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Abstract Based on empirical data from a study of pre-

service teachers engaged in non-routine mathematics

problem solving, a five-phase model is proposed to

describe the range of cognitive and metacognitive

approaches used. The five phases are engagement, trans-

formation-formulation, implementation, evaluation and

internalization, with each phase being described in terms of

sub-categories. The model caters for a variety of pathways

that can be adopted during any problem-solving process by

recognizing that the path between these five phases is

neither linear nor unidirectional.
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1 Introduction

In prioritizing goals in the problem-solving process,

Schoenfeld (2006) noted that ‘‘the quality of the decision-

making … is very much a function of the individual’s

metacognitive skill’’ (p. 49). He also noted that the process

he was describing was recursive ‘‘in the sense that goal

prioritization and knowledge selection occur at multiple

levels’’ (p. 49). These comments resonate strongly with the

research described in this study, and with the five-phase

model originally developed by Yimer (2004) in his doc-

toral dissertation to describe the cognitive and metacog-

nitive processes used by pre-service teachers engaged in

problem solving.

Major emphases in research on problem solving in the

1980s and 1990s included problem difficulty, distinctions

between good and poor problem solvers, and problem-

solving instruction, with studies of the role of metacogni-

tion becoming a major focus (Lester, 1994). In particular,

researchers investigated the effect of metacognitive strat-

egies on students’ problem-solving performances and atti-

tudes through control–treatment situations (Chicola, 1992;

Marge, 2001; Willburne, 1997). Few studies, however,

have examined the metacognitive processes in which stu-

dents engage during problem solving. It was anticipated

that the gathering of data on metacognitive processes while

problem solving was in progress would open new per-

spectives on these processes, and that this would facilitate

the development of clearer interpretations of the phases

involved. This paper reports on a study which analyzed the

metacognitive processes employed by a sample of pre-

service teachers as they engaged in mathematical problem

solving. Through analyses of these data, we further develop

and interpret our five-phase model, which is summarized in

Yimer and Ellerton (2006).

2 Literature review

2.1 Defining the role of metacognition

in problem solving

Problem solvers are required to analyze a problem,

understand it, evaluate the given information for its ade-

quacy, organize knowledge and facts and devise a plan,
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evaluate the feasibility of the plan before executing it, and

evaluate the results for reasonableness (Polya, 1957;

Schoenfeld, 1992, 2006, 2007). These behaviors are not

limited just to the cognition involved in thinking and

organizing information (Simon, 1973). Rather, regulation

and monitoring of understanding, planning and evaluating

the results are closely linked to thinking about one’s

thought processes, that is, to metacognitive behaviors

(Marcus, 2007; Martinez, 2006; Veenman, Van Hout-

Wolters & Afflerbach, 2006). Content knowledge is rec-

ognized as a necessary, but not sufficient, attribute for

solving mathematical problems (Garofalo & Lester, 1985;

Geiger & Galbraith, 1998; Schoenfeld, 1987; Silver, 1987).

Carlson (2000) found that students’ inefficient control

decisions were major obstacles during their attempts to find

solutions. Cognition without metacognitive thoughts ren-

dered problem-solving endeavors incomplete (Artzt &

Armour-Thomas, 1992; Berardi-Coleta, Dominowski,

Buyer & Rellinger, 1995; Schoenfeld, 1985a, b). Artzt and

Armour-Thomas (1997) went so far as to suggest that the

main source of difficulties experienced by students in

problem solving could be attributed to their failure to ini-

tiate active monitoring and subsequent regulation of their

own cognitive processes.

Stillman and Galbraith (1998) noted that providing

opportunities for metacognitive decisions to be made does

not insure that they will be made. They also found that if

such decisions were made, then there was no guarantee that

these decisions would be appropriate. They concluded that

a rich store of knowledge of metacognitive strategies as

well as the appropriate application of this knowledge,

developed over an extended period of use, were prerequi-

sites to productive decision making.

Kuhn (2000) argued that metacognition did not appear

abruptly, but rather emerged and developed under an

individual’s conscious control. In the USA, the National

Council of Teachers of Mathematics (NCTM, 2000)

included monitoring and reflecting on the process of

mathematical problem solving as objectives in its prob-

lem solving standards. Articles that focus on giving

students the opportunity to reflect on and evaluate their

own thinking (e.g., Robert & Tayeh, 2007) continue to

appear in journals, the target audiences of which are

teachers. The implications of teaching metacognitive

skills have also been explored by Lin, Schwartz and

Hatano (2005).

Metacognitive processes can shape cognitive activities

in which the individual is engaged (Garofalo, 1989; Mil-

dren, Ellerton & Stephens, 1990) and can improve prob-

lem-solving performance (Artzt & Armour-Thomas, 1992;

Goos & Galbraith, 1996). Metacognition is also believed to

improve students’ confidence when they tackle authentic

tasks (Kramarski, Mevarech & Arami, 2002) and to help

overcome obstacles encountered by students engaged in

mathematical problem solving (Pugalee, 2001; Stillman &

Galbraith, 1998).

2.2 Focus of research on the role of metacognition

The role of metacognition in students’ solving of mathe-

matical problems has received increasing attention in the

research literature. In particular, research on the role of

metacognition in mathematical problem-solving has been

concerned with studying how problem solvers know, reg-

ulate and monitor their own thought processes (Lester,

1994). Other researchers have focused on how students

identify and define the problem, mentally represent the

problem, plan how to proceed in solving the problem and

evaluate what they know about their own performance

(Davidson, Deuser & Sternberg, 1994).

Quantitative and qualitative research on metacognitive

aspects of mathematical problem solving has been repor-

ted. Crawford (1998), for example, used a quantitative pre-

test–post-test design to study students’ reflective thinking.

Similar pre-test–post-test designs showed that students in

treatment groups, who were encouraged to use metacog-

nition, reflected more effectively and were more successful

in their problem-solving attempts than those who did not

(Chicola, 1992; Marge, 2001; Willburne, 1997).

Qualitative aspects of metacognition in mathematical

problem solving have been the focus of studies with mid-

dle-school and high-school students (Artzt & Armour-

Thomas, 1992; Goos, 2002; Goos & Galbraith, 1996; Goos,

Galbraith & Renshaw, 2002; Pugalee, 2001; Stillman &

Galbraith, 1998). A consensus seems to have developed

that problem difficulty is not so much a function of task

variables as it is of characteristics of the problem solvers.

