—is used in

solving the problem.

Therefore, Paul’s problem is mathematically consistent

because it satisfies all the above conditions. However, we

classified it as lacking coherence, for the following reasons:

• One of the data/constraints is missing: it is unclear if

the (natural) numbers from 0 to 8 are used once each, or

numbers can be repeated.

• The questions are ambiguously formulated. The first

question (‘‘find the sum of numbers’’) can be answered

without actually solving the problem—therefore this is

a kind of redundancy, and the second question (‘‘find

the numbers’’) is unclear—the numbers are the ones

from 0 to 8.

For these reasons, we classified Paul’s problem as

incoherent, but consistent. In an analogous manner, we

classified all students’ questions on the basis of coherent/

consistent criteria. The statistical data corresponding to this

classification are presented in Table 2.

Table 1 Posed-problem distribution by category

Category Starting

pattern

frame

Chessboard

frame

New

recursion

frame

Grid

frame

Other

Number of

posed

problems

21 (32 %) 10 (15 %) 20 (30 %) 12 (18 %) 3 (5 %)

The percentages refer to the total number of the posed problems
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Without claiming that this is a statistically valid study,

some comments can be deduced from this table in associ-

ation with the qualitative analysis. We will do this in the

next paragraphs, while a more detailed analysis follows in

Sect. 5.

Most coherent and/or consistent problems were in the

category of the chessboard pattern (50 %), followed by the

starting pattern frame (48 %). The chessboard is assimi-

lated by the students with a familiar pattern. For example,

Paul (grade 4) gave us the explanation below during the

interview about one of his problems on the chessboard

model:

Interviewer: But why did you pose a problem with a

chessboard, if there was [in the starting model] a

problem with a kitchen and…?

Paul: Because it seemed to me that the drawing is like a

chessboard. I changed a bit, to look like, and then I

realized my problem.

I: But is this drawing (i.e., chessboard type) similar to

the given one? What makes them similar?

P: There were arranged squares on the columns…

Overall, a significant percentage of problems (23 %)

were mathematically consistent, but incoherent. This

shows that, although these high-achiever students effec-

tively handle mathematical concepts and problem-solving

techniques, they fail to transpose those in clear and concise

wordings.

4.3 Persistence of math concepts in the posed problems

As noted above, our starting problem is based on three

mathematical topics: area, recurrence relation, and com-

binatorics. In this section, we consider to what extent these

three topics have been retained in the newly issued

problems.

The concept of area is found in the compact coverage of

a surface (without overlapping or gaps). This concept is

marginal in the starting problem, because essential there

are the description of the recursive pattern and the com-

binatorial elements used in counting. In our sample, only

two of the students refer to the concept of area in their

proposals.

The recurrence relation occurs, in the starting problem,

both through the given drawings which are the first two

terms of a series of geometric figures, and the verbal

description of the pattern. Therefore, the idea of recursion

is highlighted twice. For this reason, we expected that the

recurrence relation would have a large frequency within the

set of the posed problems. Although 77 % of the posed

problems are based on recursion, we found that steps of a

recursive development were explicitly included in the text

of the proposals in very few cases.

One among the few exceptions is the problem posed by

Alexandru (grade 4):

Problem 6. For a puzzle, only red and purple pieces are

used. Knowing that each purple piece is surrounded by

only red pieces, that in each corner there is a purple

piece and that there are 25 purple pieces, determine the

number of red pieces.

At a first reading, Alexandru’s problem seems very close

to the starting problem: only the constraints regarding the

square distribution and the maximality are missing. How-

ever, analyzing Alexandru’s solution, in which drawings of

various sizes successively appear (Fig. 1), we found that, in

fact, he developed another mental pattern that he could not

explain in words.

