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Abstract During 46 lessons in Euclidean geometry,

sixth-grade students (ages 11, 12) were initiated in the

mathematical practice of inquiry. Teachers supported

inquiry by soliciting student questions and orienting stu-

dents to related mathematical habits-of-mind such as gen-

eralizing, developing relations, and seeking invariants in

light of change, to sustain investigations of their questions.

When earlier and later phases of instruction were com-

pared, student questions reflected an increasing disposition

to seek generalization and to explore mathematical rela-

tions, forms of thinking valued by the discipline. Less

prevalent were questions directed toward search for

invariants in light of change. But when they were posed,

questions about change tended to be oriented toward gen-

eralizing and establishing relations among mathematical

objects and properties. As instruction proceeded, students

developed an aesthetic that emphasized the value of

questions oriented toward the collective pursuit of knowl-

edge. Post-instructional interviews revealed that students

experienced the forms of inquiry and investigation culti-

vated in the classroom as self-expressive.

Keywords Mathematical inquiry �
Interest and disposition � Mathematical habits-of-mind �
Spatial mathematics � Mathematical practices

1 Introduction

Mathematical inquiry is a cornerstone of mathematical

practice (Lakatos, 1976), but it is unclear how best to ini-

tiate students into this activity. In mathematics classrooms

where students participate in discourse to support learning

(Chapin, O’Connor, & Anderson, 2003), student questions

are often encouraged to clarify the mathematical reasoning

of participants, and to signal shifts in authority from tea-

cher to student (Hufferd-Ackles, Fuson, & Sherin, 2004).

Although these are valuable roles for inquiry, we are

concerned here with a different sense of inquiry, one in

which students pose questions that instigate mathematical

investigation. To date, this form of student inquiry has

received comparatively little attention. The few relevant

studies have focused on small groups of students, not intact

classrooms (e.g., Borasi, 1992). To explore the possibilities

of sustained inquiry, we designed instruction to support

middle school students (ages 11, 12) to initiate questions,

formulate conjectures in light of their questions, conduct

investigations that informed their questions and conjec-

tures, draw conclusions from these investigations, and pose

new questions. Our goal was to sustain a cycle of inquiry in

which students would be agents of mathematical learning.

The objects of inquiry were familiar topics in their schools’

geometry curriculum, a sixth-grade unit of Connected

Mathematics Project (CMP). Rather than adhering to the

curriculum’s scope and sequence, we let student inquiry,

guided by instructors with a view of the mathematical

horizon (Ball, 1993), determine the course of learning. We

conjectured that a focus on student inquiry and investiga-

tion would incubate the development of interest in math-

ematical activity. These expectations were consistent

with findings from studies in other disciplines of the long-

term cultivation of interest. These findings suggest that
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opportunities to pose questions and conduct investigations

related to these questions tend to generate and sustain

interest (Azevedo, 2006; Barron, 2006; Hidi & Renninger,

2006; Renninger, 2009).

We emphasized geometry as the site for inquiry because

spatial reasoning holds great promise for supporting the

development of mathematical practices—habits-of-mind—

for generating and revising mathematical knowledge.

Goldenberg, Cuoco and Mark (1998) suggest: ‘‘Geometry,

broadly conceived, can help students connect with mathe-

matics, and geometry can be an ideal vehicle for building

what we call a ‘habits-of-mind perspective’’’ (p. 3). Harel

(2008) proposes a similar distinction between ways of

understanding and ways of knowing. He explains that a

way of knowing emerges as one considers commonalities

among the actions one takes to solve a particular problem

or to develop a particular proof. Mathematical under-

standings ideally are intertwined with more general ways

of knowing.

Clearly, posing questions that can be investigated is an

important habit-of-mind, but to be productively sustained,

questions must be coordinated with other habits-of-mind

that support investigation, such as generalizing, reasoning

with relationships, and investigating invariants (Driscoll,

DiMatteo, Nikula, & Egan, 2007). Generalizing refers to a

disposition to secure knowledge by seeking the broader

structures or patterns that govern the generation of any

particular case or set of cases. The distinction in geometry

between a drawing, which exemplifies an instance, and a

figure, which exemplifies a class with associated properties,

suggests a pathway for seeking broader classes or patterns

(Goldeberg & Cuoco, 1998). Reasoning with relationships

refers to a disposition to search for the relationships among

properties that undergird concepts. Geometry is replete

with visual concepts such as planar figures and relations

among them, such as congruency, that provide opportuni-

ties to construct these relationships (van Hiele, 1986).

Investigating invariants refers to the propensity to search

for constancy in light of change. This tendency is more

often associated with the dragging operation of dynamic

geometry tools (e.g., de Villiers, 1998; Hadas, Hershko-

witz, & Schwarz, 2000), but as we later explain, change

and invariance can be visualized with more conventional

technologies, as well. We conjectured that inquiry would

ground the need to develop these related habits-of-mind,

and that the affordances of geometry’s visually guided

thinking, in turn, would nourish their development. We

anticipated that during the course of instruction, student

inquiry would increasingly reflect the operation of these

three habits-of-mind.

We structured the investigation around several of the

following questions. First, to what extent did students

participate in generating questions? Was this practice

widespread or confined to a few, elite students? Second,

did student questions reflect an orientation toward habits-

of-mind? Did this orientation develop over time? Third,

what aesthetic (Sinclair, 2004) did students develop about

mathematical questions and conjectures? What made a

question or conjecture ‘‘good?’’ Fourth, were student

reflections on their experiences consistent with mathemat-

ical agency and disposition to engage in mathematical

thinking?

