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Abstract We analyze heuristic worked-out examples as a

tool for learning argumentation and proof. Their use in the

mathematics classroom was motivated by findings on tra-

ditional worked-out examples, which turned out to be

efficient for learning algorithmic problem solving. The

basic idea of heuristic worked-out examples is that they

encourage explorative processes and thus reflect explicitly

different phases while performing a proof. We tested the

hypotheses that teaching with heuristic examples is more

effective than usual classroom instruction in an experi-

mental classroom study with 243 grade 8 students. The

results suggest that heuristic worked-out examples were

more effective than the usual mathematics instruction. In

particular, students with an insufficient understanding of

proof were able to benefit from this learning environment.
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1 Proof competencies in the mathematics classroom

Enhancing students’ abilities to reason correctly and argue

coherently is regarded an important aim of instruction at

school. Reasoning and argumentation skills are important

for many different domains and play a special role in

mathematics. Accordingly, reasoning, argumentation, and

mathematical proof should be integrated in the mathe-

matics classroom through all grades (National Council of

Teachers of Mathematics, 2000). However, many students

face serious difficulties with consistent reasoning and

argumentation, and in particular with mathematical proof

(e.g., Balacheff, 1982; Harel & Sowder, 1998; Healy &

Hoyles, 1998; Reiss, Klieme, & Heinze, 2001).

In the last decades research in mathematics education

has analyzed the field of mathematical argumentation,

reasoning and proof from various perspectives. In partic-

ular, students’ problems with learning mathematical proof

lead to a profound investigation how the concepts of

argumentation, reasoning and proof in mathematics might

be distinguished. This conceptual distinction is important

in order to discuss possible implications for the teaching

and learning of mathematics. For example, Hanna and de

Villiers (2008) define argumentation as ‘‘a reasoned dis-

course that is not necessarily deductive but uses arguments

of plausibility’’. They discuss two different viewpoints in

the mathematics education community, one group regard-

ing argumentation and proof as a dichotomy and another

group seeing both as two poles of a continuum. They argue

that these viewpoints are related to specific didactical

implications. In the first case argumentation can be seen as
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an epistemological obstacle to the learning of mathematical

proof (cf. Balacheff, 1999) and the teaching of proof

should focus mainly on the logical organization of state-

ments in a proof and on a conceptual framework that builds

proof independent of problem solving. The second group

would focus primarily on the production of arguments in

the context of problem solving, experimentation and

exploration, but would expect these arguments to be logi-

cally organized only later in order to form a valid

mathematical proof (Hanna & de Villiers, 2008). For our

own research we take the second viewpoint and postulate

that an extension or transformation of students’ argumen-

tation competency to mathematical proof competency by

mathematical instruction is possible. We consider mathe-

matical proof as the combination of reasoning, which is the

ability to think logically, and argumentation, which is the

ability to deduce propositions from given arguments.

Nevertheless, we think that students’ need a conceptual

framework which help them to understand the specific

character of a proof in mathematics.

Empirical research indicates that the ability to argue in a

mathematically correct way and to generate a proof depends

on certain prerequisites, including the knowledge of math-

ematical concepts and heuristic strategies, their application

in a problem situation, the use of metacognitive control

strategies, as well as an adequate understanding of the nature

of proof in mathematics (e.g., Schoenfeld, 1983). Several

empirical studies from different countries and cultures

suggest that many students lack one or more of these facets

of proof competency. Healy and Hoyles (1998) report on a

survey with high-achieving grade-10 students. The authors

identified difficulties of these students with the use of

implications and elaborate that many of them rather prefer to

rely on empirical-inductive arguments. Reiss, Hellmich, and

Reiss (2002) as well as Klieme, Reiss, and Heinze (2003)

show similar results for students from grades 7 and 8 and

students from grades 12 and 13, respectively. Many students

approach a proof task by searching for empirical evidence,

for example by analyzing one or two examples or, particu-

larly in geometry, by measuring angles and lines. Sometimes

they use case-based reasoning that can encompass adequate

ideas for a proof. However, most students particularly have

difficulties bridging the gap between inductive and deduc-

tive reasoning in mathematics. They lack strategies that

enable them to identify mathematical arguments supporting

their empirical ideas and to generate mathematical evidence.

