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Abstract As a young field in its own right (unlike the

ancient discipline of mathematics), mathematics education

research has been eclectic in drawing upon the established

knowledge bases and methodologies of other fields. Psy-

chology served as an early model for a paradigm that

valorized psychometric research, largely based in the the-

oretical frameworks of cognitive science. More recently,

with the recognition of the need for sociocultural theories,

because mathematics is generally learned in social groups,

sociology and anthropology have contributed to method-

ologies that gradually moved away from psychometrics

towards qualitative methods that sought a deeper under-

standing of issues involved. The emergent perspective

struck a balance between research on individual learning

(including learners’ beliefs and affect) and the dynamics of

classroom mathematical practices. Now, as the field

matures, the value of both quantitative and qualitative

methods is acknowledged, and these are frequently com-

bined in research that uses mixed methods, sometimes

taking the form of design experiments or multi-tiered

teaching experiments. Creativity and rigor are required in

all mathematics education research, thus it is argued in this

paper, using examples, that characteristics of both the arts

and the sciences are implicated in this work.

1 Introduction

‘Beauty is truth, truth beauty,’—that is all

Ye know on earth, and all ye need to know (Keats, 1820/

1953, p. 234).

As reflected in his famous closing lines to ‘‘Ode on a

Grecian urn,’’ John Keats had a deep sense of the extent to

which the arts and the sciences are intertwined in the

human psyche. As mathematics education researchers with

interest in improving the experiences of those learning and

teaching mathematics, we are involved with human beings

in all their complexity. The beauty of aesthetic experience

and the affective issues that accompany this experience or

its absence, are counterbalanced and intertwined with the

need for mathematical truth. ‘‘Don’t force it! Maths just

won’t be forced. That’s the beauty of it, that’s its beauty:

where it stands strong against this forcing things into it that

don’t have any place for it at all,’’ emphasized Mr Blue, in

pointing out an error of reasoning to the boys in his grade

12 mathematics class (Presmeg, 2006b, p. 20). Thus I shall

argue in this position paper that despite the inevitable

fashions that influence modes of research, the humanism of

our endeavor necessitates the implication of aspects of both

the arts and the sciences in investigating issues of mathe-

matics education.

As a means of summarizing where we were a decade

ago, I shall revisit a vignette that I described for the

International Commission on Mathematical Instruction

(ICMI) study, ‘‘What is research in mathematics education

and what are its results?’’ in 1994 (Sierpinska & Kilpatrick,

1998). I shall view this vignette in the light of some of the

directions taken in our field since this ICMI study, with the

lens of aspects of the arts and the sciences as a focus for

attention. Throughout this paper, the arts and the sciences

are taken broadly as ways of viewing the world. I wish to

highlight both the creative features of the arts, as epito-

mized in poetry, painting, and creative writing, and the

humanistic features of fields that relate to human beings in
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all their complexity. At the same time, I acknowledge and

celebrate the rigor and certainty (albeit contingent) of the

methods of the sciences. The main thrust of the argument is

that these contrasting aspects are not necessarily mutually

exclusive, and that an integrated, unified whole is possible

in mathematics education research—as it is in individual

human beings—with an appreciation of the strengths,

limitations, and purposes of each facet on its own terms,

but in relation to the whole.

2 A vignette

In the 1990s, I taught a course on informal geometry to

students at The Florida State University who are prospec-

tive middle grades and high school mathematics teachers.

One goal of the course was to introduce the students to

ways that manipulatives and real world experiences might

undergird the learning of geometry in grades 5–8. In the

first week I asked them to bring or wear to the next class,

something that had geometry in it, and to come to class

prepared to tell why they had chosen that particular item

and to talk about its geometry. In an interview, one of the

students, Dena (who wanted to teach algebra rather than

geometry), told me about her reactions to this task, as

follows (Presmeg, 1998a, pp. 57–58).

Dena. I noticed when you said, for us to bring something

to class or wear something that had geometry in it, for a

little while I was having a difficult time, because,

everything I picked up had geometry in it. And, I said,

maybe there’s something I misunderstood about the

directions. Y’know.

Interviewer. In fact, even just the shape of a piece of

clothing, any clothing.

Dena. Yeah. Anything, has geometry in it. So, for a little

while I was confused. I didn’t know what to bring to

class, until, until I realized that, everything is going to

have. I said to myself, everything, of course everything

is going to have geometry to it because, y’know,

anytime… You’re going to make a desk. I mean, you

draw, y’know. Your plans, for making the desk, involves

geometry. And everything, that is, just everywhere. I

think that geometry is taught as something abstract,

sketching things with proofs and rules and, not as very,

everyday.

Dena’s recollections of her high school geometry

experiences were negative ones. ‘‘I didn’t like it at all!’’ she

concluded.