2 Crafting a culture of inquiry

An epistemic enterprise like this one is inherently open-

ended. Accordingly, we could not plot in advance antici-

pated trajectories of learning, as is commonly advocated

for design research (Simon, 1995). Instead, we planned

instruction from week to week to respond to the emerging

history of inquiry and investigation. We were guided by

our anticipations of the emerging mathematical horizon.

For example, although questions about the area of polygons

emerged comparatively early, we delayed their investiga-

tion until students had firmer grasp on the conceptual tools

that we knew they would need to conduct their investigations.

Designing instruction was guided by several heuristics that

collectively aimed to root mathematical experience in

everyday, even mundane, encounters with space (e.g., walk-

ing) and to elaborate and transform these experiences into

mathematical systems by cultivating habits-of-mind, as we

describe further in this section.

We viewed students’ everyday experiences and con-

ceptions of space, especially bodily motion, and their

everyday forms of argument, chiefly propensities to cate-

gorize and classify, as rich resources for incubating

mathematical activity. For example, we anchored students’

learning about polygons to paths that they walked (Abelson

& diSessa, 1980; Lehrer, Randle, & Sancilio, 1989) and

related familiar properties of polygons, such as sides,

to experiences of unchanging direction while walking

(Henderson & Taimina, 2005). Our emphasis on bodily

experience, or body syntonic approaches (Papert, 1980),

reflected a conviction that mathematics often re-expresses,

refines and extends commonplace experiences in the world

(Hwang & Roth, 2011; Lakoff & Nunez, 2000). More

specifically, we sought to map embodied experiences such

as no change in direction while walking, or the changing

direction induced by body turns, to corresponding funda-

mental properties of space, such as straight and angle. We

often privileged questions related to classification, because

instead of mere naming, classification was a forum for

constructing and communicating definitions of mathemat-

ical properties, such straight sides, that could be readily
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related to embodied experiences (Lehrer, Jacobson, Kemeny,

& Strom, 1999).

We encouraged and provided ways for students to

inscribe space in multiple modes and at multiple scales

(Latour, 1990; Roth & McGinn, 1998). For example, rep-

resentations of polygons were generated by affixing tape

along walked paths. These paths were re-generated on

paper employing circular protractors, or alternatively,

paper figures were re-described bodily. These acts of rep-

resentational re-description were intended to foster closer

examination of necessary and sufficient properties (e.g.,

What about an experience of walking a path needed to be

represented on paper?) and meta-representational compe-

tencies (Which representations best communicated the

intentions of their authors?, diSessa, 2004). For example,

Fig. 1 displays a student-invented representation of the

magnitude and direction of an angle considered as a rota-

tion. The student explained that he had labeled the starting

and ending points of rotation, but double-labeled the end

point as both ‘‘end’’ and as 0, so that one could treat the end

as zero if one wanted to turn in the other direction. By

comparing and contrasting solutions to representational

problems like these, students developed representational

competencies.

We devised common forms of participant structures,

such as small group tasks, that encouraged variability both

in questions generated and in approaches to investigating

questions. We complemented these smaller working groups

with a whole-class dialogue format in which these varia-

tions were juxtaposed and related by encouraging students

to build on another student’s contributions or to suggest

alternatives to them (Stein, Engle, Smith, & Hughes, 2008).

Critical to the conduct of the instructional design, we

supported the development of questions and related habits-

of-mind discursively. One form of conversational support

was labeling forms of mathematical activity. For example,

when a student, Vern, suggested that irregular polygons

‘‘could all be the same (shape), but they could have dif-

ferent sides, lengths,’’ the teacher (typically, one of us)

noted, ‘‘Ahh so that’s a conjecture you have.’’ He wrote

Vern’s statement on the board, labeling it the ‘‘Vern con-

jecture,’’ thereby attributing authorship to Vern and high-

lighting the contribution as important. The attribution of

student authorship constituted a second form of support

that was consistently practiced during instruction.

Questioning was cultivated during many episodes of

classroom talk. For example, the teacher asked about a

drawn figure: ‘‘What might we want to ask about it? What

else might we want to know about this or anything related

to it?’’ He later added that students might ask about

‘‘something that could take advantage of the information

you can see here, but does something with it.’’ The teacher

also highlighted questions as worthwhile to investigate

(e.g., ‘‘We haven’t figured out the answer to this question,

Mona’s question, which a lot of people think is worth

investigating.’’) Note that the teacher aligned his high-

lighting with a communal opinion, distinguishing it from

his personal preference. At other times, the teacher more

implicitly communicated about which questions were

worthwhile. For instance, when students posed questions

about a square, such as ‘‘how many vertexes?’’, the teacher

immediately asked students to answer the question.

Labeling student questions served two purposes. It sent the

message that ‘‘investigate-able’’ was a quality of good

questions and also indicated which questions fell into this

category.

There were frequent opportunities to support habits-of-

mind, such as generalization, often by asking students to

justify the grounds of a claim beyond a single instance

(e.g., Ellis, 2011). The instructor highlighted these habits-

of-mind by meta-discursive talk about how mathematicians

might proceed during the course of solving a particular

problem or approaching a particular question. For example,

when students were investigating questions about squares,

rhombi, and other quadrilaterals, the teacher held up a tool

made of four paper strips attached by brad fasteners that

allowed for investigation of dynamic motion. He noted:

‘‘Now something that often is a good thing to do is

investigate what happens when you change something.