Using empirical arguments like measuring or general-

izing from a few examples might be a deficit, which is

typical for students from western countries. Lin (2000)

argues that students from Asian countries generally are

encouraged to use deductive arguments from the very

beginning of a proving task. In these countries the teachers

might take the viewpoint that argumentation and proof are

different aspects (in the sense of Hanna & de Villiers,

2008, see above) and their teaching might accordingly

focus on a conceptual framework of proof independent

from problem solving. Thus, students’ arguments may

include errors but they can be corrected by using logical

reasoning and will probably provide an easier way to the

valid proof, whereas empirical arguments are mostly

inappropriate in order to identify the steps of a proof. Harel

and Sowder (1998) argue in a similar direction and suggest

that students might have an inadequate understanding of

the nature of mathematical proof. According to them, even

university students will not necessarily be able to establish

an adequate scheme for mathematical proof. Their perfor-

mance in proof tasks is probably not exclusively based on

an empirical understanding; however, an empirical proof

scheme and other types of proof schemes might coexist.

Studies on proof and argumentation do not only show that

students have difficulties in proving, but provide evidence

what the nature of proving competency is. Moreover they

reveal significant interindividual differences in proving

competencies. For example, Reiss, Hellmich, and Thomas

(2002) asked seventh grade students to solve mathematical

problems in the context of proving. They allocated their test

items to three levels demanding (1) basic knowledge of facts

(level I problems; e.g., calculating the size of the third angle

if two angles of a triangle are given), (2) proof by making use

of a single deduction (level II problems; e.g., proving that

opposite angles are identical), and (3) complex proof

involving multiple deductive steps (level III problems; e.g.,

proving that the angles of a triangle add up to 180�). They

found that the proving competencies of the students could be

clearly analyzed with respect to these three levels. In par-

ticular, low-achieving students (with respect to the test

score) were hardly able to deal successfully with the highly

complex items on level III whereas high-achieving students

(with respect to the test score) performed well on level I and

level II items and satisfactorily on level III tasks. Fur-

thermore, there were significant achievement differences

between classrooms despite the fact that they used identical

curricula, were situated in similar social surroundings, and

recruited students with comparable prerequisites (Reiss,

Hellmich, & Reiss, 2002; Heinze, Reiss, & Rudolph, 2005).

It can be assumed that not only individual characteristics but

also the classroom has a strong impact on a student’s

learning. Unfortunately, there is little evidence available

about the specific factors that contribute to these classroom

differences in proving competencies.

2 The process of proving in mathematics

In order to design an effective learning environment for

mathematical proof, i.e. a classroom-based teaching-
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learning-framework for mathematical proof which offers

well organized learning opportunities to the students, it is

essential to characterize not only the expected result (the

mathematical proof), but also the process of getting to this

result (mathematical proving). The process of proving a

theorem can take a long time and may include a sudden

progress as well as unexpected setbacks. The example of

Fermat’s last theorem has demonstrated this to a broad

public (Singh, 1997). The process of proving may comprise

various attempts. Although the final proof consists of

coherent arguments organized in a deductive chain, such a

published version will hardly reflect its generation. Simi-

larly, proofs in textbooks are also presented as a sequence

of consistent arguments that provide directly logical evi-

dence for a proposition. However, and this is important to

note, this does not show how even successful students work

out proofs.

Being aware of the iterative character of performing a

proof, mathematics educators generally argue that the

teaching and learning of proof should not be restricted to

the presentation of a correct result but should emphasize

the procedural aspects of proving. It is well known through

a number of reports from mathematicians how this process

might work (e.g., van der Waerden, 1954; Wertheimer,

1945; cf. Reiss & Törner, 2007, for an overview). In par-

ticular, mathematicians stress that proving is a process in

which not only deductive reasoning but also exploration

plays a dominant role (Pólya, 1957). The iterative nature of

proving may be regarded as basis for an expert model of

mathematical proof presented by Boero (1999). In order to

differentiate between process and outcome of proving,

Boero distinguishes different phases and gives insight into

the combination of explorative empirical-inductive and

hypothetical-deductive steps during the generation of a

mathematical proof.

The first phase described in this model is (1) the pro-

duction of a conjecture. This includes the exploration of a

problem leading to a conjecture as well as the identification

of arguments to support its evidence. Boero refers to this

stage as ‘‘the private side of mathematicians’ work.’’ This

work will not be publicly shared with the mathematics

community but can obviously be based on discussions with

other mathematicians. (2) The formulation of the statement

according to shared textual conventions defines the second

phase. This phase aims at providing a precisely formulated

conjecture as a basis for all further activities. It may be

revised in the forthcoming processes but this revision

would have consequences for most activities performed by

the mathematician. The third phase combines (3) the

exploration of the (precisely stated) conjecture, the iden-

tification of appropriate mathematical arguments for its

validation, and the generation of a rough proof idea. This is

also part of the ‘‘private work’’ since exploration might, for

example, lead to errors or at least to preliminary formula-

tions within the proof. Only the following three phases are

subject to public communication. They include (4) the

selection and combination of coherent arguments in a

deductive chain, (5) the organization of these arguments

according to mathematical standards, and sometimes (6)

the proposal of a formal proof (see Reiss & Renkl, 2002,

for an example in an educational context). Boero’s model

describes an expert’s proving process, but it might also be

adequate as a model for learning to prove. The first four

phases of the model are regarded particularly important for

learners as they describe the process of finding a solution

and seeking evidence that it is correct.