Geiger and Galbraith (1998) claimed that ‘‘it is the rela-

tionship between the learner and a problem that is of sig-

nificance, not the perceived level of the problem as viewed

within some hierarchy of abstraction’’ (p. 535). A study of

the relationship between the problem and the problem

solver has generated research in which learners are labeled

as good or poor, or as expert or novice, problem solvers

(Carlson, 2000; DeFranco & Hilton, 1999; Sriraman,

2003). During the problem-solving process, ‘‘good’’ prob-

lem solvers were observed evaluating the efficiency and

effectiveness of their selected approach. They also showed

a strong tendency to relate the given problem to other

similar problems, employing self-reflection through a dis-

play of internal discussions (Carlson, 2000). Effective

implementation and monitoring of control skills was found

to be a key discriminant of success in problem solving

(Geiger & Galbraith, 1998).
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2.3 Investigating affect and metacognition

Affect is regarded by some as critical to the structure of

competencies, accounting for success or failure in mathe-

matical problem solving (see, e.g., DeBellis, 1998; Goldin,

1988; McLeod, Craviotte & Ortega, 1990). Students’ per-

ceptions of mathematics and of themselves as learners of

mathematics can affect their ability to solve mathematical

problems (Artzt & Armour-Thomas,1997; Schoenfeld,

1985b, 2007; Silver, 1987). This is particularly true if

students believe that mathematical problems should be

completed in a few minutes, that there is one correct

answer to mathematical problems, or that only mathemat-

ical geniuses can solve mathematics problems. If students

hold such beliefs, they are likely to spend only a limited

time in finding single solutions to mathematical problems

and may give up, because they have little faith in their

ability to solve challenging problems. According to Kra-

thwohl, Bloom and Masia (1964), beliefs are classified at

the lowest of three levels of values, in which a person

simply accepts a value. At the highest level, a value is

interpreted as a conviction or a commitment. Thus, inves-

tigating the extent to which students value problem solving

and the extent to which they value themselves as problem

solvers are important aspects of metacognitive research.

McLeod (1989, 1992) argued that, if students reflect on

their own cognitive processes, they can develop an

awareness of their emotional reactions to problem solving,

which will give them greater control over their cognitive

processes. He foreshadowed the importance of further

research into the intersecting cognitive and affective

domains and called for the application of a wider variety of

research approaches, including clinical interviews and

observations. In particular, he believed that the under-

standing of linkages between cognitive and affective fac-

tors would be of relevance to teacher education and to the

teaching and learning of mathematics (McLeod, 1992).

This study takes up the challenges he foreshadowed.

2.4 Toward a model for the role of metacognition

in problem-solving

Metacognition is now recognized as a quality that is

important in mathematical problem solving. Researchers

have developed models and frameworks that describe the

cognitive and metacognitive actions which may occur

during an individual’s mathematical problem-solving

attempts (Artzt & Armour-Thomas, 1992; Carlson, 2000;

Carlson & Bloom, 2005; Garofalo & Lester, 1985; Geiger

& Galbraith, 1998; Schoenfeld, 2006, 2007). Although

several research studies have identified metacognitive

behaviors exhibited by middle-school and high-school

students, and by professional mathematicians, very little

research has been carried out on the metacognitive

behaviors of pre-service teachers who are engaged in

mathematical problem solving. It is desirable that teacher

educators are able to stimulate metacognitive behaviors in

pre-service teachers so that the pre-service teachers, in

turn, will be able to recognize and stimulate metacognitive

behaviors of the next generation of young school students.

In what he described as a ‘‘rather speculative paper,’’

Schoenfeld (2006) explored the reasons why individuals

make the decisions they do when they are solving prob-

lems. After stating that his present model represents the

culmination of more than 30 years of research, he said that

he anticipated that many decades of research in this area

lay ahead. He emphasized that the four categories of

mathematical knowledge and behavior that he recognized

over 20 years ago (Schoenfeld, 1985b), ‘‘resources (the

knowledge base), heuristic (problem-solving) strategies,

‘control’ (monitoring and self-regulation, aspects of

metacognition), and beliefs’’ (p. 62)—must all be exam-

ined if one is to understand an individual’s success or

failure in solving problems. Of particular relevance to our

study were the following questions and comments:

What was missing in this approach was a sense of

how all these things fit together – a description of

mechanism. How did the categories interact with each

other? Why did people do what they did when they

were in the midst of a problem solving attempt?

(p. 62)

Schoenfeld went on to comment that describing people’s

decision making while they are actually solving problems

‘‘has the potential to be a theory of problem-solving-in-

action’’ (p. 63). Indeed, the original five-phase model

developed by Yimer (2004) and summarized by Yimer and

Ellerton (2006) was based on ‘‘problem-solving-in-action.’’

3 The study

This study had two main purposes. The first was to identify

and characterize the nature of metacognitive behaviors

exhibited by a sample of pre-service teachers (referred to as

‘‘students’’ throughout this paper) as they engaged in

mathematical problem solving. In addition to identifying

metacognitive behaviors, any patterns in these metacogni-

tive actions which might suggest a model to describe the

metacognitive functioning of these students were noted.

The second purpose was to identify and describe the ways

in which these students valued problem solving and

themselves as problem solvers, as well as how these values

related to the metacognitive actions students employed

during their engagement with mathematical problem-

solving tasks.
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3.1 Research questions

The following two questions guided this study.

1. What was the nature of students’ individual metacog-

nitive functioning and in what ways did this change

during the course of study as each engaged in

individual problem solving?

2. In what ways did the students value mathematical

problem solving, in general, and themselves as prob-

lem solvers, in particular, and how did this relate to the

metacognitive strategies they employed?

3.2 Research design and methodology

Seventeen pre-service teachers in a large university in the

USA participated in this study. They were all studying a

mathematics problem-solving course in which the prob-

lems were designed to draw attention to important aspects

of number theory. The course was one of the final courses

which students needed in order to gain an endorsement to

teach mathematics in the middle school. Students taking

this course had already passed a minimum of four other

mathematics content courses, so could all be regarded as

having achieved a firm foundation in mathematics. The

class met for two 2-hour sessions for each of the 15 weeks

of the semester. Cooperative group work and whole-class

discussion were regular features of each class session.

Whole-class and small-group observations were con-

ducted throughout the course in order to document the

classroom environment, and to determine whether this

environment facilitated the development and growth of

metacognitive behaviors. Cobb and Yackel (1996) noted

that for metacognitive behaviors to develop, a conducive

environment that encouraged students to reflect on their

own and others’ thoughts needed to be established. All

classes and small groups observed were audiotaped and

transcribed.

During mathematical problem solving, students may

exercise metacognitive behaviors at any stage (Pugalee,

2001). The design of the study, therefore, used a multiple-

perspectives approach and included semi-structured task-

based interviews, small-group and class observations, stim-

ulated-recall interviews and students’ written reflections.

This study investigated how the views of students about

themselves as problem solvers related to the metacognitive

actions they employed. Students were asked to talk aloud

during both the task-based and stimulated-recall inter-

views. All task-based and stimulated-recall interviews were

audiotaped and transcribed for later analysis.

Three task-based interviews with each of the 17 students

were conducted at approximately equal time intervals

during the semester so that any changes in students’

metacognitive behaviors and problem-solving perfor-

mances could be investigated as the semester progressed.

The task-based interviews, each of which took 30–45 min,

were not entirely think-loud sessions, but were guided by a

semi-structured task-based interview protocol adapted from

Newman’s (1983) Error Analysis Interview Protocol. The

task-based interview protocol began with the question

‘‘Please read the question out loud and explain to me, in

your own words, what the question is asking you to do’’,

and continued with questions like ‘‘How would you go

about solving the problem?’’ Students were not prompted

in any way with leading questions and were allowed to

have lengthy periods of silence if they preferred it. The

interviewer would ask questions such as ‘‘Could you tell

me what you are thinking?’’ or ‘‘What have you been

working on?’’ and so on. Each of the three task-based

interviews involved the students in solving two of the six

non-routine problems described in Sect. 3.3; all students

completed the six problems in the same order. Data from

the task-based interviews were used to address the first

research question. Data from all sources described were

used to address the second research question.