What stays the same and what changes?’’ Here, as in many

other instances, discursive support was accompanied by

tools or inscriptions or embodied activity, so that discourse

was commonly multimodal. As instruction progressed,

forms of discursive support initially raised by the teacher

were increasingly appropriated by students. For example,

during one class, students were talking about rhombi and

their properties, and the conversation veered to the previ-

ously unexplored terrain of ‘‘fitting’’ (dissecting the

rhombus) triangles. A student proposed a generalization:

‘‘Since he said that I have a conjecture…Every polygonFig. 1 Representing degree and direction of rotation
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has to have at least one polygon inside of it…you could fit

a square inside of a rectangle. You could fit a triangle

inside of a square.’’ Another student, without prompt from

the teacher, responded, ‘‘I have a question for you Kira.

Oh, I have a question. What can you fit in a triangle?’’

To maintain a common ground (Staples, 2007) for

classroom activity, we inscribed questions and conjectures

on a list posted on the wall of the classroom. Whenever a

student stated a new question or conjecture, we added it to

the list and often noted the author. The list highlighted

questions and conjectures as important and also served as a

model of recordkeeping for students, who were expected to

document questions and conjectures in their notebooks. For

instance, writing two conjectures on the board, the teacher

remarked: ‘‘I hope this is in everybody’s notebook. There

are now two conjectures along with our questions.’’ These

forms of recordkeeping made it possible to return to the

questions and conjectures at later points in time. Some-

times the teacher related an investigation to a question on

the list and on multiple occasions, the class looked at the

list and discussed what had and had not been resolved.

Later, the students spent a couple of days investigating a

question or conjecture of their choice from the list.

The period of instruction in which inquiry about space

was the dominant form of mathematical activity spanned

approximately 6 months (46 lessons) during which stu-

dents posed questions and conducted investigations about:

(a) definitions and relations among polygons, including

angle measures and sums and relations between diagonals

and the number of sides; (b) relations within and among

triangles, including triangle inequality and congruency

theorems; (c) dissection of polygons via triangles;

(d) isometries, symmetries and their implications for clas-

sifications previously developed for polygons, especially

quadrilaterals; (e) area measure and its use as a model for

the distributive property of multiplication over addition;

and (f) the Pythagorean theorem. Figure 2 displays the

overall trajectory of instruction, although there were many

instances of overlapping topics, revisits of topics and

briefer side conversations. The brackets show the topics

that students investigated, as well as the time the investi-

gations spanned. We did not include procedural topics,

such as when students were learning how to use a tool (e.g.,

a protractor), or topics that lasted less than one class period.

The circles at the bottom of the timeline represent days of

math instruction. Six circles are shaded a dark gray to

represent days when the teacher elicited questions or con-

jectures about a particular object or topic. The first three of

the six such days occurred during the first month.

3 Method

3.1 Participants

Participants (n = 18, 11–12 years old, 10 male) attended

an urban school that primarily served underrepresented

youth in the southeastern United States. Most students

(75 %) qualified for free or reduced lunch. Students in the

target classroom were ethnically diverse (8 African

American, 3 Caucasian, 1 Hispanic, 1 African, 1 Native

American, 2 Kurdish, 1 Vietnamese, 1 Mixed).

Fig. 2 A view of the trajectory of instruction
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3.2 Procedure

One of us (RL) served as the primary classroom instructor

for mathematics during the school year (85 % of lessons)

with occasional instruction from MK and the classroom

teacher, Ms. Moskal (11 % jointly, 4 % by MM). Mathe-

matics class was conducted twice each week, 1.5 h per

session. Students also responded to occasional assessments

for an additional 45 min on those weeks. Each class was

videotaped and digitally rendered for further analysis. A

small group of students was recorded with a second, wall-

mounted camera throughout most of the year. Field notes

were taken of whole group interactions during each class to

contextualize the video recordings and inform the design of

the next lesson(s). The choice of mathematical topics was

informed by the school’s grade-level standards for mathe-

matics and the curriculum used by the classroom teacher.

However, the conduct of any particular class was informed

by students’ questions and investigations, our interpreta-

tions of the mathematical implications of these questions

and investigations, and by our judgments about productive

‘‘next steps’’ in light of students’ reasoning. These judg-

ments were further informed both by classroom interaction

and by the results of periodic assessments. Students wrote

summaries of their understandings and experiences at the

end of every lesson, and the student journals were an

additional source of data during the conduct of the study.

Because we were committed to students’ generation of

mathematics, we authored only one definition, that of an

angle as a rotation with a measure determined by the

amount of rotation. One complete rotation was defined as 1

turn and was equivalent to 360�. From this humble outcrop,

students developed other definitions, conjectures, theorems

and proofs. When the space of questions grew unwieldy,

the class negotiated which they judged most worthy of

pursuit, or the instructor privileged some as particularly

likely to yield richer understandings. We also posed

occasional questions when we felt they would extend or

enrich students’ current activity.

At the end of the school year, each student reflected

about their mathematical experiences during individual

flexible interviews of approximately 45 min to 1-h dura-

tion. Seventeen interviews were conducted, as one student

left the school during the semester. Questions included:

(a) What did you like best about math this year? And, what

did you like least? (b) Are there good questions and bad

questions in mathematics? (Probe for examples);

(c) What’s it like doing math in your class on a typical day?