It seems obvious that performing this process in the

different phases depends on certain prerequisites concern-

ing the knowledge of mathematical facts and procedures.

Students who learn how to prove might lack this knowl-

edge and might need specific help concerning the facts and

procedures involved. In addition, it seems plausible to

make the students aware of the proof process and its dif-

ferent phases in order to support their learning of proof.

Thus, learning environments for mathematical proof should

take into account both aspects, teaching the relevant

mathematical content in which the proof problems under

consideration are situated and encouraging processes of

exploration.

3 Learning from self-explaining worked-out examples

and heuristic worked-out examples

In recent years, worked-out examples have received

increasing attention from psychologists (Zhu & Simon,

1987; Carroll, 1994). Worked-out examples consist of a

problem and its detailed solution. In particular, worked-out

examples present the algorithmic steps towards the solution

of a problem. Research results show that in the beginning

of the learning process on a topic, worked-out examples

lead to higher learning gains than other forms of instruc-

tion, particularly in well-structured domains such as

mathematics (for an overview see Atkinson, Derry, Renkl,

& Wortham, 2000; Renkl, 2002; Sweller, van Merriënboer,

& Paas, 1998). The advantage of worked-out examples is

usually explained by the Cognitive Load Theory (cf. Renkl

& Atkinson, 2003; Sweller et al. 1998). In regular

instruction, problems are presented and the students are

supposed to solve them at a very early stage of their

learning process. Often, the students still lack an under-

standing of the underlying principles and thereby try to

solve the problem by strategies such as means-ends anal-

yses or shallow strategies such as key-word strategies (i.e.,

guessing what solution procedure could be adequate from

surface features of problems). Such strategies may lead to a
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solution of the problem at hand but do not deepen the

understanding of mathematical principles and their appli-

cation in problem solving. In the opposite, these strategies

‘‘occupy’’ cognitive resources in working memory. Thus,

just few resources are left for the process of understanding

and the acquisition of generalizable problem-solving

schemata (Sweller, 1988, 1994). Worked-out examples

support the students in focusing on a gain of understanding.

They therefore foster a more adequate use of cognitive

resources. Moreover, many researchers suggest that there

might be positive learning effects of worked-out examples

because learners prefer examples to other forms of infor-

mation. Examples are easier to handle and to understand in

comparison to a learning content, which is presented as a

regular text (VanLehn, 1986; Recker & Pirolli, 1995;

LeFevre & Dixon, 1986).

There are some characteristics of worked-out examples,

which enable students to learn successfully. Atkinson et al.

(2000) argue that the structure of the single worked-out

example (intra-example feature) or of the set of worked-out

examples (inter-example feature) may influence to what

extent learners can profit from this learning environment.

Beneficial intra-example features are blanks inserted in the

solutions, emphasized intermediate aims, and the presen-

tation of information in an integrated format (in contrast to

the split-source format). Important inter-example features

are the presentation of several worked-out examples for the

same type of problem (multiple examples) and the accen-

tuation of their common structure. Additionally, including

self-explanation activities in worked-out examples is

another important issue. There are individual differences

how deeply worked-out examples are processed that lead to

different learning outcomes (e.g., Chi, Bassok, Lewis,

Reimann, & Glaser, 1989). Most students do not ade-

quately self-explain the solution steps to themselves

(Renkl, 1997). As a consequence, the students’ self-

explanations have to be fostered in order to fully exploit the

potential of example-based learning (e.g., Renkl, 2002).

Thus, learning by self-explaining examples seems to be

most promising even within a school context and worked-

out examples have been positively evaluated for mathe-

matics learning. However, this type of examples might not

be fully adequate for learning to prove as students’ own

explorations are not particularly encouraged as suggested

by the Boero (1999) model. This expert model indicates

that the final mathematical proof as solution of a proof task

gives only an incomplete representation of activities per-

formed during the proving process. Consequently, a

worked-out example consisting of a problem formulation

and its (perfect) solution will not reflect the solution pro-

cess but simply display the product. Worked-out examples,

which are supposed to foster the ability to perform math-

ematical proof should accordingly offer process-oriented

learning opportunities. Thus, they may lead to a deeper

understanding of the heuristics used during the solution

process. As methodological approach, Reiss and Renkl

(2002) introduced the idea of heuristic worked-out exam-

ples, which combine results by Schoenfeld (1983) on the

teaching of heuristics for problem solving and the concept

of worked-out examples. Schoenfeld (1983) investigated

experts’ thinking processes during problem solving and

found out that they used various heuristic methods.