Alexandru’s problem is fundamentally based on recur-

sion. His drawings describe the recursive pattern he

imagined: at each step, the previous drawing is completed

by adding a ‘‘ring’’ outside. Recursive thinking is also

suggested by another detail. The first two calculations,

although poorly explained, lead to the correct result. Al-

exandru observed a certain regularity, i.e., that in cases

where the sides are each n = 3 or 5 units, the number of

‘‘red’’ squares (these are the white small squares of his

drawings) is computed using the formula (n - 2) 9 4 ? 4,

and then he extrapolated (erroneously!) this formula to the

next cases. This shows again that he focused on the idea of

recursion and tried to find ‘‘universal’’ formulas of

computing.

Table 2 The distribution of the posed problems on the basis of the coherence/consistency criteria

Criteria Starting pattern frame Chessboard frame New recursion frame Grid frame Other Total

Inconsistent and incoherent 5 (24 %) 1 (10 %) 7 (35 %) 3 (25 %) 1 (33 %) 17 (26 %)

Coherent, but inconsistent 2 (9 %) 1 (10 %) 1 (5 %) 4 (33 %) – 8 (12 %)

Incoherent, but consistent 4 (19 %) 3 (30 %) 4 (20 %) 3 (25 %) 1 (33 %) 15 (23 %)

Coherent and consistent 10 (48 %) 5 (50 %) 8 (40 %) 2 (17 %) 1 (33 %) 26 (39 %)

The percentages refer to the total number of problems from each category. The last column contains the number of problems of a certain type and

their percentage of the total number of posed problems
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A recurrence relation is also the essential mathematics

element in the next problem, posed by Matei (grade 5):

Problem 7. We have the square next to here (note: the

figure drawn by Matei is a 10 9 10 grid, numbered

horizontally A, B, C,…, and vertically 1, 2, 3,…). We

have to cover it with black in this order: A1, A2,…, A10,

B1, B3,…, B9, B2, B4,…, B10, C2, C4,…, C10, C1,

C3,…, C9, D1, D2, D3,…
(a) What is the 48th covered box?

(b) When will the G7 box be covered?

In this problem, we note that recursion appears explicitly

as a way to build the wording. The problem keeps the

background theme (grid squares) and the operating scheme

(coverage with no gaps) of the starting problem. It is

interesting that Matei uses the same word (coverage) to

describe the operating scheme of the new problem, when in

fact, more appropriate would be ‘‘numbered’’ or ‘‘scrolled’’.

Another key concept of the starting problem is combi-

natorics. In the starting problem, combinatorics appeared in

connection with the counting of the pattern tiles. Some

students posed problems that emphasized exactly this

component of the starting problem. For example, Miruna

(grade 5) suggested the following:

Problem 8. A dance show will take place in a rectangular

room. The dancers’ costumes will be of two colors:

purple and pink. Choreography was made so that in

every corner of the scene is one dancer dressed in purple

and the purple dancers will be surrounded by only

dancers dressed in pink. How many dancers are dressed

in pink, if those dressed in purple are 48?

Miruna kept the distribution of the starting problem

(ignoring the maximality constraint), gave up the constraint

on the square shape of the model and changed numerical

data. These changes—apparently small—required a dif-

ferent approach to solving the problem. More specifically,

in solving her problem, Miruna decomposed 48 as a

product of two factors, then she identified effective

arrangements that correspond to each decomposition, and

finally, she found the solution for each case.

5 Discussion

As we have seen above, some of the problems posed by the

students of our sample were coherent and consistent, while

others did not fulfill these qualities.

Analyzing the data from Table 2, we find that the per-

centage of coherent and consistent problems decreases as

students move from the familiar frame of the starting

problem. The percentage of consistent and coherent prob-

lems in the category chessboard type frame is even higher

because, actually, this is the closest pattern to the problem,

seen in a familiar environment. We believe that this situ-

ation is generated by operating within a familiar frame,

where most constraints imposed over the data and the

operators and the constraints on the parameters do not need

to be explicitly presented in the wording. For example,

resorting to the chessboard table, the maximality constraint

on the number of black tiles is automatically fulfilled, and

the constraint concerning the positioning of certain tiles in

the corners is irrelevant, because it arises from the corre-

lation with the chessboard size.