It is important to note that in this vignette Dena is using

the word ‘‘abstract’’ as a placeholder for the rote, and for

her meaningless, way that she learned school geometry.

This usage in no way implies that abstraction is

unimportant in mathematics education. On the contrary, I

believe that, along with generalization, it is essential in

meaningful teaching and learning of mathematical content,

a difficult and deep topic that I have addressed in more

detail elsewhere (Presmeg, 1997b, 2008).

Implicit in this episode are several points that are rele-

vant to the emergence of mathematics education as a field

in its own right, separate from but not unrelated to other

disciplines such as mathematics, psychology, sociology,

philosophy, linguistics, history, and anthropology. It is

significant that in coming of age, mathematics education

research broke away from its primary reliance on psycho-

metric research and emulation of the hard sciences. After

all, in the complex worlds of human beings learning

mathematics in group settings, all aspects of the arts and

the sciences that might have bearing on the improvement of

this learning are relevant.

2.1 The many fields implicated in learning

and teaching mathematics

Firstly, the disciplines of mathematics in its research aspect

and mathematics education research are related by their

common interest in mathematics. However, these fields

differ substantially because their subject matters and goals

are different. The subject matter of research mathemati-

cians is the content of mathematics, and without this

content there would be no mathematics education. On one

level, because mathematicians teach, they are also engaged

in mathematics education. However, in mathematics edu-

cation it is the complex ‘‘inner’’ and ‘‘outer’’ worlds of

human beings (Bruner, 1986), as they engage in activities

associated with learning of mathematics, that form a pri-

mary focus of the enterprise, and therefore also of its

research. Dena’s agonizing over the nature and boundaries

of geometry is fruitful and provocative subject matter to a

mathematics education researcher interested in the teaching

and learning of geometry. The avenues along which this

research may lead depend not only on the data, but also on

the interests and interpretations of the researcher. The

tendency of such hermeneutic research to use progressive

focusing rather than pre-ordinate design (Hartnett, 1982)

makes this kind of research as interesting as a mystery

story, even if the mystery is to some extent self-created. In

this respect, mathematics education research may have

elements in common with mathematics research. Certainly,

the humanism of the arts and the rigor of the sciences are

implicated in both, despite their different goals.

A second point is that the inner and outer worlds of a

student relate to concerns of the disciplines of psychology

and sociology, respectively, and to the interactions between

their elements. A balance between elements of these two

disciplines is required in mathematics education, as
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witnessed in 1990s debates on the necessity of steering a

course between Piaget and Vygotsky, representing indi-

vidual and social aspects of learning, respectively, in

constructing theory for mathematics education research

(Confrey, 1991; Ontiveros, 1991). It is significant that

Confrey believed that neither Piaget’s nor Vygotsky’s

theory alone was adequate to model the complex processes

of human learning. She suggested that proposing an inter-

action between the two lenses would necessitate significant

changes in both theories.

Confrey’s analysis prefigures the point—well expressed

by Cobb (2007)—that in the face of incommensurable

theories one way of proceeding is to find out how practi-

tioners in the discipline of the parent theory view the

canons of their research. This perspective enables the

mathematics education researcher to bring a broader vision

to the construction of home-grown theories that will be

useful in addressing problems of mathematics education.

Cobb (2007) explained the benefit of this attitude as

follows.

The openness inherent in this stance to incommen-

surability has the benefit that in coming to understand

what adherents of an alternative perspective think

they are doing, we develop a more sensitive and

critical understanding of some of the taken-for-

granted aspects of our own perspective (p. 32).

In the creativity literature it has long been a well-

accepted principle that new views may be garnered by

making the familiar strange, and by making the strange

familiar (e.g., De Bono, 1970). However, Cobb (2007)

went much further than that. He compared four theoretical

perspectives that have been influential in mathematics

education research. The first of these is experimental psy-

chology, whose methodologies have been advocated

again—as in the 1950s and 1960s—by funding agencies in

the USA recently as the only form of scientific research in

mathematics education (US Congress, 2001). Next is

cognitive psychology, viewed from the actor’s perspective

rather than the subject’s. The final two are Vygotskian

sociocultural theory, and distributed cognition. In com-

paring these four perspectives with regard to their

characterization of the individual learner, and in their

usefulness for design research in mathematics classrooms,

Cobb came to the balanced conclusion that each perspec-

tive has merits for certain purposes, but not necessarily for

designing effective mathematics teaching. In his view,

scientific randomized experiments are useful to and serve

the administrative and political purposes of policy makers.

He makes a strong case that insistence on the hegemony of

scientific research in the form of randomized statistical

experiments would be short-changing the community of

classroom teachers of mathematics. As he shows clearly,

all theories are based on philosophical premises, although

those advocating a particular stance may not acknowledge

the limiting effect of these choices. This analysis suggests

that although the scientific and the humanistic aspects of

mathematics education research are both legitimate and

integral to the enterprise, they address different questions,

have different purposes, and are useful to different

stakeholders.