Moreover, experts were able to manage these heuristics

properly. In contrast to novices who spent much time in

uncontrolled exploration, experts spent most of their time

analyzing the problem constraints and making sense of the

problem. Schoenfeld (1983, 1985) taught students some of

the heuristics used by experts and showed them how they

ought to be applied in different kinds of mathematical

problems. This approach, namely making heuristics expli-

cit, was used by Reiss and Renkl (2002) in order to design

heuristic worked-out examples that did not simply provide

the final solution steps (like traditional worked-out exam-

ples), but heuristic strategies that guided the problem

solving process and made the way to the final solution

transparent for the student. Heuristic worked-out examples

include characteristics of traditional worked-out examples

and aspects of the heuristics that are important for the

solution process. They provide some scaffolding but try to

encourage the student’s own activity.

Research suggests that example-based learning can be

primarily recommended in the beginning of a skill acqui-

sition process (Renkl & Atkinson, 2003; Kalyuga, Ayres,

Chandler, & Sweller, 2003) when the students still lack a

basic understanding and are not able to work on problems

on their own. Accordingly, we assume that an intervention

with heuristic worked-out examples might primarily be

helpful for weaker students. The heuristic examples that

have to be self-explained provide them with a model how to

solve proof problems. More advanced students have already

a basic understanding how to deal with proof problems.

Therefore self-explaining with the help of an example how

to proceed in proving may be redundant, or the provided

heuristic may even interfere with the students’ own strate-

gies (cf. Renkl & Atkinson, 2003; Kalyuga et al., 2003).

4 Hypotheses

The study aimed at investigating to what extent learning

mathematical proof could be fostered by explicitly

encouraging students to use and self-explain heuristic

worked-out examples in the mathematics classroom. The

following research hypotheses were addressed.

H1 Self-explaining heuristic worked-out examples has

a positive influence on students’ proof competencies.
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Students working with self-explaining heuristic worked-out

outperform students participating in regular mathematics

instruction in solving proof problems.

It is reasonable to expect an improvement of students’

argumentation and proof skills after a learning sequence

with heuristic worked-out examples. This approach takes

into account that higher-order mathematical problem

solving requires both the student’s activity and sufficient

scaffolding so that students do not need to fully reinvent

mathematical proofs. Thus, self-explaining heuristic

worked-out examples should have a positive effect com-

pared to regular instruction, which can be characterized by

a mainly teacher-guided discourse between teacher and

students (cf. Baumert et al., 1997).

H2 Low-achieving students should benefit more than

high-achieving students from learning with self-explaining

heuristic worked-out examples.

Mathematical proving is one of the most complex tasks

for students. Performing a proof requires a sound knowl-

edge of facts as well as the ability to combine these facts in a

deductive chain in order to generate new knowledge. High-

achieving students with respect to these prerequisites are

already on a high level of performance and might therefore

profit less from a supportive example-based learning envi-

ronment. They should be well aware how to integrate

knowledge of facts into the process of proving. Low-

achieving students working with heuristic worked-out

examples will experience both facets of knowledge as rel-

atively unfamiliar and will thus improve their knowledge of

facts as well as of procedures for performing proofs.

5 Sample and methods

5.1 Sample

The sample of this field study consisted of ten 8th-grade

classrooms with a total of 243 students (93 female and 150

male). Six classrooms were assigned to the experimental

group (150 students) and four classrooms to the control

group (93 students). The classrooms were assigned to these

groups according to their results in a prior test on reasoning

and proof administered at the end of grade 7. Moreover, the

results of a questionnaire on interest and motivation with

respect to mathematics (also administered at the end of

grade 7) were taken into account for the assignment to one

of the groups so that the learning prerequisites were com-

parable in both respects across the groups.