A frequent reason for lacking coherence is ignoring the

maximality constraint (the constraint regarding the maxi-

mal number of black tiles, or its equivalent in the posed

problems). Relatively many students did not explicitly put

this constraint in their wordings, but they have used it in

the drawings meant to help in solving the problem. This

shows that in decoding the starting problem, students (of

these ages) especially focused on the iconic code of pro-

cessing: they understood the constraints of the starting

model mostly with the help of graphical information (given

in images), and less based on linguistic information (the

wording itself).

On the other hand, the data of Table 1 show that about

half of the posed problems remain in the familiar frame of

the starting problem or of the chessboard frame, while the

problems using different patterns are more dispersed.

Many students are inventive in changes not related to

the mathematical nature of the posed problems: most often,

they change the background theme, numerical data, or

irrelevant elements (such as the colors of the pieces). When

students make changes that affect the mathematical nature

of the problem, they often lose consistency, a fact observed

both in the initially posed problems, and in interviews. In

analyzing the problems posed by each student, we noticed

that, roughly speaking, as novelty increases, the quality of

the problems decreases. This is also visible in the statistical

data. Thus, 53 % of the posed problems are based on

structural changes of the original problem—which means

greater novelty—but only 39 % of them are coherent and

consistent. Moreover, only 11 (31 %) of the 35 problems

with a frame structurally changed compared with the

starting problem are coherent and consistent.

We interpret these data as evidence of the fact that some

of the students in the sample exhibit cognitive novelty, but

at a low, non-spectacular level.

Comparing the problems posed by the same student

during the initial task or during the interviews, we found

that, in most cases, once a type of change has been made,

the student then proposes variations of the same nature. For

example, if he/she first changed the theme, when asked to

formulate a new problem, the student changes the theme

again. Or, if first he/she posed a problem of the chessboard
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frame category, then he/she proposes a problem falling into

the same category. We believe that, globally, these data

show that for the students in the sample, cognitive variety is

limited. This conclusion is not surprising: in the context of

problem modification, where the problem-posing process is

structured by the imposed model, presumably it induces

greater rigidity than a free problem-posing situation.

When correlating cognitive novelty and cognitive vari-

ety with the product quality (coherent and consistent

problem), we can see that changes in cognitive frame

become important in assessing students’ creative behavior.

In the previous examples (Problem 7 and Problem 8),

Matei and Miruna were able to ‘‘think outside the box’’ in

an innovative way, obtaining coherent and consistent

problems. Matei adds an element—coverage order (which

is insignificant in the starting problem)—and thus empha-

sizes the recursive nature of the problem. With this addi-

tion, Matei proves cognitive novelty—the description of

the coverage order fundamentally transforms the problem,

compared with the starting one. Matei manages to reframe:

he masters the frame of the initial problem, but, addition-

ally, he is able to think beyond this frame, and to come up

with a problem that uses a different pattern. Miruna also

managed to overcome cognitive framing and to customize

her solving approach to the new situation. Although the

question posed by Miruna made minimal changes from the

starting problem, those changes modified the solving

strategy by moving the focus on some combinatorial ele-

ments. The starting problem has a unique solution, but her

new problem abandons some constraints, and thus the

answer may not be unique.

These two students proved to possess cognitive frames

of their problems. Moreover, they were able to connect the

found solution to that frame and to propose modifications

within that frame. In addition, these modifications main-

tained the mathematical consistency of the problem.