A third point implicit in Dena’s pondering in the initial

vignette is that philosophy is ubiquitous in all questions

which are of concern to mathematics education researchers.

The nature of geometry is an ontological issue, while how

it was taught in Dena’s school experience relates to issues

of epistemology. Both components are essential in math-

ematics education theory building, since one’s beliefs

about the nature of mathematics and mathematical

knowledge are the ‘spectacles’ through which one looks at

its teaching and learning. These ontological and episte-

mological issues are still being debated in research that

concerns the beliefs of teachers and students regarding the

nature of mathematics and its teaching and learning (Leder,

Pehkonen, & Törner, 2002).

Tension between the view that ‘‘Everything is mathe-

matics’’ (as Dena expressed it, ‘‘Everything is going to

have geometry to it’’), and the rigorous mathematical

position that ‘‘Only formal mathematics is valid’’, was well

expressed by Millroy (1992) in her monograph on the

mathematical ideas of a group of carpenters, who did not

consider their practice to involve mathematics. This tension

still plays out in mathematics classrooms. On the basis of

her research results, Millroy argued strongly for the

broadening of traditional ideas of what constitutes mathe-

matics. She wrote, ‘‘We need to bring nonconventional

mathematics into classrooms, to value and to build on the

mathematical ideas that students already have through their

experiences in their homes and in their communities’’

(p. 192). Steen’s (1990) view of mathematics as the science

of pattern and order opens the door to this lifting of the

limiting boundaries of mathematics. Millroy’s recommen-

dation is consonant with those in the National Council of

Teachers of Mathematics (NCTM)’s (2000) recent calls for

connected knowledge in mathematics education. A related

point is that a ‘‘mathematical cast of mind’’ may be a

characteristic of students who are gifted in mathematics

(Krutetskii, 1976). This mathematical cast of mind enables

these students to identify and reason about mathematical

elements in all their experiences; they construct their

worlds with mathematical eyes, as it were. But unless

teachers are aware of the necessity of encouraging students

to recognize mathematics in diverse areas of their experi-

ence, only a few students will develop this mathematical

cast of mind on their own. Many more will continue

to regard mathematics as ‘‘a bunch of formulas’’ to be
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committed to short term memory for a specific purpose

such as an examination, and thereafter forgotten (Presmeg,

1993).

The foregoing sets the scene for a fourth point which

emerges from these considerations, namely, the links

which mathematics education research has been building

with various branches of anthropology, particularly with

regard to methodology and construction of theory. Mill-

roy’s (1992) study was ethnographic. Entering to some

extent into the worlds of Cape Town carpenters in order to

experience their ‘‘mathematizing’’ required that Millroy

become an apprentice carpenter for what she called an

extended period, although the four-and-a-quarter months of

this experience might still seem scant to an anthropologist

(Eisenhart, 1988). But the point is that the ethnographic

methodology of anthropological research is peculiarly

facilitative of the kinds of interpreted knowledge that are

valuable to mathematics education researchers and practi-

tioners. After all, each mathematics classroom may be

considered to have its own culture (Nickson, 1992). In

order to understand the learning, or, sadly, the prevention

of learning which may take place there, the ethnographic

mathematics education researcher needs to be part of this

world, interpreting its events for an extended period, and

then documenting the culture of this world, making the

familiar strange and the strange familiar while walking the

tightrope of being in but not totally of the world that is

observed. In this kind of research the humanities are

implicit.

3 Recent trends in research foci and methodologies

While the history of mathematics goes back several mil-

lennia, mathematics education as a field of study in its own

right is barely half a century old (Sierpinska & Kilpatrick,

1998). The oldest fully international journal in this field,

Educational Studies in Mathematic, a few years ago cele-

brated its 50th volume. (The journal was founded by Hans

Freudenthal in 1968. Journal for Research in Mathematics

Education was started shortly thereafter.) All of the

emphases identified in the foregoing section are still rele-

vant to mathematics education research (Lester, 2007).

However, in the last decade there have been some devel-

opments that emphasize the integrated nature of all the

aspects of being human that play out in the learning of

mathematics. I shall mention just a few of these trends

here. The recent work of Luis Radford and his collabora-

tors epitomizes two such strands, namely, an expanding

emphasis on semiotics as a theory for mathematics edu-

cation research, and the place of gestures, not as an adjunct

but as part of an integrated semiotic system for learners to

make sense of mathematical concepts (Radford, Bardini,

& Sabena, 2007). Radford et al. use a ‘‘semiotic-cultural’’

theoretical framework as a lens for interpreting the learning

taking place in a micro-analysis of a video segment in

which a group of three grade nine students are trying to

generalize the pattern in a sequence of geometrical figures.