5.2 Procedure and instruments

All students took part in a regular teaching unit on geomet-

rical reasoning and proof at the beginning of grade 8 (with the

same teachers as in grade 7). At the end of this unit, the

experimental group worked for five lessons with self-

explaining heuristic worked-out examples whereas the stu-

dents of the control group received instruction on proof

according to the mathematics curriculum and in the way their

teachers usually taught this topic (e.g., teacher guided work

on proof-related exercises from the mathematics textbook,

teacher guided classroom discussions on proof methods,

teacher guided development of proofs in the classroom set-

ting). Subsequently, all students took part in a posttest on

reasoning and proof in geometry (closely related to the topics

of the teaching unit). The students of the experimental group

were asked to complete a short feedback questionnaire on

their perception of those five lessons in which they used self-

explaining heuristic worked-out examples.

All tests were administered to the complete classrooms

and had been tried-and-tested in former studies (cf. Reiss,

Hellmich, & Thomas, 2002). In particular, the mathematics

pretest (13 items, 35 min processing time) and the math-

ematics posttest (11 items, 35 min processing time) had

been scaled unidimensionally in one latent dimension by

the Rasch model, based on a rating of its items in a

dichotomous way as correct or incorrect (Reiss, Hellmich,

& Reiss, 2002). Since both tests consisted of only a small

number of items we decided to conduct a classical statis-

tical data analysis. For this purpose the students’ solutions

for each item were categorized by a bottom-up analysis and

these categories scored by 0 points (incorrect, no response),

1 point (correct with minor mistake or minor gap) or 2

points (correct). The scoring was comparatively liberal in

the sense that we were interested in students’ competency

in argumentation and proof and not in their ability to write

stylistic elegant sentences.

The items of both tests could be assigned to three levels

of competency. The first level encompassed items that

required the knowledge of facts and simple applications.

The second level was characterized by simple proofs using

a single deductive conclusion from facts. Level three items

were proof tasks that needed more than one deduction for a

correct solution (see Fig. 1 for examples of test items at the

various levels).

The geometry pretest and posttest comprised different

items. In particular, the pretest considered the grade 7

geometry curriculum whereas the posttest took into

account aspects of the grade 8 geometry curriculum. There

were some items that were used in the pretest as well as in

the posttest. Moreover, the posttest was closely related to

the teaching unit.

The questionnaire on interest and motivation regarding

mathematics consisted of different scales concerning

interest in mathematics. It was adapted from a more

comprehensive questionnaire (Götz, Pekrun, Perry, &

Hladkyi, 2001).
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Students of the experimental group were asked to work

individually on three heuristic worked-out examples during

mathematics instruction in the classroom setting. They

were told to self-explain the examples. During this work

they were allowed to talk about their problems or progress

with other students as this behavior was normally accepted

in the classrooms of both experimental and control group.

After finishing their work, the teacher discussed the proof

and the proving process presented in the example with the

students. There was a 90 minute teacher training in order to

make the teachers of the experimental group familiar with

the use of heuristic worked-out examples in their mathe-

matics classrooms. The heuristic worked-out examples

were given to the group, and the main ideas were pre-

sented. In particular, the teachers were asked not to

intervene into the students’ working processes but to take

care that all students were aware of the correct proof to be

performed at the end of a lesson. Learning with each

heuristic worked-out example took about 75 min plus the

time for homework. The heuristic worked-out examples for

mathematical proof presented to the students were specif-

ically designed for this study. They offered a complex

mathematical problem and its solution with respect to the

following main aspects (Groß, 2003):

1. Each heuristic worked-out example was structured

according to Boero’s model of the proving process. It

started with an exploration of a problem situation and

the identification of empirical arguments to support the

evidence of a conjecture, followed by a precise

formulation of the hypothesized statement. Students

were supposed to explore the conjecture, to identify

appropriate mathematical arguments, and to generate a

rough idea of the proof. Moreover, they had to select

coherent arguments, combine them in a deductive

chain, and organize these arguments into a proof.

2. The heuristic worked-out examples were embedded

into different stories. In each example two or three

(hypothetical) students encountered a problem situa-

tion they wished to solve. Hence, the learner could

follow the proving activities of the protagonists, which

were accompanied and structured by explicit explana-

tions from a meta-perspective.

3. Every heuristic worked-out example provided impor-

tant geometry knowledge, which might be useful in the

specific context. Thus, the students could concentrate

on the proving process rather than on the recapitulation

of facts.

4. Students were encouraged to perform self-explanation

activities by working with integrated exercises and

short texts with blanks. The students were asked to

make drawings, to measure angles and sides of

geometrical figures, to give their own conjectures, to

complete statements, and to look back at the end of the

proving process.