(d) How is doing mathematics this year the same or dif-

ferent as doing mathematics last year (or before entering

the teacher’s class)? and (f) Which three of your classmates

most helped you learn this year? Who helped the most?

How did ___ help you? Students also responded to

questions about how they reasoned about particular prob-

lems and concepts, but these are not addressed here. To

describe student reflections, we first broadly read and

interpreted each student’s responses across the questions

for the entire sample, and then re-considered each student’s

responses in light of the emerging themes. We were also

guided by previous efforts in the field to consider students’

dispositions toward mathematics (e.g., Boaler, 2002;

Gresalfi, 2009).

3.3 Identifying student questions

We first viewed video of every classroom lesson during the

course of instruction and identified all unique student

questions that could be resolved by means of some form of

investigation or proof. The following criteria were used to

identify questions and to differentiate them from other

types of statements. First, utterances that ended with rising

intonation and included ‘‘what,’’ ‘‘how’’ and related words

were marked as questions. Second, the question had

to refer either to mathematical objects, properties or rela-

tions, or to an epistemic, such as: ‘‘How could you

know…without testing every one?’’ We counted as unique

only one of a series of restatements of a question, and we

did not include questions posed for evident purposes of

communicative clarity, such as: ‘‘What do you mean

by…?’’ We also excluded procedural questions, such as:

‘‘How do you use these (e.g., protractors)?’’ However,

questions about a mathematical method to accomplish a

goal were included. Finally, we excluded teacher revoicing

(O’Connor & Michaels, 1996) of a student statement as a

question. Once a student question was identified, it was

transcribed verbatim and accompanied by a brief descrip-

tion of context to help situate it and to permit a more

accurate interpretation of the student’s intent. Describing

the context included recording what the class was doing

immediately before the question was asked, and, if neces-

sary for interpretation, what was said immediately before

the question was asked.

3.4 Coding student questions

To indicate the degree to which student-generated ques-

tions were oriented toward mathematical habits-of-mind,

each question was coded along four dimensions, as follows.

The first dimension was the extent to which a question

was oriented toward Generalizing. We distinguished

among four levels of generalization. Questions at the

lowest level typically focused on specific instances. Some

were mathematically oriented, such as ‘‘Do(es) it (an

instance) have any angles?’’ while others had no disci-

plinary intent, such as: ‘‘Did Mr. Einstein make one (an

octagon)?’’ At the second level, questions were directed

Cultivating inquiry about space in a middle school mathematics classroom 369

123



toward a particular instance but implicitly addressed a

generalization. For example, during an investigation of the

implications of the triangle inequality, a student asked:

‘‘Would 4, 3, 7 (lengths of sides) work?’’ Although it

addressed an instance, the question suggests a more general

orientation toward the boundary condition of the inequal-

ity. At the third level, questions explicitly referred to a

generalization, but did not specify the aspect of the gen-

eralization of most interest. For example, ‘‘What is a

rhombus?’’ or ‘‘Is there any degree above 360?’’ At the

highest level, the question was clearly focused on general

relations between properties or on relations between

properties and classes, as illustrated by: ‘‘Don’t you think

that the number of diagonals that you make in a polygon

will be the same as the number of sides?’’ or by: ‘‘How

come not all regular polygons tile?’’

The second dimension, Reasoning with Relationships,

was the extent to which a question was oriented toward

establishing relations, such as properties and classes,

among mathematical elements. There were three levels of

relational orientation. The lowest indicated no explicit

relational reference. The second made an explicit reference

to a pair, such as, ‘‘Why is the inner angle and the outer

angle different?’’ or, ‘‘But is a circle a polygon?’’ or, ‘‘So

would flipping be the same thing as turning…90�?’’

Questions at the third level explicitly referred to multiple

relations, such as ‘‘Um, I was like on Tuesday when you

guys were talking about how side, angle side and angle,

side, angle, um. Would it still work even if you still

switched them up?…Like when you say angle, side, side,

could you put side, side, angle?’’ This question inquires

whether the order of the relation among sides and angles

matters for establishing the congruence of two triangles.

The third dimension, Investigating Invariants, was the

extent to which a question was oriented toward finding

invariance in light of change. At the lowest level, the ques-

tion did not refer to change. At the second level, a question

referred to change but did not specify a focal property of

change, concentrating instead on global appearances, such as

speculating about what would happen if one shape were

pulled or stretched into another. The third level did specify a

focal property of change, such as: ‘‘If you change the angles,

will it still be a triangle?’’ At the fourth level, some questions

were directed toward limits of change, as in extreme cases or

boundary conditions. For example, during a discussion of the

effects of an increase in the number of sides of a polygon:

‘‘Does it ever turn into a circle or does it look like a circle?’’

Other questions were directed toward the effects of varia-

tions in methods: ‘‘But wouldn’t it come out the same if you

tried it the center way?’’ This question referred to a variation

on another student’s method that employed diagonals to

partition a hexagon into triangles, one where the triangles all

met at the center.