Stimulated-recall interviews were used to help identify

individual metacognitive actions as students engaged in

both small-group and whole-class discussion during class

sessions. These interviews were conducted individually

with students within a week of the class session. A tran-

script of the session was available, and audiotapes of rel-

evant sections of the group or class discussions were

played back to the student. Questions such as ‘‘Was there

anything special you feel you contributed toward the

group’s discussion at that point?’’ and ‘‘What were you

thinking at that moment (e.g. when… generated that

idea)?’’ were asked.

As part of the requirements of their course, students were

asked to produce written reflections on specific aspects of the

course. Students were reminded that there were no right or

wrong answers in reflections; rather they were encouraged to

comment freely in response to the particular reflection. Five

sets of written reflections were assigned and collected from

all students. Reflection 1, for example, set out the following

tasks for students in two parts:

1. In your own words, and from your perspective, what

are some of the key features of mathematical problem

solving? (no text-book definitions, please)

2. Reflect on one of the problems we have worked on in

class. Comment on how you approached the problem,

and whether others in your group thought about the

problem in quite different (or similar) ways. In what

ways did working on the problem in a group setting

help (or hinder) the problem-solving process?
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Reflection 5 contained the following three parts:

1. Reflect on what you have learned about yourself as a

problem solver this semester.

2. As part of this reflection, comment on the problem-

solving strategies you have developed that will be

useful to you as a teacher.

3. To what extent are you now more aware of how you

are monitoring your attempts to solve mathematical

problems (compared with how you felt at the begin-

ning of the course)?

Students were encouraged to treat reflections as a con-

versation with their instructor, and communication about

concerns, difficulties and challenges felt by the students

was encouraged.

3.3 Problems for task-based interviews

Six non-routine mathematics problems, listed in Sects.

3.3.1–3.3.6, were selected for individual task-based inter-

views. The first two problems were deliberately chosen to

be relatively simple so that students were likely to start the

interview session solving and talking about problems with

which they felt at ease. Although the remaining problems

were challenging to the students, they were chosen so that

they were, nonetheless, within the students’ reach.

3.3.1 The age problem

John is 12 years older than Mary, but Mary is 15 years

younger than Andrew. How old is Andrew compared with

John? John has a brother Nick who is 2 years younger than

John. Andrew has a sister, Julie, who is 6 years younger

than Andrew. How old is Nick compared with Julie?

3.3.2 The banquet problem

Nathan and some of his friends are seated around a large

circular banquet table. A tray containing 25 sandwiches is

passed around the table with each person taking one

sandwich as the tray reaches them. The tray is passed in

this way until all 25 sandwiches have been taken. Nathan

takes the first and the last sandwiches, but may also take

some in between. How many people are seated around the

table?

3.3.3 The locker problem

The new school has exactly n lockers and exactly n stu-

dents. On the first day of school, the students meet outside

the building and agree on the following plan. The first

student will enter the school and open all of the lockers.

The second student will then enter the school and close

every locker with an even number (2, 4, 6, 8,…). The third

student will then ‘‘reverse’’ every third locker. That is, if

the locker is closed, he or she will open it; if the locker is

open, he or she will close it. The fourth student will reverse

every fourth locker. And so on until all n students have

entered the building and reversed the proper lockers.

Which lockers will finally remain open?

3.3.4 The egg vendor problem

An egg vendor delivering a shipment of eggs to a local

store had an accident, and all of his eggs were broken. He

could not remember how many eggs he had in the delivery.

However, he did remember that when he tried to pack them

into packages of two, he had one left over; when he tried to

pack them into packages of three, he had one left over;

when he tried to pack them into packages of four, he had

one left over; when he tried to pack them into packages of

five, he had one left over; and when he tried to pack them

into packages of six, he had one left over. Nonetheless,

when he packed them into packages of seven, he had none

left over. What is the smallest number of eggs he could

have had in the shipment?

3.3.5 The bridge problem

Mike was racing in a bike marathon. He heard the whistle

of the Wabash Cannonball train approaching the bridge

from behind him. He had carefully researched the path he

would take and knew that the train traveled this stretch of

track at 60 miles per hour. The marathon route involved the

riders crossing a narrow railway bridge. Mike had counted

the number of pillars in the bridge so that he could always

estimate where he was on the bridge in case a train came.

When he heard the whistle, he was 3=8 of the way across the

bridge. Being an amateur mathematician as well as a

marathon biker, Mike calculated that he could just reach

either end of the bridge at the same time as the train. How

fast was Mike pedaling his bike?

3.3.6 The census problem

During a census, a man told the census taker that he had

three children. When asked their ages, he replied ‘‘The

product of their ages is 72. The sum of their ages is the

same as my house number.’’ The census taker ran to

the door and looked at the house number. ‘‘I still cannot

tell,’’ she complained. The man replied, ‘‘Oh, that is right.

I forgot to tell you that the oldest one likes chocolate

pudding.’’ The census taker promptly wrote down the ages

of the three children. How old were they?
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4 Results and discussion

To address the first research question, the results and

analyses of the task-based interviews will be discussed.

Contrasting examples of how two different students

approached finding the solution to one of the six problems

completed by the students for this study were chosen. This

will be followed by a discussion of the results and analyses

of stimulated-recall interviews, and of students’ reflections,

to address the second research question.

4.1 Analysis of metacognitive actions of individual

students exhibited during individual, task-based

interviews

Transcripts from individual, task-based interviews revealed

different orientations and solution processes. Solution

processes used by different students working on the same

problem showed markedly different individual character-

istics, degree of understanding, depth of analysis and

control. Even the same student was found to exhibit dif-

ferent levels of sophistication and metacognitive behaviors

across different problems. Nevertheless, certain patterns

recurred in most individual’s solution processes. The con-

stant comparative method (Maykut & Morehouse, 1994)

was used in unitizing and categorizing behaviors. This

approach combines inductive category coding with a

simultaneous comparison of all units of meaning identified.

Thus, for example, cognitive/metacognitive behaviors

identified in one student’s problem-solving efforts on one

problem were compared both with the same student’s work

on different problems, as well as with other students’

cognitive/metacognitive behaviors identified in their work

with the same problem and with different problems. The

constant comparative method of data analysis was appro-

priate for this study since patterns in behaviors from sev-

eral data sources had been coded and analyzed. Five

groupings of cognitive/metacognitive behaviors were

identified, and these groupings have been designated as the

five phases: engagement, transformation-formulation,

implementation, evaluation and internalization.