An important aspect was that students were asked to

identify arguments leading to a solution and to combine

these arguments in order to get a coherent proof. Moreover,

the final proof was presented in detail at the end of each

heuristic worked-out example. All examples dealt with

topics from the geometry curriculum of the specific grade

(e.g., the students were encouraged to prove that connect-

ing the midpoints of the sides of a rectangle will result in a

rhombus). The heuristic worked-out examples used in this

 A 

C

45°

γ

β
B

This triangle is isosceles with |AC| = |BC|. Calculate the size of β and γ.
Competency level 1 

Show that α + β + γ  = 180°.  

α

β

γ

Competency level 2 

Why is α = α  * and β = β *, if g is parallel to AB? 

Show that the angles of a triangle add up to 180°. 

C

α

β

γ
α∗

β∗

B

A

g

Competency level 3 

Fig. 1 Test items of the posttest

460 K. M. Reiss et al.

123



study were quite elaborate and encompassed more than ten

pages (see Reiss & Renkl, 2002, and the appendix for a

shortened example). As mentioned before, students in the

control group classes got their regular teaching. In these

classrooms, the teacher developed geometric proofs in a

teacher-students-interaction at the black board in a whole

class setting. Additionally, there were short phases of

individual work consisting mainly of copying the black-

board notes. This means that the students learnt

mathematical proof primarily by a teacher guided process

of solving proof problems. This teaching style, guiding

students through the development of a procedure by elic-

iting ideas and procedures from the class, is typical for

German mathematics classroom even during proof

instruction (cf. Stigler et al., 1999; Heinze & Reiss, 2004).

6 Results

The pretest on reasoning and proof in geometry had an

overall mean of M = 60.9% (SD = 15.8) of the test points.

The test scores did not significantly differ between experi-

mental and control group (experimental: M = 62.3%,

SD = 15.5, control: M = 58.5%, SD = 16.2; t(241) =

1.86, p = 0.64). A more detailed analysis of the pretest

results according to the levels of proof competencies (cf.

Sect. 1) reveals that the students of the experimental group

solved 68.9% of the items at competency level II and 33.4%

of the items at competency level III. The students of the

control group solved 71.1% of the items at competency level

II and 31.0% of the items at competency level III. The groups

did not differ significantly in their proof competencies with

respect to the pretest (level II: t(241) = -0.52,; p = 0.60;

level III: t(241) = 0.81; p = 0.42).

In comparison to the pretest, the posttest included more

items presupposing mathematical reasoning than items

demanding a basic knowledge of concepts. Since those

items were more difficult to solve, we did not necessarily

expect the mean score of the posttest on reasoning and

proof to be higher than the pretest mean score. This is

supported by the results (posttest mean score: M = 51.0%,

SD = 17.9). Comparing the mean posttest scores of the

experimental and the control group, there was a significant

difference between experimental and control group. The

experimental group scored higher in the posttest than the

control group (experimental: M = 54.2%, SD = 17.1,

control: M = 45.9%, SD = 18.0, t(241) = 3.59;

p \ 0.001). The effect size d = 0.47 indicates a medium

effect. Analyzing the posttest according to the different

levels of proof competencies shows that the better overall

performance of the control group is due to a better per-

formance at level II and level III items (experimental:

61.8% at level II, 30.8% at level III; control: 54.1% at level

II, 17.6 at level III). These differences between experi-

mental and control group are significant (see Table 1).

Moreover, we found the strongest effect for level III items.

There was no significant difference with respect to those

items requiring only basic competencies in geometry

(experimental: 71.8% at level I; control: 68.1% at level I;

see Table 1).

The data suggest that learning with self-explaining

heuristic worked-out examples has no specific effect on the

students’ basic knowledge but enhances their proof com-

petencies. In order to identify possible differences with

respect to the learning gains of students varying in their

pretest achievement, the sample was divided into three

groups, namely a low achievement group (0 B score B 14;

N = 84; less than 54% solved correctly), an average

achievement group (14 \ score B 17; N = 81; between 54

and 68% solved correctly), and a high achievement group

(17 \ score B 26; N = 78; more than 68% solved cor-

rectly) according to the pretest results (see Table 2).

The posttest data show that the students at the different

achievement levels could not equally benefit from the

learning environment. The significant gain can be primarily

assigned to low-achieving and average-achieving students.

For low-achieving students there is a significant difference

on level II as well as on level III items (level II items:

t(82) = 2.17; p \ 0.05, d = 0.48; level III items:

t(82) = 3.27, p \ 0.01, d = 0.74). Average-achieving

students from the experimental group perform significantly

better only on level III items (t(79) = 2.69, p \ 0.01,

d = 0.62). There is no significant difference between high-

achieving students from the experimental and the control

group.1

It is important to note that differences between low-

achieving and average-achieving students of the experi-

mental group with respect to the pretest vanished in the

posttest. Both groups attained nearly the same scores on

level II and level III items (level II: 53.4 vs. 57.8%; level

III: 25.5 vs. 26.7%; no significant differences). Moreover,

we found no significant differences between the level III

score of the high-achieving students of the control group

and the low-achieving students of the experimental group

(25.5–31.2%, t(69) = 0.99, p = 0.326).