We wondered whether this capacity to make changes in

cognitive framing is a condition for obtaining qualitative

mathematical problems. Problem 6, posed by Alexandru,

reinforces this assumption. His problem has some inco-

herence but it is mathematically consistent. Recursion is

not explicit in the wording of Alexandru’s problem, but

appears in the drawings he made for solving. This shows

the presence of a cognitive frame that allows him to

identify the pattern and to apply it in some cases. Alex-

andru developed his problem within a cognitive frame

probably built in time, on similar problems. He suggested a

rule of development and proposed a computing formula,

valid for two particular cases. However, to find the correct

answer to his posed problem (in the absence of algebraic

reasoning), it would be necessary to continue the inductive

process: this involves formulating hypotheses, testing them

on some cases, reformulating these assumptions and

continuing the validation/invalidation and reformulation

process. In other words, it would require changes in cog-

nitive framing. What happened to Alexandru is the same

type of phenomenon observed in organizations, where the

existence of a cognitive frame allows organizational

development to a certain point; then, a change in cognitive

framing, or even reframing, is needed for the organization

to grow.

As we have seen above, Matei and Miruna proved that

they are able to change their mental frames, and their posed

problems are coherent, while Alexandru showed a block-

age in cognitive framing and his posed problem is not

coherent. A common trait of the above examples is the

persistence of only one of the mathematical elements of the

starting problem. In general, we found that the focus on a

single element of the starting problem (even if not

acknowledged by students) essentially contributes to the

generation of consistent problems. Extrapolating, we can

say that the creativity-detecting mechanism used in this

paper is sensitive to variations in cognitive framing, a fact

that argues for the validity of the proposed analysis.

Some students who appeared to be creative did not have,

or have not yet built, a cognitive frame. They solved both

the starting problem and their posed problems by making

drawings that matched the wordings. Typically, these stu-

dents do not think of the possibility of another pattern with

the same restrictions: as a result, most times their posed

problems were not consistent. Therefore, the existence of a

cognitive frame seems to be a necessary (but not sufficient)

condition to generate coherent and consistent mathematical

problems. This assumption is sustained by the fact that the

students who failed to pose a coherent and consistent

problem do not have deep understanding of the starting

problem, even if they correctly solved it. Conversely, the

students who mastered a cognitive frame of the starting

problem managed to change it keeping its mathematical

consistency. For example, the explanation given by Emilia

(grade 4) for her choice of number 36 in her posed problem

(see Problem 2) shows that she has control over an

important condition of the problem:

Interviewer: But why didn’t you change to 26?

Emilia: Because… I wanted 36…
I: But if you were to do another problem, what could you

put instead of 36?

E: 81.

I: Why?

E: In order to be divided evenly… that 9 9 9 = 81, and

the wall must be squared.

I: I see…
E:… or 4 9 4… 6 9 6…

To our surprise, Emilia proved that she is aware that the

number in the problem has to be a perfect square.
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(Obviously, in the fourth grade, the notion of perfect square

is not used.) Although she does not propose a generaliza-

tion, Emilia predicts the pattern that can generalize the

problem. She manifests deep understanding of the con-

straints imposed on the data and the operators of the

problem and, thus, understands the effects of changing

these data or the constraints of the problem. This situation

is not unique among the students of our sample. All the

examples presented in Sect. 4.3, of posed problems that

have a focus on only one of the three mathematical con-

cepts of the starting problem, show the students’ capacity

to make controlled incremental changes.

These examples led us to conclude that, in problem

posing, some students express a functional type strategy—

they vary one single element of the starting problem, to

control the quality of the newly obtained statements. Due

to minimal variation compared with the starting problem,

their problems do not show cognitive novelty in the usual

sense of the definition.

We are going deeply to understand this phenomenon.

Emilia, as well as other students who posed coherent and

consistent problems, seemingly made only small changes.

Does it just mean that the students who are at a more

advanced stage of mathematical understanding are less

creative? The answer we found is that mathematical crea-

tivity is of a special type, which requires abstraction and

generalization (Singer 2012). More specifically, the stu-

dents that show the presence of cognitive frames, and have

the capability to make incremental changes (small, con-

trolled) of the starting problem, show creative potential as

they prove cognitive novelty, cognitive variety, and change

in cognitive framing. We found that these students have a

specific creative expression: cognitive novelty and cogni-

tive variety are present but limited compared with other

students, while change in cognitive framing is specialized

in the direction of abstracting to get the problem general-

ization. This behavior strongly manifests for the most

mathematically able students and it seems to correlate with

the specific nature of the mathematical domain(s).