The five-phase cognitive/metacognitive model, which

was formulated on the basis of the task-based interview

data, is presented in Fig. 1. Each phase has been described

COGNITIVE AND METACOGNITIVE CATEGORIES

1. Engagement: Initial confrontation and making sense of the problem.
A. Initial understanding (jotting down the main ideas, making a drawing)
B. Analysis of information (making sense of the information, identifying key ideas relevant

information for solving the problem, relating it to a certain mathematical domain)
C. Reflecting on the problem (assessing familiarity or recalling similar problems solved before,

assessing degree of difficulty, assessing the necessary store of knowledge one has in relation
to the problem)

2. Transformation-Formulation: Transformation of initial engagements to exploratory and formal
plans.
A. Exploring (using specific cases or numbers to visualize the situation in the problem)
B. Conjecturing (based on specific observations and previous experiences)
C. Reflecting on conjectures or explorations whether they are feasible or not.
D. Formulating a plan (devising a strategy either to test conjectures or devising global or local

plans)
E. Reflecting on the feasibility of the plan vis-à-vis the key features of the problem

3. Implementation: A monitored acting on plans and explorations.
A. Exploring key features of plan (breaking down plan into manageable sub plans where

necessary)
B. Assessing the plan with the conditions and requirements set by the problem
C. Performing the plan (taking action by either computing or analysing)
D. Reflecting on the appropriateness of actions

4. Evaluation: Passing judgments on the appropriateness of plans, actions, and solutions to the
problem
A. Rereading the problem whether the result has answered the question in the problem or not
B. Assessing the plan for consistency with the key features as well as for possible errors in

computation or analysis
C. Assessing for reasonableness of results
D. Making a decision to accept or reject a solution

5. Internalization: Reflecting on the degree of intimacy and other qualities of the solution process.
A. Reflecting on the entire solution process
B. Identifying critical features in the process
C. Evaluating the solution process for adaptability in other situations, different ways of

solving it, and elegance
D. Reflecting on the mathematical rigor involved, one’s confidence in handling the process,

and degree of satisfaction

Fig. 1 The problem-solving

model
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in terms of indicators or sub-categories, which were

observed to take place in the solution processes of at least

one individual.

Excerpts from two students’ task-based interviews on

the locker problem (Problem 3.3.3), and the corresponding

behaviors and phases will be presented. The intent is to

show similarities and differences in the observed behavior

patterns of the two students rather than to compare the

quality of their solutions. The two examples were chosen to

demonstrate a range of different behaviors by two students

as they worked individually through the same problem.

4.1.1 Karen’s solution to the locker problem

Figure 2 shows numbered excerpts from Karen’s solution

to the locker problem, with corresponding behaviors and

phases. Karen started her engagement with the problem by

reading the problem (1) and restating it (2), thereby

establishing her understanding of the problem. She noted

that she had not come across similar problems (3) and drew

a 16 9 16 grid to specialize the problem (4). Her drawing

helped her to analyze the information thoroughly (5), and

this helped her to make a new observation that prime

numbers were closed (6). Her new observation about prime

numbers sparked a monitoring move, which led her to look

back and observe her drawing carefully (7).

Karen identified a pattern in her drawing, but instead of

moving forward with her conjecture, she showed a regu-

latory behavior by considering more cases (8, 9). She did

not extend her grid, but instead analyzed and identified

which students reversed a certain locker by listing the

factors of the locker number she considered. This analysis

enabled her to state her conjecture (10, 11). She focused on

justifying her conjecture by taking a specific case and

closely observing the situation (12–14) until she identified

a key mathematical idea in her analysis (15). She identified

a new idea, that is, parity of numbers, but did not rush to

state it. Rather, she went back and forth through the pro-

cess, by which she had explicitly formulated her solution,

with excitement (16–19). She reduced the entire problem

into a problem of parity of numbers.

Karen’s challenge was to justify whether all square

numbers have an odd number of factors (20). She engaged

in monitoring her work in the grid and her extended

analysis (21, 22), as well as computing mentally without

verbalizing anything (23). She then justified her solution

with analysis supported by specific examples (24–26). She

expressed her excitement at how difficult the problem was,

and assessed her success and noted her satisfaction (27).

She was motivated by what she had done and was curious

whether the problem had elegant solutions (28).

4.1.2 Ann’s solution to the locker problem

Excerpts from Ann’s solution to the locker problem and

corresponding behaviors and phases are shown in Fig. 3.

Ann read the problem and restated it (1, 2). She reread

the problem and, as she did so, jotted down information

and made a 20 9 20 grid. Observing the actions of the

first four students, she concluded that she had reached a

solution (3).

Ann was not comfortable, however, as she stated her

solution and observed her grid. She realized that her

solution was premature and wrong (4). She reread the

problem and continued to try to find a pattern, make con-

jectures and test them The remaining numbered points in

Fig. 3 can be read as continuing narrative describing Ann’s

actions as she worked through the problem. Finally, she

expressed the difficulty level of the problem and her

deviation from, and her return to, the right track in the

process (15). Ann showed considerable metacognitive

behaviors during her assessment and monitoring of her

solution process. On the other hand, she was not observed

reflecting on the reasonableness, consistency and elegance

aspects of her solution.

The data from task-based interviews suggested that the

paths that the problem solvers followed were mediated by

rereading the problem. In other words, rereading served as

a catalyst for metacognitive decisions to take place either

in the form of choosing a path or other metacognitive

actions within a specific cognitive phase in which problem

solvers engaged. The engagement of problem solvers in

controlling and regulating their actions in either selecting

or abandoning a specific path corresponds to Casey’s

(1978) error analysis hierarchy. According to Casey, for

example, a problem solver might decide to reread the

problem to check that all relevant information had been

taken into account. It should also be noted that these paths

may be cyclic as students engage in a series of different

paths between different phases.

4.2 Analysis of students’ written reflections

and affective aspects noted during the task-based

and stimulated-recall interviews

In this section, affective elements exhibited by students

during their written reflections and questions asked during

task-based and stimulated-recall interviews will be pre-

sented and analyzed. In particular, the ways students

viewed mathematical problem solving, the ways they

viewed themselves as problem solvers, and the extent to

which their views and the metacognitive behaviors they

exhibited were related will be addressed.
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Excerpts B ehaviour Phase

(1) Reads the problem
(2) It is asking to determine which lockers will

remain open by the end of the process
(3) Wow! I haven’t come across such problems

before.
(4) Let me see what it looks like with 16

student and 16 lockers in my chart

- Initial engagement
- Restating the problem

- Assessing familiarity

- Exploring the problem
  with specific cases

Engagement

(5) I see that there are students who will not
touch some lockers. For example, the 2nd

student closes the 2nd locker, the 3rd student
will not touch the 2nd locker and so on.

(6) I see that there are only two students
touching prime numbers. The 1st opens and
the 2nd student closes. That means prime
numbers are closed for ever.

(7) Let me closely look at my chart
(8) I see that lockers 1, 4, 9, 16 are open and

the rest are closed in my chart.
(9) Wait a minute! No! No! I better see what

happens to 25 and 36… 
(10) I think square numbers will be open. That is

my conjecture for the moment
(11) I can show that every locker with a square

number will be open by listing the students
touching that locker. But my problem is I
do not know about other lockers.