As classroom differences have been described in other

studies (e.g., Reiss, Hellmich, & Thomas, 2002), we tested

in a post-hoc analysis whether the classroom also deter-

mined the effectiveness of this intervention. For this

1 The fact that the significant differences in the posttest results were

obtained only for specific student groups for specific levels indicates

that results cannot be explained by ‘‘poor’’ instruction in the control

group classes. Otherwise the differences between experimental and

control groups in the achievement would be more apparent on all

levels. A second point is that there were the same teachers in grade 7

and 8 and the grade 7 results were similar for both groups.
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purpose, we focused on the experimental classrooms and

we computed residual gains scores for the proof compe-

tency (taking the pretest as predictor of the posttest score).

The residual gain scores were taken as dependent variables

and the classroom as factor. If our intervention effects

depended on the classroom, there should be a significant

effect. We did not, however, find significant classroom

differences with respect to the residual gain scores

(F(5) = 0.519, p = 0.761). Hence, we could assure that

the intervention was successfully implemented in all six

classrooms.

7 Discussion

Research suggests that worked-out examples may foster

learning processes in a number of different contexts;

however, most studies that support learning with worked-

out examples are based on relatively well-defined (algo-

rithmic) problems. The idea of this study was to investigate

whether this learning environment might be adapted to

mathematical argumentation and proof, which can be

regarded as a complex mathematical activity. However,

there is an important obstacle in simply implementing a

traditional worked-out example and this obstacle has its

roots in mathematics as a subject. Traditional worked-out

examples might leave the learner as a recipient of knowl-

edge who will know that a statement is true but not why it

is true. Accordingly, worked-out examples might probably

not enhance the engagement of the students in their

learning as research in mathematics education presupposes

that mathematics learning is heavily dependent on an active

role of the learner who should take part in the process of

doing mathematics. Accordingly, if worked-out examples

are used in the mathematics classroom, students’ cognitive

activation should be well considered.

Obviously, the concept of worked-out examples has to

be extended in order to better integrate process-oriented

features. The idea led in this study to the use of heuristic

worked-out examples as an instrument for learning proof in

the mathematical classroom. Heuristic worked-out exam-

ples are based on traditional worked-out examples but

make explicit the heuristics of the problem solving

respectively proving process. For modeling mathematical

proof in a heuristic worked-out example, Boero’s model of

proving was adapted in order to adequately reflect the

problem-solving process (Boero, 1999).

Based on the positive learning effects of traditional

worked-out examples in well-structured domains it was

appropriate to expect better posttest results for the experi-

mental group than for the control group and, as described

above, the students of the experimental classrooms

obtained significant better results. A detailed analysis of the

data revealed that these positive effects could not be

assigned to a gain in concept knowledge, but was due to a

higher achievement of the experimental group on items of

competency level II and III. Accordingly, these students

were able to increase their performance level on items that

Table 1 Results of the posttest—parameters

Level of competency I Level of competency II Level of competency III

M (SD) M (SD) M (SD)

Experimental group N = 150 71.9 (22.9) 61.8 (23.1) 30.8 (24.7)

Control group N = 93 68.1 (25.2) 54.1 (26.3) 17.6 (19.1)

t value t (241) = 1.22

p = 0.223

t (241) = 2.38

p = 0.018

t (241) = 4.38

p \ 0.001

Effect size d = 0.31 d = 0.59

Table 2 Posttest results for different achievement groups: means and standard deviations (in brackets)

Solution

percentages

Lower third Average third Upper third

Control

(N = 35)

Experimental

(N = 49)

Control

(N = 36)

Experimental

(N = 45)

Control

(N = 22)

Experimental

(N = 56)

Level II pretest 45.7 (37.6) 42.2 (32.6) 82.9 (20.9) 72.2 (26.6) 92.4 (13.3) 89.6 (17.0)

Level III pretest 16.8 (12.5) 14.3 (14.2) 31.9 (14.8) 32.2 (19.7) 52.3 (18.4) 51.1 (19.3)

Level II posttest 41.9* (25.7) 53.4* (22.3) 56.0 (24.9) 57.8 (20.6) 70.5 (19.9) 72.3 (22.1)

Level III posttest 11.4** (15.6) 25.5** (21.8) 15.3** (14.4) 26.7** (21.9) 31.2 (24.3) 38.6 (27.4)

* p \ 0.05, ** p \ 0.01
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required mathematical argumentation. With respect to

different achievement groups we identified a major

achievement gain for low-achieving and average-achieving

students. The low-achieving students improved for com-

petency level II and III items, the average-achieving

students for items on competency level III. However, there

was no significant effect for high-achieving students.