The fourth dimension, Scope, was the extent to which a

question created opportunities for exploring new mathe-

matical terrain in light of the history of inquiry in the

classroom. This dimension of questioning was not

explicitly supported during instruction but instead

emerged during the course of classroom activity. We

made four distinctions along this dimension. At the lowest

level, questions did not offer opportunities for exercise of

any of the previous three habits-of-mind. For example, a

student looked at a shape drawn on the board and asked:

‘‘How many vertexes?’’ Because this question was direc-

ted to a particular figure (no generalization), did not refer

to other properties or figures (no reasoning about rela-

tions), and did not consider change and invariance, we

ranked its scope at the lowest level. At the second level,

questions clarified previously referenced properties or

relations, or were intended to disrupt them. For example,

‘‘Is the circle the only non-polygon? What about an oval?

Is that not a polygon?’’ and ‘‘Is it possible to have the

interior sum (of a triangle) greater than 180�?’’ At the

third level, the questions addressed a new context or

relation, often marked by suppositional language. For

example, during a discussion of angles as rotations mea-

sured in degrees, a student asked: ‘‘If, that if the circle’s

that way [gestures clockwise], wouldn’t the negatives

have to be that way [gestures counter-clockwise]?’’ At the

highest level questions challenged the grounds of know-

ing. For example, when a student conjectured that if the

triangle inequality held for the sum of the two shortest

sides, it would be true for any combination, a second

student asked: ‘‘How did she know they didn’t work if she

didn’t test them out?’’

Two of the authors served as the primary coders of 109

questions. A third coder coded all instances of disagree-

ment without knowledge of any of the codes applied by the

primary coders. Exact agreement between the two primary

coders for the 109 questions was 66 % generalization,

74 % relations, 90 % for change, and 68 % for scope.

Disagreements were most often at adjacent levels of the

scheme (77 % of the time). Disagreements were nearly

always resolved by agreement of one of the primary coders

with the third coder. Rare instances of three-way dis-

agreements were resolved by consensus.

3.5 Aesthetics of questions

We probed students’ sense of the aesthetics of questions at

the approximate mid-point of instruction, the 26th and 27th

class sessions. During the first of these, students worked in

small groups to decide: ‘‘What makes a good question or

conjecture? Are all of these good questions and conjec-

tures? Or, are which ones are really good and why? With

your group, write down the top three qualities of a good
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question or conjecture.’’ After the small groups proposed

criteria, the class judged each criterion and recorded those

they agreed upon. During the second session, students

made additional contributions to the criteria during a

whole-class discussion.

4 Results

4.1 Questions and habits-of-mind

Most students posed multiple questions during the course

of instruction about space, although two delayed until a

new unit on decimals and fractions to pose their first

questions. A third student left the class partway through the

year before having posed a question. Tables 1, 2 and 3

display the frequencies of orientation toward the habits-of-

mind evident in the 109 questions posed during the period

of instruction, according to the coding scheme. The split of

the data allowed us to compare the induction phase of

the practice of inquiry (the first 6 classes in Fig. 2) and the

remainder, more routine practice of inquiry during the

remainder of instruction about space. By induction, we

refer to the introduction of this new form of practice to

students, one in which questioning was installed as a socio-

mathematical norm in the classroom (Yackel & Cobb,

1996). Students’ routine generation of questions and

investigations was firmly established by the end of the first

month of instruction.

The total frequencies for each habit-of-mind displayed in

Tables 1, 2 and 3 suggest a strong orientation toward Gen-

eralizing and Reasoning with Relationships in students’

inquiries. Only a comparative handful of the questions that

students generated were oriented toward Investigating

Invariants. However, when student questions were directed

toward the higher levels of this habit-of-mind, exploring the

effects of changes in properties or of the boundary condi-

tions of extreme cases, the questions were also characterized

by high levels of Reasoning with Relationships (100 %) and

of Generalizing (94 %), in contrast to 46 and 65 %,

respectively, for lower levels of Investigating Invariants.

Hence, although they were less frequent, questions about

Investigating Invariants had high potential for conducting

fruitful mathematical work. The results suggest that, as

anticipated, learning to pose fruitful questions for investi-

gation was coordinated with developing dispositions to seek

generalizations and explore relationships. The evidence is

more equivocal about posing questions that situate investi-

gation of change and invariance.

Tables 1 and 2 further show that during induction, a

slight majority of student questions were oriented toward

generalization, but this tendency became much more pro-

nounced as inquiry took root in the classroom. Similarly,

during induction, the majority of student questions were

not oriented toward Reasoning about Relationships but

during the remainder of the instruction, the majority of

student questions were oriented toward higher degrees of

Reasoning with Relationships.

Table 4 displays the scope of student questions—the

extent to which the question instigated reconsideration of

concepts and methods previously investigated or extended

established ideas and methods to new realms of inquiry.

This table suggests that during the course of instruction, the

scope of student questions increased and even included

Table 1 Frequencies of questions by levels of generalizing

Weeks No generalization Implicit generalization Explicit generalization Explicit generalization and specifies aspect

1–4 9 (23 %) 6 (15 %) 10 (26 %) 14 (36 %)

5–25 7 (10 %) 11 (16 %) 15 (21 %) 37 (53 %)

Total 16 (15 %) 17 (16 %) 25 (23 %) 51 (47 %)

Table 2 Frequencies of questions by levels of reasoning with

relationships

Weeks No relations One relation Multiple relations

1–4 24 (62 %) 15 (38 %) 0 (0 %)

5–25 27 (39 %) 35 (50 %) 8 (11 %)

Total 51 (47 %) 50 (46 %) 8 (7 %)

Table 3 Frequencies of questions by levels of investigating

invariants

Weeks No

change

Global

morphing

Change

properties

Variation in method

or extreme case

1–4 35 (90 %) 1 (2 %) 0 (0 %) 3 (8 %)

5–25 56 (81 %) 0 (0 %) 8 (11 %) 6 (9 %)

Total 91 (83 %) 1 (1 %) 8 (7 %) 9 (8 %)

Table 4 Frequencies of questions by levels of scope

Weeks No potential for

investigation

Rethinking

ideas

Elaboration in

new context

Epistemic

grounds

1–4 14 (36 %) 20 (51 %) 5 (13 %) 0 (0 %)

5–25 9 (13 %) 38 (54 %) 18 (26 %) 5 (7 %)

Total 21 (19 %) 58 (53 %) 23 (21 %) 5 (5 %)
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those that challenged the grounds of knowledge, part of a

tendency to situate individual inquiry within a collective

trajectory.