- Analysis of information

- New observation

- Monitoring the process
- Identifying a pattern
- Reflecting on conjectures
- Considering more cases

- Making conjectures

- Formulating a plan
- Reflecting on the plan

Transformation-
Formulation

(12) I need to justify it. But I have to list the
number of students reversing each locker.

(13)Let me try the 24th locker. There are eight
students with numbers 1, 2, 3, 4, 6, 8, 12,
24 touching it.

(14) If I arrange these numbers in order and
regroup them in pairs, I see that the 24th

locker is closed.
(15) I think these numbers are factors of 24. I

listed them earlier. I should have known
them.

(16)Hold on! These are even. And the locker is
closed. I am excited.

(17)Let me pick the open locker I determined
for the chart. I will take locker 16 and list
its factors.

(18)Yes! It has odd number of factors.
(19) I think if the locker number has even

number of factors, it will be closed and will
be open if it has odd number of factors.

- Exploring the essence of
the plan.
- Assessing the plan with
specific cases

- Exploring the plan vis-à-
vis the specific cases

- Identifying key
mathematical idea

- Performing the plan
- New observation
- Excitement
- Monitoring the
performance on the plan
- Get a solution
- Formulating a solution
explicitly

Implementation

(20)Do all square numbers have odd number of
factors? I have no clue.

(21)But a square number can be expressed as a
product of a number by itself. So what?
How does it help me?

(22)Let me see what I did. The chart does not
tell much except showing which locker is
closed.

- Assessing plan for
consistency
- Assessing reasonableness
of the solution

- Justifying the solution
- Reflecting on the solution

Evaluation

(23)  (No verbal communication)
(24)Yes
(25)All square numbers have odd number of

factors. E.g., 24: 1 x 24, 2 x 12, 3 x 8, 4 x 6
16: 1 x 16, 2 x 8, 4 x 4 
36: 1 x 36, 2 x 18, 3 x 12, 4 x 9, 6 x 6

  You do not count 4 x 4, 6 x 6 as two
 factors but one.

(26)Lockers with square numbers are open.
 My conjecture was true.

- Monitoring the process
-Mental computation

- Justifying the solution

Evaluation

(27)Wow! That is wonderful. It was
challenging. But I am really happy because
I had no idea at first. I didn’t think I will go
this far.

(28) Is there a short way of solving it? I will
love to see that.

- Excitement
- Assessing difficulty
- Confidence in handling the
solution

- Inquiring for elegance

Internalization

Fig. 2 Excerpts and coding of

Karen’s solution to the locker

problem
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4.2.1 Students’ views of mathematical problem solving

In their first written reflection, students were asked to

identify and reflect on key features of problem solving, and

to describe how they viewed these features in relation to

their understanding of problem solving. The instructor

explained that there were no ‘‘right’’ or ‘‘wrong’’ answers

to reflections, and that reflections were one way students

could share with her how they felt on certain aspects of the

problem-solving processes. The key features of problem

solving identified by students in their first reflection are

summarized in Table 1.

In addition, some students said that they viewed prob-

lem solving as a process which went beyond determining a

solution. For example, in Reflection 1, Liz stated:

‘‘Although ‘figuring out’ or finding the solution to a

problem is important, as with many fields of study, the

process can sometimes be more valuable.’’ Lucy referred to

Excerpts B ehaviour Phase

(1) Read the problem

(2) I think the problem is clear. It is asking to
determine which lockers will be open.

- Initial engagement
- Restating the problem

  -Reread
  -Jotted down
  - Made a drawing

Engagement

(3) Lockers 1, 4, 6, 8, 11, 12, 13, 16, 17, 18,
19, 20 are open.

- Stated  a solution Implementation

(4) I do not think it is right. Some students
between 5-20 may reverse these lockers

- Observed what she did
- Reflected on the solution

Evaluation

(5) I have a question. Does the 3rd student start
from the 3rd locker or he starts from the 1st

locker?

- Reread the problem
- Assessing understanding

Engagement

(6) I think 1, 4, 9, 16 are open so far. These are
square numbers. Well square numbers will
be open. This is my conjecture.

(7) Let me see 25. The 1st, 5th, and 25th

students reverse this locker. Only 3! These
are factors of 25

- Identified a pattern
- Made a conjecture

- Identified new idea

Transformation-

Formulation

(8) Wow! It is easy now compared to that
confusing chart I made. A locker will be
open or closed depending on the number of 
factors it has.

(9) I see something else too. If the factors are
even the locker is closed and open if they
are odd.

(10) If you pair the factors, you can label open
and closed. In case of even factors, the
locker is completely paired and is closed.
In case of odd factors, there is one unpaired
factor and that makes the locker open

- Excitement
- Analyzing the
information with respect to
the new idea

- Making a new conjecture

- Analysis of the
information vis-à-vis the
new idea
- Justifying the new
conjecture

Implementation

(11) I think that is it. The problem is solved.
Locker numbers with even numbers of
factors are closed and those with odd
number of factors are open

- Stated solution Evaluation

(12) Oh! I do not think I have answered the
question yet.

(13) I will stick to my first conjecture that
square numbers are open. But do square
numbers have odd factors?

(14) Isn’t it true that square numbers are
expressed as the product of a number by
itself? Well, we cannot count it as two
factors. That is it.

- Reread the problem
- Observed what she did
- Monitoring the solution
- Reflecting on the solution

- Assessing for consistency
of her conjectures
- Assessing for consistency
of solution with the
conditions of the plans

- Identified a key
mathematical idea.
- Justified her solution

Evaluation

(15) It was a hard problem until I get into the
right track. It took me a long way to see
what I know is true

- Assessing difficulty
- Reflecting on the process

Internalization

Fig. 3 Excerpts and coding of

Ann’s solution to the locker

problem
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the relevance of the process: ‘‘The solution obviously

concludes the problems, but for some problems, the use of

the processes is more beneficial in the long run.’’

Some students seemed to be aware that problem solving

is a challenge that has to be faced, and that mathematical

problem solving involves many decisions in terms of

conceptual background, relevance of a strategy and other

control mechanisms. For example, Ashley, in a stimulated-

recall interview session described the challenging nature of

mathematical problem solving in this way: ‘‘Problem

solving is not to be preferred for convenience because it is

not at all convenient. It is indeed challenging. But I get the

greatest satisfaction when I figure out the solution of a

challenging problem instead of a routine computation.’’

Ann, in a task-based interview session, stated

In life, I solve problems. I am very good at analyzing

real-life problems. … Although, like life problems,

you still analyze situations, you do not see conditions

clearly in mathematics. They are hidden in the

knowledge you have learned early. That makes me

really uncomfortable in mathematics.

Liz, in a stimulated recall interview session, compared

her school experience and her current situation in terms of

her conceptions of problem solving:

There is a shift in thinking. This shift is actually from

recalling formulas and applying formulas to explor-

ing the problem, making sense of it, and devising a

solution strategy. We were not either expected or

able to do such things at all in our school systems.

Here the problems we have been solving are not

necessarily difficult. In fact, our high school com-

putations in calculus or trigonometry may be more

complicated. But all we do is to plug them in a for-

mula and get the right answer. Here it is different. All

answers are acceptable as long as they make sense.