The video technology is indispensable in this fine-grained

work, because the researchers aim to document the role of

their gestures as semiotic means for students to grasp the

ways that they are seeing the patterns, not merely for the

purpose of communication, but in order to reify these

patterns and give them meaning. This research emphasizes

the integrated nature of human learning. The rigor of the

careful documentation certainly has scientific qualities,

while the humanities are implicit in the goals and methods

of the investigation. Another recent indicator of the sig-

nificance of attention to the whole learner rather than an

emphasis on cognition, is evident in research that addresses

the mathematical identities of learners, and the way in

which culture and experience shape these identities (Sfard

& Prusak, 2005).

In recent years it has become acceptable in mathematics

education research to use a methodology of mixed methods

(Johnson & Onwuegbuzie, 2004), in which the scientific

rigor of statistical research is perceived as complementary

to the intuitive insights that are possible in fine-tuned

qualitative research. Each addresses different questions,

and serves different functions. In mixed-methods research,

going beyond the significance for different stakeholders

that Cobb (2007) identified, an investigation may address

the details of some educational phenomenon and attempt to

generalize by identifying, for instance, how widespread the

phenomenon is. Johnson and Onwuegbuzie present an

eight-step process for conducting such research, which they

consider superior to mono-method research. As more

mixed-method investigations appear in mathematics edu-

cation research it will be interesting to see whether they

have significance for both the groups identified by Cobb

(2007)—policymakers and administrators, as well as

classroom teachers of mathematics. What counts as

‘‘good’’ educational research? Hostetler (2005) encourages

researchers to move beyond questions of qualitative and

quantitative paradigms, and to consider the ethical and

moral values entailed in research methodologies.

The foregoing account downplays the contestations that

accompany changes in any field, and these have certainly

been present in the changing paradigms of mathematics

education research too (Sriraman, 2007; US Congress,

2001). In what follows, I shall use a first-person-singular

account of my own experiences (characterized as a war

between the arts and the sciences in my own nature) in

parallel with a narrative description of some elements of

the changing field of mathematics education research dur-

ing the last four decades. The different and sometimes
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conflicting voices in these accounts find a rationale in some

elements of hermeneutics and phenomenology, which are

addressed briefly in the next section.

4 A conceptual framework for a narrative account

To some extent a first-person narrative account finds con-

ceptual underpinnings in a hermeneutic-phenomenological

theoretical framework such as that used by Roth (2008) to

justify his personal voice in analyzing editorial power and

its role in authorial suffering in science education research

journals, exacerbated by the demands of promotion and

tenure processes in academia. As he points out (citing

Ricoeur and Latour), this framework acknowledges and

celebrates the importance of both scientific explanation and

personal understanding in interpretation. Thus it is also an

appropriate framework for an account that compares per-

sonal history and the history of a field, and that posits

complementary roles for humanistic and scientific elements

in both. The phenomenological dimension draws on lived

experience, whereas the hermeneutic aspect relates to the

interpretation of parallels between this personal experience

and the changing modes of research in mathematics edu-

cation. These interpretations can never be considered as

complete. As Brown (1997) pointed out,

In emphasizing that mathematics only ever comes to

life in human exchanges we highlight [the] self-

reflexive dimension. For Derrida, meaning is always

in the future, always ‘deferred’, there is never a

closure to a story because this story can always be

extended (for example, 1992). … We can always

explore further and revise the meanings we have

created. The meaning we derive is always contingent.

… I cannot disentangle things independently of my

history (pp. 70–71).

Thus I undertake to analyze movements in the field of

mathematics education research in conjunction with my

own history as a mathematics education researcher. This

hermeneutic-phenomenological position resonates with

that of Peirce (1992, p. 313) in his construct of synechism,

‘‘the tendency to regard continuity… as an idea of prime

importance in philosophy,’’ the startling notion that

knowledge in its real essence depends on future thought

and how it will evolve in the community of thinkers.

In the following contingent account, I describe how the

‘‘war’’ between the arts and the sciences in my nature

during my teenage years was reconciled to an integrated

whole in the conduct of contemporary mathematics edu-

cation research. I suggest that it is possible for the

corresponding ‘‘war’’ between scientific and humanistic

elements in the field of mathematics education research to

find integration in recent unifying trends that see both

quantitative and qualitative methodologies as valuable,

although serving different purposes and having different

goals.

5 The arts and the sciences—at war?

When I was a teenager, a senior in high school, I read Sir

James Jeans’ books about the universe, and I was also

particularly inspired by the life and work of Marie Curie,

who was a dedicated woman in the man’s world of the hard

sciences at the end of the nineteenth century. I was also

intrigued by the incomparable life and work of Albert

Einstein (1970, 1973, 1976, 1979). At that point it seemed

that the arts and the sciences were at war in me, because I

was attracted to both and choosing a career was difficult.