4.2 Aesthetics of questions

Table 5 displays the criteria for characteristics of good

questions (and conjectures) that students generated. Some

of them reflect the importance of personal agency, indi-

cated by reference to personal authenticity—one does not

pose a question or make a conjecture about something that

one already knows—and by reference to individual curi-

osity, such as ‘‘eager to know.’’ Other criteria suggest an

orientation toward knowledge-building and communicative

clarity. For example, ‘‘leads to other conjectures’’ and

‘‘helps you keep thinking about the topic’’ suggest a

commitment to sustaining and elaborating knowledge.

Similarly, one is obligated to pose a question that others

can comprehend (e.g., clear, makes sense, specific focus),

perhaps because without clear communicative intent, it is

difficult, if not impossible, to build knowledge collectively.

Students also stated that worthwhile conjectures follow

from questions posed, so that conjectures are about

potential answers to questions that have been posed.

4.3 The interplay of inquiry and investigation

We describe two points in time, chosen from the beginning

and end of the 6-month period of instruction, to illustrate

how questions arose and were taken up as investigations,

and how, as they did so, the roles of the students and

instructor shifted over time. The first excerpt, which

focuses on students’ investigations of the sum of angles for

triangles, illustrates how the instructor initially supported

students’ posing of questions and helped them select or

fashion questions they could actually manage, while still

positioning students as responsible for authorship. The

second excerpt describes students’ entrée into what later

became an investigation of the Pythagorean theorem. It

illustrates how the students took on more responsibility, not

only to pose questions, but also to immediately discuss and

respond to those questions with general arguments.

4.3.1 Early entrée into inquiry: investigations of triangle

angle sums

During the initial phase of instruction, students wrote

directions for walking various polygons, an activity that

required them to consider a shape’s properties and the

relations among those properties. They started the seventh

day of instruction by using one student’s directions to

construct an equilateral triangle. During the discussion that

followed, the class notated the triangle’s interior and turn

angle measures (see Fig. 3). RL then asked the students to

pose questions about the figure: ‘‘What kinds of questions

could we now ask, having made this thing? Cause in math,

we don’t make things unless we want to ask questions

about them. So what kinds of questions could we ask about

this thing that we’ve just made?…What else might we want

to know? About this or anything related to it.’’

Students’ initial questions ranged from, ‘‘If we hadn’t

started from the vertex and still turned 120, would it have

still ended up the same way?’’ to, ‘‘Can there be a square

above 90� angles?’’ to, ‘‘What’s the area?’’ Along the way,

RL commented about desirable features of questions (e.g.,

‘‘Something that could take advantage of the information

you can see here, but does something with it’’). When

students had no more questions to add, he encouraged them

to ask about the properties of the triangle: ‘‘What if I said,

‘think about the sums?’’’ One student asked about the sum

of the sides (‘‘How many, well, what would all the sides

equal? What would be the sum of the sides?’’), and RL

Table 5 Student-generated criteria for qualities of good questions/conjectures

1 Help you learn something that you do not already know

2 Something you are eager to know

3 Shows good curiosity and thinking

4 Has something you know about and something you want to find

5 Has questions for what we know

6 Topic of the discussion is inside the question. The question helps you keep thinking about the topic

7 Good conjecture follows from the question. It links to what you know

8 Questions are posed with good evidence. You can see why the question is relevant

9 Leads to other conjectures

10 Clear in wording and makes sense

11 Good detail, specific focus

12 Good math wording—good math vocabulary helps you know what the question (or conjecture) is about

13 Question helps you understand what people are saying and why
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included this with their other questions. After a pause, RL

pressed again, ‘‘Are there any other properties of the tri-

angle that we could ask about the sum?’’ One student

offered ‘‘angles,’’ which, after probing by RL, was speci-

fied as ‘‘interior angles.’’ RL revoiced this contribution as,

‘‘What is the sum of the interior angles?’’ Another student

followed with, ‘‘What’s the sum of the outer angles?’’ re-

voiced by RL as ‘‘turn angles.’’ RL suggested that the

students first try to answer the two questions about angles

for the particular triangle they had been looking at.

Once they had accomplished this, RL prompted students

to think more generally: ‘‘What I want to know is, do you

think this (interior, exterior angle sums) is true for all tri-

angles, or just for those that are equilateral?’’ He then

further suggested that to start they might ‘‘draw a triangle

that is not equilateral and find out what its turn angles are

and what its interior angles are.’’