What makes one strategy different from another is

whether it is more elegant than the others or not.

Students’ responses to the question ‘‘How do you value

mathematical problem solving?’’ during the stimulated-

recall interviews and task-based interviews tended to

reflect their view of themselves as problem solvers. This

shift of associating one’s view of problem solving to one’s

own perception of self as a problem solver is consistent

with Geiger and Galbraith’s (1998) description of problem

solving as the relationship between the task (the problem)

and the problem solver.

4.2.2 How do students view themselves

as problem solvers?

During task-based interviews and stimulated-recall inter-

views, and in their written reflections, students were asked

how they viewed themselves as problem solvers and/or

how they viewed problem solving in general. Responses

revealed students’ overall awareness of problem solving

processes, in general, and of metacognition, in particular.

At the end of task-based interview sessions, students

compared where they were before and where they were

currently in terms of particular characteristics about

themselves, the tasks and the strategies they had used.

4.2.3 Person, task and strategy variables

Three variables, personal, task and strategy variables, have

been used to characterize metacognitive knowledge

(Flavell, 1976, 1987), and one’s awareness of cognitive

processes (Garofalo & Lester, 1985). Students reported that

although they felt they had improved, they still identified

weaknesses on their own part. Most students seemed to

think that they needed to make improvements in their

metacognitive behaviors if they wanted to improve their

problem-solving performances.

For example, with regard to person variables, Liz stated

in a task-based interview: ‘‘I was rigid and usually do not

try for alternative solutions … I am improving and getting

to be flexible.’’ Some students reported that they were

adjusting themselves to ‘‘the new culture.’’ For example,

Erin, in a task-based interview, stated: ‘‘I have developed

interest and patience to see problems differently when one

strategy fails. This is … new to me.’’ Lucy, during one of

her task-based interviews, said: ‘‘I have developed confi-

dence and patience in handling problems. I am being

flexible and confident in explaining and justifying what I

am doing.’’

Table 1 Key features of problem solving identified from students’

reflections

Key feature Frequency

Understanding the problem (restating, jotting

down the information, drawing a picture,

understanding mathematical concepts)

13

Making connections (relating it to other

problems)

6

Planning (identifying formulas, specializing,

generalizing, breaking it into steps, looking

for a pattern)

10

Solving (acting on it) (using multiple

methods, communicating, practicing,

recording work)

7

Checking (checking for errors, checking for

reasonableness, working for elegance)

3

Reflecting (critical thinking, thinking out of

the box)

4

Affective elements (confidence, patience) 2
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Some students’ reflections included statements that

aligned metacognitive behaviors with task variables. For

example, ‘‘I found that anything I can relate to my own life,

I can solve easier … I become more involved in the

problem and look harder for a solution’’ (Mary in Reflec-

tion 5). Other comments included ‘‘hating rate problems’’

(Karen), ‘‘liking logical problems’’ (Katie, Liz), and

‘‘liking visual problems’’ (Lynn, Ann).

Statements that would be aligned with the strategy

variable include ‘‘I am appreciating multiple strategies’’

(Beth), ‘‘I am good at identifying patterns’’ (Jackie, Katie),

‘‘I skim first and reread and analyze information’’ (John,

Dianne, Liz, Ashley, Trish), and ‘‘I like checking and

reflecting’’ (Lynn, Quinn, Lucy, Cindy). Figure 4 summa-

rizes examples of person, task and strategy variables.

In the classification of behaviors as person, task or

strategy variables, some overlap was found. Such overlap

is consistent with Lester’s (1985) findings in that the

strategy variable tended to blend with the person and task

variables.

Students’ views about problem solving and themselves

as problem solvers were revealed through their reflections.

For example, ‘‘When I am solving problems now, I notice

that when I start to work out a process I think where the

process will ultimately bring me … and if the process will

help me in finding a solution.’’ (Lucy in Reflection 5).

John, in Reflection 5, addressed how his previous school

experiences had affected his performance:

I knew that I had to do a few equations to get the

exact distance the fly traveled. The equations were

getting more difficult … but, what I like most about

this problem was its simplicity. I think that too often

students fall into a traditional way of solving prob-

lems. That is what happened to me that day.

Mary reflected on the nature of tasks and their relevance

to the solver as being important when she stated in

Reflection 5:

I feel that a lot of times math gets a bad rap from

middle school students because they may find it

boring or difficult. But if they are given logical

problems and ones that relate to their everyday life,

they may be more inclined to want to work on the

problems and make those connections.

Mary’s statement went beyond a mere view of problem

solving and addressed the impact of tasks on the attitudes

and beliefs of students.

Person variable Task variable Strategy variable

- I do not easily give up 
- I get frustrated if I do 

not understand the
problem

- I am developing
patience and confidence

- I am very slow
- I am being flexible
- I started feeling

autonomous
- I am developing interest

in problem solving
- I started being reflective

- I started liking word
problems

- I like tasks that are
related to my experience

- I like visual problems
- I like problems that

have a definite answer
- I like logical problems

but also like algebra
- Number theory and

differential equations are
my favourite subjects

- I hate rate problems and
have never been good at
them

- I like problems if I can
solve them

- I hate geometry

- I skim first and reread it
thoroughly

- I analyze the
information before I
start using a formula

- I look back and check
my calculations and if
my answer makes sense

- I still have problems in
checking

- I am improving in 
checking my work

- I am good at identifying
patterns

- I like to reflect if I get
time

- I like multiple strategies
to a problem

- I like making a drawing
- I like visualizing a

problem by drawing or
mentally

- I spend much time in
understanding

- I focus on the last
sentence

- I like breaking down the
problem into several
steps

Fig. 4 Examples of person,

task, and strategy variables
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Some students’ reflections showed awareness of their

own improvement when they evaluated prior school

experiences. Cindy, for example, reflected on how inap-

propriate some of the mathematics teaching she had

experienced had been: ‘‘It was like a light bulb went off in

my head when we talked about how the teacher does all of

the work and when doing so it takes away from how the

students should learn.’’ (Reflection 5) During a task-based

interview, Beth expressed her view about problem solving

and her growth as a problem solver:

I used to give up when I do not get a solution right

away. But now I am aware that there are multiple

ways of solving a problem and I will try it over again.

Even if I may not be able to solve a problem, I can at

least have a good feel whether I am in the right track

or not or whether I have enough knowledge to solve it

or not.

Recognizing one’s limitations during problem-solving

attempts can be an important part of monitoring one’s

actions.

In the fourth reflection, students were asked to reflect on

how they monitored their problem solving efforts and to

report on whether they felt they had improved in that

regard. Liz, for example, used a maze metaphor to describe

the relevance of setting subgoals during problem solving

and the role of monitoring the process as a whole:

Mathematical problem solving always involves a

series of steps, or small solutions that eventually lead

to the main solution of the entire problem. Finding

these solutions is like traveling through a maze. With

each new step a decision must be made on how to

find the way to the following step … You could turn

several corners (accomplish several steps success-

fully) and still find yourself at a deadend. In those

cases the problem solver can either back-track going

back one step at a time until he or she finds where

another ‘‘turn’’ can be taken, or begin again.