At last, decades later, I ‘‘came home’’ to mathematics

education research, which included elements of both of

these two sides of my nature.

Albert Einstein was a visualizer, and his mental imagery

was the rich source of his creative insights (Holton, 1973;

Schilpp, 1959). In my first career as a high school mathe-

matics teacher, I noticed that there were students in high

school mathematics classes who were visualizers, as I

knew from the exceptionally high spatial scores they were

achieving on the battery of tests they were doing for

vocational guidance—and they were achieving poorly in

mathematics, as had Einstein in the restrictive environment

of the gymnasium he attended in Munich before moving to

Switzerland. The question of why demanded further

investigation. Thus the following central research goal, as

it concerned mathematics education, became the topic of

my doctoral research (Presmeg, 1985):

To understand more about the circumstances which

affect the visual pupil’s operating in his or her pre-

ferred mode, and how the mathematics teacher

facilitates this or otherwise.

The research was exciting, absorbing, and full of sur-

prises. In keeping with the phenomenological stance I am

adopting, I see parallels between my experience in this

investigation and the field of mathematics education

research itself, which was starting to emerge as a field of

study in its own right.

As suggested in the opening section, initially the study

of problems in the learning of mathematics was a small

subset of the wider realm of the concerns of psychology.

With respect and admiration for the relative certainty of

results obtained by researchers in the hard sciences, in

which empirical investigation was used to confirm or dis-

confirm theory, early researchers in mathematics education

(especially in the 1960s and 1970s) tried to emulate this
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research. Psychometric research was the only genre of

research in mathematics education that was considered

worthy of the name. Of this period, the Soviet psychologist

Krutetskii (1976) wrote as follows:

It is hard to understand how theory or practice can be

enriched by, for instance, the research of Kennedy [in

1963], who compared, for 130 mathematically gifted

adolescents, their scores on different kinds of tests

and studied the correlation between them, finding that

in some cases it was significant and in others not. The

process of solution did not interest the investigator.

But what rich material could be provided by a study

of the process of mathematical thinking in 130

mathematically able adolescents! (p. 14).

Indeed, it was lamented that mathematics education

research was having little impact, in fact appeared to be

irrelevant, in mathematics teachers’ classroom practices.

Research as epitomized in ‘‘Aptitude-Treatment Interac-

tion’’ studies (ATIs) seemed to have little impact or

relevance in mathematics classrooms. The question of

relevance is still an issue in mathematics education

research, but more recent developments in this growing

field as it embraces mixed methods and welcomes teachers

as researchers (Kemmis, 1999) may have the capacity to

address this issue.

In the early 1980s, when I was engaged in my doctoral

research, qualitative, hermeneutic research under banners

such as ‘‘illuminative evaluation’’ (McCormick, Bynner,

Clift, James, & Brown, 1977) was starting to be viewed as

legitimate in mathematics education because it could

address questions about details of teaching and learning

that were inaccessible to purely statistical research. My

study involved both quantitative and qualitative methods,

but it was the fine grain of transcribed interview data that

enabled the insights into why some students who liked to

visualize were not achieving their potential in mathematics.

At about the same time, research carried out by teachers in

their own classrooms (later widely accepted as ‘‘action

research’’, e.g., Ball, 2000) was gaining currency. It was

recognized that methods from other disciplines might need

adaptation to the particular requirements of mathematics

education research, but that there was a rich variety of

methodologies that could be valuable. In the last three

decades, mathematics education journals and conferences

have proliferated, and universities internationally have

established programs in mathematics education, housed

either in schools of education or more rarely in mathe-

matics departments. These changes accelerated in the

1990s. In a search for identity in its own right (Sierpinska

& Kilpatrick, 1998), mathematics education and its

research became recognized as a legitimate field, distinct

from, yet informed by, the disciplines of mathematics,

psychology, sociology, anthropology, philosophy, and even

linguistics (Sfard, 2000; Dörfler, 2000). Mathematics edu-

cation, as a human science, embraces human concerns as

well as the need for abstraction and rigor. Various quali-

tative research methodologies adapted from the humanities

became recognized as legitimate in addition to the previ-

ously dominant psychometric paradigms. In particular,

following Bishop’s (1988, 2004) seminal work, there was

increasing recognition of cultural and social aspects of the

classroom learning of mathematics, complementing the

psychological emphasis of cognitive theories of learning.

Despite some movements that resisted the changes (cf. the

‘‘math wars’’ in the USA), in this field there is no need for

war between the arts and the sciences—both are important.

I have come home!

6 Creativity in the arts and in the sciences:

mathematics education creativity spanning both

As mentioned, the heart of Albert Einstein’s immensely

creative thought was his capacity to visualize (Schilpp,

1959). Mathematics has an obvious visual component, not

only overtly, as in geometry or trigonometry, but also in the

mental imagery that by self-report enhances the thinking of

many creative mathematicians (Sfard, 1994). Why, then,

were there visualizers in high school mathematics classes

who were finding this subject so difficult that they were

obtaining failing grades in examinations (Presmeg, 1985)?