At the beginning of the next class, one student, Diyari,

shared a conclusion: ‘‘The interior angle sum is 180� and

the turn angle sum is 360� and they’re…And it works for

all of them…it works for all triangles.’’ Several students

suggested that this was contrary to their experiences. The

instructor highlighted these competing claims: ‘‘So Kate

actually tried this and Kate says Diyari, your conjecture is

false. Because, let’s look at Kate’s reasoning. Because she

found one instance that it’s not true of. Therefore, you can’t

say for all triangles.’’ The students spent the next few

classes investigating Diyari’s conjecture and eventually

explained why it was true.

These episodes illustrate how RL facilitated students’

entrée into inquiry and investigation. He started by asking

them to pose questions about a triangle that already had the

interior and turn angle measures labeled, and thus high-

lighted. As students asked initial questions, he provided

commentary about desirable features of questions, and

focused their attention further by suggesting that students

ask questions about ‘‘sums’’ of properties. This prompted a

student to ask the question about the sum of the side length

measures. When a student offered the property of ‘‘interior

angles,’’ the instructor revoiced this property as a question,

and, in doing so, modeled asking a question. Although we

did not include this question as an instance of student

generation, it prompted a student question about outer

angles. Because the students’ questions about sums of sides

and sums of ‘‘outer’’ angles were both about a particular

case and did not explicitly describe relations or change,

they were coded at the second lowest level for general-

ization and the lowest levels for relations, change and

scope. However, the questions provided a point of entrée

for the instructor’s more general question about the sums of

angles for all triangles. Moreover, by suggesting initial

forms of investigation, the instructor provided students

access for exploring the question themselves and grounded

Diyari’s contribution of a conjecture. ‘‘Diyari’s conjec-

ture’’ then became the focus of investigation for the next

several class periods.

4.3.2 Student initiators of inquiry: seeding

the pythagorean theorem

As they investigated area measurement, students drew a

square inch and then a square foot. While constructing

these, Ned noticed that the diagonal of the squares was not

the same as the length of the side: ‘‘Dr. Rich, why won’t

this work right here? Why won’t this make a foot right

here?…I tried that with a square inch and it still didn’t

work.’’ RL replied: ‘‘No kidding. So no matter what square

you did, it didn’t work? Huh. Is that a question we need to

ask ourselves?’’ Ned enthusiastically agreed, and RL

requested, ‘‘Phrase your question so that we can all

understand it. Ms. Moskal will add it to our question list.’’

While working on the wording of his question, Ned deci-

ded to ‘‘bring back up the 1–3’’ notation the students had

used earlier to refer to diagonals (meaning the length

connecting vertex 1 to vertex 3). This is noteworthy

because Ned not only considered the notation relevant in

this new context, but he also identified it as a way to help

communicate his question to the class, as RL had reques-

ted. Several other students had similar questions. Ned

represented their question (see Fig. 4): ‘‘OK, from 1 to 2

(gesturing a path from 1 vertex to another on the same

side), 2 to 3 (same gesture as preceding), 3 to 4 (gestures)

and 4 to 1 (gestures) are all one foot…So if those (gestures

perimeter) on the outside are correct for one foot, why isn’t

1 to 3 one foot too?’’

RL then asked students what they considered the rela-

tionship to be—shorter than or longer than, or it depends on

the square. Jomerd suggested that a diagonal of a square

could not possibly be the same length as a side. He dem-

onstrated with his notebook (the more general case) as a

stand-in for the square. Holding his finger at the upper left

Fig. 3 Posing questions about a triangle
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corner, he asked the class to imagine sweeping a circle with

this vertex as the center and the length of the adjacent side

as the radius. The circle never intersected the opposite

vertex, illustrating that the diagonal length was longer than

the side length. Lavona offered an alternate argument. She

noted that when they had investigated diagonals, she had

noticed that the diagonals radiating from a vertex become

longer and then shorter again as one sweeps through the

shape. She suggested that the same phenomenon was

happening with the square, implying that the diagonal must

be longer than the sides. This student-initiated question and

their arguments served to motivate investigation of whether

or not there was any relation between the sides and diag-

onal of the square, seeding entrée to the Pythagorean

theorem.

In this excerpt, multiple students presented their obser-

vation of the difference in length between the diagonal and

the side of the square as a question, suggesting a disposi-

tion to ask questions. Unlike the questions about angle

sums posed in the earlier excerpt, this student-generated

question explicitly described more than one relation, and

was thus coded at the highest level for relations, and pre-

sented greater potential for future investigations, coded at

the third level for scope. Although Ned’s question was

about a particular case and hence classified at a lower level

for generalization, students readily responded to it with

arguments that justified the general case about why the

length of the diagonal could not be equal to that of the

sides. In this instance, students assumed authority to pose a

relevant relational question while others readily responded

with general approaches for reasoning about the question.

Moreover, Ned, Jomerd and Lavona’s contributions all

built upon previous investigations, notations, and defini-

tions that the class had collectively developed. These

experiences served as resources for the students, and,

because of their shared grounds, were accessible to others

in the class. For instance, when examining Jomerd’s circle

argument, Cordell remembered aloud that they had con-

structed circles in a similar way several months earlier. As

before, the instructor facilitated discussion about the topic

and suggested productive pathways to furthering the

mathematics.