Ellerton (2003) developed a modified version of the

Garofalo and Lester’s (1985) cognitive–metacognitive

framework for analyzing students’ reflections. Her frame-

work comprised report, discussion, monitoring and self-

evaluation. As students developed problem-solving skills

and came to understand the role of reflection in their

problem-solving experiences, they began to show evidence

of higher metacognitive behaviors (monitoring and self-

evaluation). In Reflection 4, for example, Trish noted that:

By use of my metacognition, I remind myself to keep

checking my solution with the problem to make sure I

am doing it correctly. There is nothing worse than

solving a very in-depth problem, and then realizing

that you used the wrong information to solve it,

making your solution incorrect … I also take a

problem step-by-step when I am trying to solve it.

There is nothing worse than rushing into it and then

skipping over important information.

In Reflection 5, Trish built on her previous analysis as

she evaluated herself in terms of her awareness of con-

trolling her problem-solving process. She stated:

When solving problems, I am aware of what I am

doing to solve it. I am now able to know internally

which attempts have worked and which have not

while specializing, and why … Internal monitoring is

a great discovery that I have made because it gives

me a guide to problem solving and internal guide is

what I have developed.

4.2.4 Relationships between students’ views

and corresponding metacognitive behaviors

Having access to a range of metacognitive behaviors

allows an individual to reflect on the problem-solving

process and to monitor and regulate performance. How-

ever, such access does not guarantee successful problem-

solving attempts. Notwithstanding these notes of caution,

the use and development of metacognitive behaviors can

help problem solvers utilize resources efficiently, anticipate

and tackle difficulties, think of multiple ways of attacking a

problem and avoid arbitrary and fruitless approaches

(Schoenfeld, 1985b).

Although metacognitive behaviors emerge and develop

under favorable conditions (Kuhn, 2000), the results in this

study demonstrate that the situation is more complex than

is frequently assumed. Students, for example, did not

exhibit consistent metacognitive behaviors across prob-

lems. Jackie, for example, stated that mathematics was

challenging and that she liked the challenge. This was the

reason she had majored in mathematics. However, Jackie

was observed taking up the challenge in some problems,

but not appreciating the challenges in other problems.

Trish was reflective in most cases and presented her

views about problem solving and herself as a problem

solver in thoughtful ways. Although she was active in

group discussions, she was observed being rigid and

unreasonable in the locker problem.

John’s and Lynn’s behaviors also demonstrated the

complexity and inconsistency of emerging metacognitive

actions. John, who had a strong mathematical background,

commented in his reflections that he was patient and would

persevere with problems in the hope of finding an elegant

solution. But with the egg vendor problem, he was

unwilling to be flexible and failed to solve the problem.

256 A. Yimer, N. F. Ellerton

123



In contrast, he found an elegant solution for the bridge

problem. Lynn, in her background survey, reported that she

had decided to major in mathematics because she liked to

understand and work on all problems, but in particular, on

those on which most people got stuck. Later, in her final

reflection, she stated:

If I had trouble or was stuck on a task, I was not as

aware of options to go through to ‘‘unstuck’’ myself. I

am now more aware of processes to go through to

solve a potentially difficult problem … Throughout

the semester I have refined my ability to use or decide

which strategy would be best for a particular

situation.

However, despite her view about problem solving and

herself as improving and ‘‘being aware’’, she did not justify

why the lockers with square numbers would be open. In the

bridge problem, she identified a global plan to use d = rt

and set up equations. She suddenly decided, though, that

this was a problem that may not have a solution and gave

up.

Students reported that they had grown during the

semester in terms of their problem-solving behaviors. They

stated that they had moved from lacking patience to being

patient, from not staying on a task to being aware that

problem solving takes much more time, and from giving up

when stuck to trying out multiple strategies. Students also

reported that they had grown with respect to reflecting and

monitoring their problem-solving approaches. For exam-

ple, John described how he had improved in developing his

thought processes:

I had a mathematics content exam this week. I was

preparing myself for this exam. It was on applications

of derivative to determine maxima and minima.

I used to memorize all possible tests and conditions

and try to decide which of the facts fit the problem.

This last weekend, I thought differently. Instead of

memorizing these facts, I tried to make sense out of

them, how they are derived and why they make sense

in maximizing and minimizing functions. It so hap-

pened that I see the secrets clearly and I was very

much satisfied. I think this new behaviour must be the

effect of the strategies I have acquired in this course.

The procedure I used to memorize comes naturally

without being memorized.

John’s experiences in developing metacognitive strate-

gies had been successfully applied to his studies outside the

problem-solving course.

Some students were observed to analyze information

correctly in such a way that their analysis led them to a

solution plan and a solution. These same students, how-

ever, sometimes engaged in random guesses. For example,

many of the students analyzed the information provided for

the egg vendor problem and realized that they were looking

for an odd multiple of 7. These same students were

observed listing and checking all multiples of 7. Others, in

the same problem, in addition to being aware that they

were looking for odd multiples of 7, also observed that

since 5 was involved, the number they were seeking should

end in either 1 or 6. Instead of combining these ideas and

devising a way to execute their plan, they engaged in

listing and checking multiples of 7 that end in 6 that were

supposed to be excluded. Goos (2002) named this as

metacognitive mirage when students abandon a good idea

without thoroughly analyzing it and without finding a good

reason to abandon it. It should be recognized that many of

the metacognitive approaches being adopted by students

were new skills. A level of immaturity in the application of

such emerging skills was almost inevitable.

Although students’ reflective skills had improved, and

although they were less easily frustrated when faced with

unfamiliar problems, the metacognitive behaviors they

employed while solving problems were not always con-

sistent. A student who was metacognitively rich in one

problem showed poor metacognitive skills at other times.

Regardless of the difficulties in matching students’ views

with their metacognitive behaviors, however, during the

semester, students’ beliefs and views about problem solv-

ing became more open and their awareness and regulation

of their problem-solving approaches more acute.

5 Conclusions

One of the goals of this study was to identify and charac-

terize metacognitive behaviors that emerged during stu-

dents’ engagement in mathematical problem solving.

Garofalo and Lester (1985) and Artzt and Armour-Thomas

(1992) have presented extensive discussion and examples

that characterize metacognitive behaviors as distinct from

cognitive behaviors. Schoenfeld (1985b), although focus-

ing on one aspect of metacognition—control—also

addressed what metacognitive behaviors might look like.

Geiger and Galbraith (1998), in an attempt to develop a

diagnostic framework to evaluate students’ approaches to

solving problems, put forward a script analysis framework

that encompassed engagement, executive behaviors,

resources and beliefs.

Although these frameworks are all variations of Polya’s

model, they differ in technical ways depending on the

authors’ emphases. For example, rereading is believed to

be a metacognitive behavior (Garofalo & Lester, 1985), but

it is regarded as cognitive by Artzt and Armour-Thomas

(1992). During the task-based interviews as well as small-

group discussions in the current study, students were
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observed rereading the problem for different purposes.