The purpose of my doctoral research was to investigate

the strengths and limitations of visual processing in

mathematics in a classroom context at senior high school

level, and to investigate the effect on learners who are

visualizers of the preferred cognitive modes, attitudes, and

actions of their mathematics teachers. (For a fuller account,

see Presmeg, 2006a, b.) Selection of students and teachers

required the development of a new mathematical process-

ing instrument to measure preference for visual thinking in

mathematics. I still use this instrument to understand more

about the visualization styles of students in my classes. On

the basis of the preference for mathematical visualization

(MV) scores obtained using this instrument, 13 mathe-

matics teachers were chosen to represent the full range of

scores available. In the senior classes of these teachers, 54

visualizers (23 boys and 31 girls) were chosen from 277

high school students. Visualizers were taken to be those

who scored above the median score for this population, on

the preference test.

The research methodology included participant obser-

vation in the classes of the teachers over an eight-month

period, and tape-recorded interviews with teachers and

students, as well as sparing use of non-parametric statistics

to identify trends in the data from the visualization
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instrument. As a framework for observation in lessons, 17

classroom aspects (CAs) were identified that the literature

suggested were facilitative of formation and use of visual

imagery in mathematics. The teaching visuality scores

obtained by triangulation of viewpoints (teacher’s, stu-

dents’, and researcher’s) on the basis of the CAs were only

weakly correlated with the teachers’ MV scores from the

preference instrument. It made sense that a good teacher

who feels little need of visual supports might recognize the

need of mathematics learners for more of these supports.

After item analysis and refinement of the CAs, teaching

visuality scores divided the teachers neatly into three

groups, namely, a nonvisual, a middle, and a visual group

according to their styles of teaching. Analysis of 108

transcripts of lessons revealed 45 further classroom aspects

that differentiated the three groups of teachers, and that

suggested that the visual teachers manifested traits asso-

ciated with creativity, such as use of humor in their

teaching. (Einstein had a marvelous sense of humor—see

Dukas & Hoffmann, 1979.)

One of the biggest surprises in this research was that it

was the teaching of the middle group of teachers, not the

visual group, which was optimal for the visualizers in the

study. All the difficulties experienced by the visualizers in

their learning of mathematics related in one way or

another to the generality of mathematical principles. An

image or a diagram, by its nature, is one concrete case,

and students need to learn how to distinguish the general

elements from the specific ones in learning mathematics.

Visual teachers, who had mastered these distinctions,

were not cognizant of the difficulties experienced by their

students. In my data, there were two ways in which a

mental image or related diagram could represent gen-

eralized mathematical information. Firstly, the image

itself could be of a more general form, which I designated

pattern imagery. Secondly, a concrete picture (mental or

represented on paper or a computer screen) could be used

metaphorically to stand for a general principle. This latter

result of this research led me to the fascinating study of

the use of metaphor and metonymy in mathematics edu-

cation, during the decade of the 1990s (Presmeg, 1992,

1997a, b, 1998b). However, I also became involved in

another compelling research agenda, which I shall

describe in the next section.

It is noteworthy that the need for rigor, including

equivalents of validity and reliability, respectively, was

never absent in the qualitative research paradigms that

were gaining ground in the 1980s. But the pendulum swung

too far away from the previous quantitative paradigm in the

1990s, occasioning a necessary backlash in the 2000s from

proponents of statistical methodologies—suggesting that in

this field the war was not yet over.

7 Different bridges: semiotic chaining linking

mathematics in and out of school

In the last two decades, two strands of significance have

been developing in the mathematics education research

community. On the one hand, there have been increasing

calls that teachers facilitate the construction of connected

knowledge in mathematics classrooms (National Council

of Teachers of Mathematics, 1989, 2000). These connec-

tions entail not only the linking of various branches of

mathematics that have been taught as separate courses at

high school level, but also the linking of classroom math-

ematics with other subjects in the curriculum. And

particularly, the importance is stressed of linking school

mathematics with the experiential realities of learners. On

the other hand, the importance of symbolizing and dis-

course in the teaching and learning of mathematics has

come to the fore (Cobb, Yackel, & McClain, 2000), along

with recognition of the significance of sociocultural aspects

of the learning of mathematics (Bishop, 1988).