6 Conclusions

This paper presents the results of an experiment in which

students in grades 4–6 (11–13 years old) with above-

average mathematical abilities posed new problems by

changing a given one. The students of our sample were

among the winners of national mathematics competitions.

The quality of being a winner of competitions does not a

priori ensure that the student is mathematically creative

because, in competitions, the reaction speed and the ability

to use algorithms practiced before are far more important

than creativity in problem solving. Consequently, a starting

question was: What tools could be used to identify math-

ematical creativity in high-achiever students? Our research

showed that the analysis of cognitive flexibility in the

context of problem modification might be a good indicator

of mathematical creativity. Therefore, the students of our

sample were challenged to develop new approaches to a

starting problem.

A first analysis of the students’ posed problems led us to

classify them into five categories, namely: problems based

on the configuration of the starting problem (‘‘starting

pattern frame’’); problems using the chessboard configu-

ration (‘‘chessboard frame’’); problems that used new,

different distribution patterns (‘‘new recursion frame’’);

problems based on filling a grid with non-identical objects

(‘‘grid frame’’); and problems that do not appeal to a cer-

tain configuration (‘‘other’’). These categories of problems

differ not only through the nature of the configuration used,

but also through their level of complexity, as more inde-

pendent factors intertwined in the problem. At first, we

were tempted to say that the students who posed problems

of a growing complexity compared with the starting

problem are more creative because at least they moved far

away from the starting problem, thus showing novelty. A

qualitative analysis indicates, however, that a significant

percentage of those posed problems were mathematically

inconsistent or incoherent. Therefore, to answer the ques-

tion: ‘‘How does creativity manifest in these students?’’ we

considered other features of the posed problems.

We tried to find out if there is evidence of links between

the quality of the students’ posed problems and their cog-

nitive flexibility: the existence of such a link would be an

argument for an answer to the main question of this study.

Cognitive flexibility consists of three primary con-

structs: cognitive variety, cognitive novelty, and change in

cognitive framing. The study shows that, among these,

cognitive framing seems to be more relevant for mathe-

matical problem posing and problem solving. Cognitive

framing was assessed through the capacity to generate a

specific pattern of thinking for a specific problem. We were

interested in the students’ ability to change their cognitive

frames, or even more, in their ability to reframe. In a

context in which high-achiever students have to solve

problems, we get information rather on cognitive framing

than on changes in cognitive framing. Conversely, if we

place the same children in a problem-modification context,

then their tendency is to deepen the understanding of the

mathematical problem, maybe because the cognitive frame

that acts at some point is well defined. Therefore, changes

in cognitive framing could be effectively detected in

problem-modification situations, giving a relevant indica-

tion of students’ creative potential in mathematics.

In general, the students capable of reframing can do this

merely by varying a single mathematical dimension of the
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problem. (There was no exception to this remark in our

sample.) In this way, the students can control the conse-

quences of these changes and may propose coherent and

consistent problems. Therefore, the student’s capacity to

generate coherent and consistent problems in the context of

problem modification may indicate the very existence of a

strategy of functional type for generalizations, which is

specific to mathematical creativity. It might be possible

that exactly this capacity becomes part of a tool for mea-

suring students’ mathematical competencies and for

screening mathematical creativity.

A secondary finding of the paper is that mathematical

creativity is different from creativity in general. However,

a brief discussion of the limitations of this study has to be

taken into account. It is possible that the above conclusions

are valid only for students such as those in the group we

worked with (high-achiever students, aged between 10 and

13 years). Further research could analyze the implications

of this study for other ages and samples.
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