They were observed rereading to understand and analyze

the problem, rereading to assess consistency of a plan with

the conditions of the problem, and rereading to assess

reasonableness of results obtained.

In this study, no attempt was made to label particular

phases or sub-categories as either cognitive or metacogni-

tive. The cognitive/metacognitive model proposed in Fig. 1

allows for this blurred distinction between cognitive and

metacognitive behaviors by having separate phases and

sub-categories that together can be used to describe each

student’s behavior while solving a mathematical problem.

This approach allows for the possibility that, for some

students, particular behaviors may be predominantly cog-

nitive, while for others (or for the same student working

through a different problem), the same behaviors may be

predominantly metacognitive. Pathways between the dif-

ferent phases and sub-categories are frequently seamless,

as a student moves from the first reading of a problem to its

solution. That is not to say that the pathways are neces-

sarily smooth, but rather that the students are able to make

mental transitions between actions and reflection and back

to actions again without apparent effort. The symbiotic

relationship between metacognitive and cognitive behav-

iors proposed in this study is an attempt to model that

seamlessness.

The five-phase model proposed in the current study,

shown schematically in Fig. 5, has some of the character-

istics of earlier models and frameworks. For example, the

engagement phase corresponds to Garofalo and Lester’s

(1985) orientation category, to Artzt and Armour-

Thomas’s (1992) understanding and analyzing phase, and

to Geiger and Galbraith’s (1998) engagement and resources

categories. The transformation-formulation phase corre-

sponds to the planning and exploring phase of Artzt and

Armour-Thomas (1992), in part to the organization phase

of Garofalo and Lester (1985), the control phase of

Schoenfeld (1985b) and the executive behaviors phase of

Geiger and Galbraith (1998). The implementation phase

corresponds to the implementing phase of Artzt and

Armour-Thomas (1992), in part to the organization and

execution phases of Garofalo and Lester (1985), the

executive phase of Geiger and Galbraith (1998) and the

control phase of Schoenfeld (1985b). The evaluation phase

corresponds to the verification phase of Garofalo and

Lester (1985), partly the control phase of Schoenfeld

(1985b), the executive behavior phase of Geiger and Gal-

braith (1998) and the verifying phase of Artzt and Armour-

Thomas (1992). Finally, the internalization phase includes

some elements from the execution and verification phases

of Garofalo and Lester (1985), the belief systems phase of

Schoenfeld (1985b), the beliefs phase of Geiger and

Galbraith (1998) and the exploring phase of Artzt and

Armour-Thomas (1992). It is, perhaps, not surprising that

intervention programs aimed at enhancing metacognitive

behaviors (see, for example, Mevarech and Kramarski,

1997; Mevarech and Fridkin, 2006) focus on characteristics

closely aligned to those identified in the various models

mentioned here.

The model described in Fig. 1, and shown schematically

in Fig. 5, has several distinctive characteristics, which

differentiate it from other models. First, and most impor-

tantly, reflection is an integral part of each category and of

the entire model, and the model is portrayed in Fig. 5 as

embedded in a context of reflection. Second, the last phase,

internalization is not present in other models as a separate

phase.

The internalization phase takes into account the degree

of intimacy a problem solver has with the problem-solving

process, in general, and the problem solver’s search for

elegance and extension, in particular. In this phase, prob-

lem solvers have the opportunity to reflect on the mathe-

matical rigor of their solution, search for more elegant

solutions and express their level of satisfaction with what

they have achieved. They might also reflect on their con-

fidence in handling similar problems. These reflections and

inquiries take place only after the individual has solved the

problem.

Evidence of internalization phases by problem solvers

can therefore be regarded as reflecting the level of

Engagement

Internalization

Evaluation

Implementation
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Formulation

Path 2

Path 6
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Fig. 5 Flowchart for the five-phase problem-solving model embed-

ded in a context of reflection
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emerging metacognitive maturity. The engagement phase,

for example, is not concerned with a mere reading and

restatement of the problem. Rather, it requires problem

solvers to analyze the problem thoroughly, relating it to a

mathematical domain. As students analyze and reflect on

the degree of familiarity and difficulty, they are forced to

assess their conceptual background. The transformation-

formulation phase is not just stating a plan. To begin with,

a statement of plan does not take place automatically in

non-routine problems. This phase then represents the

gradual process that takes place when students coordinate

the analysis they made at the engagement level when they

tried out specific cases and made conjectures. Once a plan

is stated, students are required to reflect on the feasibility of

the plan before they act upon it.

The implementation phase does not simply involve

embarking on a plan, but rather reflects regulatory moves

in terms of exploring more of the key features of the plan

with respect to the conditions of the problem. This phase,

like the previous ones, requires students to make continu-

ous assessments of their knowledge base.

In the evaluation phase, data from the previous phases

and decision making are considered. Although the evalu-

ation phase follows the implementation phase for the sake

of presentation, it can take place after any phase and at any

time. Sound evaluations are essential if appropriate deci-

sions are to be made.

The internalization phase goes beyond reflecting on a

particular problem, beyond reflecting on a plan, and

beyond reflecting on implementation and on the plausibil-

ity of decisions made. Rather, internalization takes place

when students’ emerging metacognitive qualities help them

assimilate the paths they took through the previous phases.

Internalization can occur when students assess their con-

fidence and levels of satisfaction with the problem-solving

process.

Not every student showed evidence of each of the sub-

components in every phase. A student may exhibit one sub-

component in a phase, but may not exhibit other sub-

components or phases. No one student was found to exhibit

all of the phases and their corresponding sub-components

for a single problem-solving task.

A key aspect of the model is that it can take account of

various pathways between the phases. In other words, this

is not a linear model, and a student may move back and

forth through several phases without attaining the inter-

nalization phase (see Fig. 5). Some students can reach the

internalization phase without passing through any of the

other phases. This latter scenario, however, needs to be

investigated further as it is possible either that these stu-

dents had not made any of their thinking apparent during

this problem-solving session, or that the problem context

involved a known problem type for these particular

students at that time. Some students may not exhibit some

of the phases beyond the engagement phase and may never

reach the internalization phase. This may be due to the

nature of the problem, since some problems may be solved

by analyzing the information without formulating a plan.

The five-phase model discussed in this paper represents

a bringing together of the work of many researchers from

many parts of the world, seeking to clarify what many of us

do every day: solving non-routine mathematics problems.

In particular, the fundamental work of Polya (1957), the

development of Polya’s ideas by Schoenfeld (1985a) cou-

pled with the pioneering error analysis work of Newman

(1977) and Casey (1978), and more recently the role of

reflection in ‘‘giving students permission’’ to think about

their approaches while they solve mathematics problems

(Ellerton, 2003), have helped bring to convergence the

five-phase model discussed here. This model reflects the

synergies evident between metacognitive and cognitive

actions, and attempts to capture the flexibilities and vari-

ations in approaches and pathways taken by different stu-

dents as they work on the same problem, as well as the

pathways taken by the same student to tackle different

problems. Future research needs to continue to focus on

‘‘problem-solving-in-action,’’ and how teachers’ ways of

working might facilitate students’ cognitive and metacog-

nitive development.
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