I set out to link these two significant strands by

exploring answers to the following question: How can

teachers use semiotic theories to help them facilitate the

construction of connections in the classroom learning of

mathematics? In particular, semiotic chaining presented a

fruitful method of bridging the formal mathematics of the

classroom and the informal out-of-school mathematical

experiences of learners. The significance for mathematics

education of theories originating in linguistics was

becoming apparent to me. At first in this research I used

chaining of signifiers based on Lacan’s inversion of

Saussure’s dyadic model of semiosis (Saussure, 1959). I

investigated how teachers and graduate students could use

these chains to link the cultural activities of learners with

mathematical principles. Working with two research

assistants and a doctoral student, Matthew Hall, we inter-

viewed students and taught teachers to build such chains

and use them in the mathematics classroom (Hall, 2000).

There was the potential for the celebration of diversity and

equity. We had some success, but the research suggested

the need for a more complex model, because not just sig-

nifiers and signifieds, but interpretation, were endemic in

the activities. Thus I was led to development a nested

model of chaining based on the triadic theory of Peirce

(1992, 1998). Some of his many constructs illuminated the

research, like searchlights, and I am still excited and

involved in the exploration of the repercussions of this

work. Many instances of the potential of semiotic chaining

to foster connected knowledge of mathematics illustrated

its significance (e.g., Presmeg, 2006c), and the research is

ongoing. Recently, I have been using a triadic Peircean lens

to investigate ways that students connect, or fail to connect,
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the various registers (Duval, 1999) of school trigonometry

(Presmeg, 2006b).

There are clearly intertwined elements of the arts and the

sciences in this mathematics education research. In the

wider field of research methodologies accepted as useful in

the twenty-first century, a renewed interest in statistical

research to counter the pendulum swing of the 1990s is

evident. It will be a pity if another (counter) pendulum swing

prolongs the war, because both qualitative and quantitative

methodologies have a role to play in the complex field of

research on the teaching and learning of mathematics.

In the next section I invoke Habermas’s (1978) knowl-

edge-constitutive interests to argue this case further.

8 Knowledge-constitutive interests invoking arts and

sciences

Using Ewert (1991) and Grundy (1990) as sources, in

Fig. 1 I have summarized the three types of knowledge and

their philosophical bases posited by Habermas (1978). This

triad comprises not merely three different ways of looking

at knowledge, but three different ways of characterizing

what counts as knowledge. It is beyond the scope of this

paper to discuss Habermas’s theory in depth. (Interested

readers should consult the original sources.) In this paper I

shall use this summary to argue that there is room in

mathematics education research for all three kinds of

knowledge.

Of Habermas’s three types of interests that constitute

knowledge, it is the technical one that epitomizes knowl-

edge in the hard sciences. Literary creativity and research

are examples of the seeking for knowledge of the second

type, in which interpretation of the human condition is

paramount. The enterprise seeks to understand that condi-

tion, but not necessarily to change it. The critical reflection

called for in the third category, by way of contrast, has the

goal of changing the human condition in some way—hence

its designation as emancipatory. In contemporary mathe-

matics education research, examples are found of all three

types of interests. In broad categories, the technical interest

is ongoing in large-scale statistical studies, the practical

interest is evident in hermeneutic studies that aim for

understanding of the mathematical thinking of individual

students or small groups of students, and the emancipatory

interest is apparent in studies that address issues of social

justice and critical issues such as access to the study of

mathematics. It is beyond the scope of this paper to char-

acterize the landscape of mathematics education research

in detail, but the following are examples of research in each

of these three categories.

As an example of research in the first category, the

investigations of Gagatsis and his co-researchers at the

University of Nicosia seek new knowledge of issues in the

teaching and learning of mathematics through the statistical

investigation, using large samples, of such topics as ‘‘Stu-

dents’ improper proportional reasoning’’ (Modestou and

Gagatsis, 2007), or ‘‘Exploring young children’s geometri-

cal strategies’’ (Gagatsis, Sriraman, Elia, & Modestou,

2006). Because it is not feasible to assign children randomly

to the classes in these studies, the studies may be charac-

terized as of pseudo-experimental design. The methodology

enables group trends and relationships to be uncovered,

without seeking to ascertain the reasons why these trends and

relationships are significant. In-depth investigation of the

question of ‘‘Why?’’ would entail research in the second

category. In my own research on visualization, the con-

struction and validation of an instrument for preference for

visualization involved interests in the technical category:

validity and reliability were established using non-para-

metric statistics (Presmeg, 1985). Large samples showed

that there was no statistically significant difference between

the boys and the girls with regard to their preference for

visual thinking in mathematics; however, there was a sig-

nificant difference between the preference for visualization

of the teachers in this part of the study, and their students,

who needed far more visual supports than they did.