4.4 Student reflections on their mathematical

experiences

We identified four themes that characterized all students’

reflections about their mathematical experiences. One

theme, agency, threaded throughout student responses, and

was indicated by first-person statements about mathemati-

cal constructions (‘‘I made’’ and ‘‘make up your own

methods’’), challenge (‘‘I actually liked it because then you

really got to challenge yourself and didn’t have to like hold

yourself back’’), control (‘‘We bring up our own subject,

it’s like our own lesson’’), and perceived personal impact

on collective learning (‘‘I had more conjectures there than

any other part of math…making conjectures you can

actually change the history of math, like it can like you can

go around and tell people that and it can actually come true

and you can put like in the math notebook and you find all

these different types of discoveries that nobody else has

known before. And that is like really really cool.’’). All

students expressed one or more of these components of

agency and typically expressed several of them.

The second theme, positive attitude, was expressed by

indications that the class was ‘‘fun’’ or ‘‘cool’’ even though

some students suggested that at times they were frustrated

by lack of progress when they attempted to generate a

conjecture or conduct an investigation.

The third theme, practices that generated knowledge,

indicated that students reflected about how practices con-

tributed to the development of mathematical knowledge.

For example, one student noted: ‘‘Then I started to inves-

tigate that (question). And then I learned about that. And

then I made a conjecture, so that led me to a new idea—

because of that question.’’ Another said more baldly:

‘‘Sometimes curiosity doesn’t always kill the cat! Curios-

ity, like if you ask questions, you find out more. That’s how

you learn most of the time, is to ask questions.’’

The fourth theme was peer collaboration. All but two

were nominated by classmates as assisting learning. The

number of times that individuals were nominated ranged

from 1 to 7, with a mean of 3.1. Nominations spanned the

spectrum of mathematical achievement, with both higher

and more modestly achieving students represented in the

group of nominees who exceeded the mean nomination

level. Most of the forms of help that students described

were about understanding better (e.g., ‘‘like if I don’t

understand like a method or something like, he’ll like put it

Fig. 4 Ned poses the question about diagonal length
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like he’ll like help me explain…they just help me like

explain it more like in their words or like in sixth grade

words and not in like Dr. Rich’s words’’). Some students

noted helpful classmates introduced them to new ideas they

had not thought of before, asked good questions, or con-

tested a claim. For instance, one student explained that

Jomerd and Diyari helped them learn: ‘‘Cause, it’s like, it

was like really, it wouldn’t be like he would actually come

up and help me, it would be like we would get into it, like

we would be like, no it’s not this, not it’s that, and so he’s

like, so he would actually lay the problem out and his

solutions…(and Diyari) usually helps me a lot because he

usually jumps in when me and Jomerd are going at it. He

says, ‘No, you’re both wrong, it’s this.’’’ Arguing, she

explained, ‘‘gives us new ways of thinking about it.’’

5 Discussion

Practices of inquiry are foundational for mathematical

endeavor. Conjectures, refutations, theorems, and proofs all

emanate from questions. In this research, we explored how

to enlist comparatively young students in posing and

refining questions that could initiate and guide mathemat-

ical investigation. We contrast this form of inquiry with

more commonplace roles for questions, such as clarifica-

tion. Space was the realm of inquiry, because, in our view,

spatial mathematics is readily grounded in forms of

everyday embodied experience that provide resources for

inquiry and investigation.

When inducted into inquiry practice, students readily

participated. The sheer number of questions posed by stu-

dents exceeded our expectations, and the majority of stu-

dents generated several questions during the course of

instruction. Even during the formative phase of the first

month of instruction, many of the questions posed by stu-

dents were oriented toward related habits-of-mind. The

propensity to pose questions informed by habits-of-mind,

especially Generalizing and Reasoning with Relationships,

increased as instruction progressed. The scope of student

questions also increased over time, with increasing number

of questions informed by the aim of clarifying the results of

previous investigations or of extending methods or con-

cepts to new realms.

Students’ increasing sensitivity to the history of inquiry

suggests the operation of what Knorr Cetina (1999) termed

an epistemic culture: an arrangement of social, cognitive

and material mechanisms that supported disciplinary-dis-

tinct ways of knowing. Here the epistemic culture of the

classroom produced a collective horizon in which the

conduct of individual inquiry and investigation was situ-

ated and sustained. Other indicators of the operation of an

epistemic culture included the development of an aesthetic

of inquiry—that is, students especially valued questions

about things that were genuinely unknown to them or that

expressed personal curiosity. Students favored questions

and conjectures that contributed to others previously posed,

and they especially valued individual agency.

Students’ reflections about the nature of their mathemat-

ical experiences communicated the growth of disciplinary

dispositions (Lehrer, 2009). Disciplinary dispositions go

beyond likes and interests to encompass anticipations that

disciplinary practices contribute to personal agency and

identity. As students authored questions and conjectures, and

conducted investigations, they authored, albeit clearly sup-

ported by teachers, a common ground of knowledge. The

common ground was established by mathematical practices

of wide scope (habits-of-mind), but these practices produced

claims and evidence about particular mathematical objects

and relations. This research draws attention to an oft-

neglected aspect of mathematics, that of asking questions

that can be profitably investigated. As one student reflected,

‘‘asking good questions is hard.’’ Nevertheless perhaps

because the design of instruction fostered agency and self-

expression, students persevered in this challenge. Their

perseverance could be viewed as a fortunate coincidence of

this particular setting and the unique contingencies that

emerged during the course of instruction. Yet, if students are

encouraged to generate questions and to follow the impli-

cations of these questions, the resulting pathways of partic-

ular forms of student learning may be more variable than

those observed under other conditions of instruction. It

remains to be seen if this variability can be harvested and put

to productive use more routinely in everyday situations of

teaching and learning.
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