Again, the question of why was deferred to Habermas’s

second category. Insights into the difficulties and strengths

of visualization in teaching and learning mathematics came

  Technical  Practical   Emancipatory

Social media: 
labour   interaction  power 

Conditions for the three sciences: 
empirical-analytic hermeneutic  critical 

→ procedures for basic activities: 
control of external communication reflection 
conditions

Trichotomous division between sciences: 
natural science cultural science critical science 

Forms of knowledge: 
instrumental  subjective  critical theory 
rationality  meaning 

Philosophical basis: 
positivism  phenomenology critical theory 

******************************************************************

******

Eidos and disposition: 
specific, definable the Good  liberation 
ideas - techne  - phronesis  - critique 
(skill)   (judgement)  (critical 

community) 

Action and outcome: 
poietike  practical action emancipatory 

action

→ product  → interaction  →
praxis

******************************************************************
******

Fig. 1 Three Knowledge-constitutive Interests
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from interpretive research involving a whole school year of

classroom observation and interviews with 54 high school

‘‘visualizers’’ and their 13 mathematics teachers. All of the

problems experienced by these learners related in one way or

another to the need for mathematical abstraction and gen-

eralization, as indicated in an earlier section of this paper.

Whereas this kind of research provided insights, it did not

have the overt goal of changing classroom practice, although

teacher awareness of the results might in fact result in

‘‘practical action’’—praxis—in the classroom (Grundy,

1990). Emancipatory interests, in contrast, have the goal of

praxis.

Examples of research involving emancipatory interests can

be found in the chapters of the monograph on International

perspectives on social justice in mathematics education

(Sriraman, 2007). After a useful historical introduction to

issues of social justice by the editor, Sriraman, several of the

chapters describe projects that in one way or another attempt

to address the issues of equity that are implicit in social justice

applied to mathematics education. For instance, Merrilyn

Goos, Tom Lowrie, and Lesley Jolly describe a framework for

analyzing key features of partnerships amongst families,

schools, and communities in Australian numeracy education.

Iben Maj Christiansen contributes a thoughtful and explor-

atory chapter based on her experiences introducing

mathematical ideas to university students in South Africa and

Denmark, through social data that highlight inequity. Her

analysis leads her to the startling question, ‘‘Does our insis-

tence on these ‘critical examples’ end up being ‘imposition of

emancipation’?’’ Tod Shockey contributes the positive influ-

ence of a culturally appropriate curriculum for Native Peoples

in Maine, USA. Libby Knott explores issues of status and

values in the professional development of mathematics

teachers in Montana, USA. Eric Gutstein provides a com-

panion piece to his recent influential book on social justice in a

Chicago school classroom (Gutstein, 2006). These chapters

and others have the more or less explicit goal of changing

praxis in mathematics education. Although the monograph

also contributes useful empirical and theoretical ideas to the

ongoing conversation about social justice in mathematics

education (practical interest), its emancipatory interest places

it squarely in Habermas’s third category. My own research on

ways that teachers may incorporate the cultural practices of

students in their classes into the praxis of school teaching and

learning of mathematics also embraces this category to some

extent (Presmeg, 2006a).

9 Final thoughts

Although I am positing a balance among Habermas’s cat-

egories, and the necessity of embracing all three interests

in various aspects of the complexities of mathematics

education and its research, Habermas in his formulation

suggested a movement in the direction of the critical theory

component (Brown, 1997). Brown described succinctly the

educational implications of movement towards the eman-

cipatory interest, as follows.

If we were to follow Habermas in defining more

‘emancipatory’ forms of educational practice we

would need to differentiate more clearly between

teacher’s intention and significance for the student and

stress the developing critical powers of the individual

student. Such moves towards emphasizing interpretive

aspects of mathematical activity, however, inevitably

result in placing less stress on the conventional cate-

gories of mathematics, as may be represented in the

teacher’s input or school curriculum. … In doing this

we may hope to achieve a style of teaching which

enables students to critically examine the purpose and

scope of the mathematics they meet, while at the same

time recognizing its grounding in their personal

experience (pp. 97–98, his emphasis).

It is my contention in this paper that it is not necessary to

abandon the ‘‘conventional categories’’ of mathematics in

striving for students’ individual critical thinking and per-

sonal interpretation. Of the three categories of Habermas’s

(1978) knowledge-constitutive interests, the technical one

pertains to the sciences, whereas the practical and emanci-

patory belong to the concerns and complexities of human

life and its interpretation, to the integrated thoughts and

feelings of human beings. The discipline of mathematics

itself, with its inexorable logic and instrumental rationality,

resides as a content domain in the technical category,

although the creative domain of mathematicians doing

research in mathematics might arguably relate better to the

subjective meaning of the practical category. In contrast,

because the teaching and learning of mathematics are

practices engaged in by human beings, subjective meaning is

all-important if mathematics is to be learned meaningfully,

and critical theory relates to the improvement of this

teaching and learning in mathematics classrooms. However,

the content of mathematics with its historically constituted

canons is the subject of this teaching and learning.

Thus I argue that both the sciences and the arts are

inevitably implicated in mathematics education, whose

research also requires the full gamut of methodologies

available in the arts and the sciences.
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