Moreover, the data suggest, that the positive effect of

self-explaining heuristic worked-out examples might be

independent of the specific teacher. There was a gain of

competency in all classrooms participating in the experi-

ment. Probably the effects of autonomous and self-

regulated learning particularly in a well-structured learning

environment are still underestimated in the mathematics

classrooms. However, it remains as an open question

whether other forms of independent learning of the stu-

dents might cause similar effects.

The results indicate that self-explaining heuristic

worked-out examples are a qualified instrument for

improving students’ achievement on reasoning and proof

in the mathematics classroom. Moreover, they suggest

that low-achieving and average-achieving students may

take particular advantage of this learning environment.

There are a number of reasons that might have caused this

effect. Evidently, the learning environment has influenced

students’ abilities to argue in a mathematical setting.

Probably the scaffold that the heuristic worked-out

examples provided might have enabled the students to

better understand what a mathematical proof respectively

a deductive argument is. In addition, learning with heu-

ristic worked-out examples may be regarded as activating

for every single student and thus foster students’ self-

determined learning. It is probably this mixture of guid-

ance through a complex process and individual learning

opportunities that are appropriate for initiating robust

learning processes.

The fact that high-achieving students could not benefit

in a similar way from the learning environment might have

an explanation in the topics introduced during instruction.

The students were assigned to the achievement groups

according to their pretest results. However, distinguished

pretest results are linked to an appropriate understanding of

mathematical argumentation and proof. We assume that

heuristic worked-out examples emphasize aspects of the

proving process those students were to some extent already

familiar with. Possibly, the structured learning environ-

ment did not activate high-achieving students appropriately

as it provided insight into a process that they already

understood. Moreover, high-achieving students might have

felt unchallenged and thus did not work with the material

as motivated and concentrated as other students. However,

the results of feedback questionnaires administered after

the treatment gave no evidence for this explanation. There

were no significant differences between the achievement

groups with respect to items on motivation within the

treatment phase.

Theoretical arguments from both, educational psy-

chology and mathematics education, suggested that

heuristic worked-out examples might be helpful for

learning mathematical proof. The data revealed that in

particular students with low proving competencies were

able to benefit from working with examples that empha-

sized the heuristic nature of proving and encouraged them

to explicate the process of proving. These students

showed better results in the posttest than their high-

achieving counterparts. Accordingly self-explaining heu-

ristic worked-out examples may be apt to foster students’

understanding of a quite complex mathematical topic. It

remains as an open question whether high-achieving stu-

dents might profit from some other and probably less

controlled forms of heuristic worked-out examples. In

particular, it would be important to know if more chal-

lenging respectively more difficult problems would have a

positive effect on these students. Moreover, it should be

investigated whether and to what extent heuristic worked-

out examples could be complemented by forms of

instruction that provide even more openness in problem

solving.

Appendix

A heuristic worked-out example: Opposing sides and

angles of parallelograms (slightly shortened version)

I. The problem

Nina and Tom have drawn and measured parallelo-

grams. In doing so, they noticed that opposing sides were

always of equal length. Moreover, opposing angles were

always of equal size.

Tom: ‘‘We measured so many parallelograms: We

have drawn all kinds of quadrangles and always we

recognized that the opposing sides were of equal length

and opposing angles were of equal size. I think, it has to

be like this!’’

Nina: ‘‘I think you are right, but I don’t know a reason.

Maybe by chance, we have only drawn parallelograms for

which the statement is correct? We cannot measure the

angles and sides exactly. Perhaps they were only approxi-

mately of the same size.’’

Tom: ‘‘So let’s try to prove our assumption like math-

ematicians would do!’’

Tom and Nina try to prove the following mathematical

proposition:

‘‘In a parallelogram opposing sides are of equal length

and opposing angles are commensurate!’’
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In the following we have a look at how they solved the

mathematical problem. Please read their solution, but try to

complete all steps on your own.

II. Examination of the Problem

First we want to reproduce the measurement results of

Tom and Nina. You will need a set square, paper, and

pencils.

(a) Draw a parallelogram ABCD and mark the angles

with a, b, c, d. Afterwards measure and note the sizes of its

sides and angles.

(b) The experiments suggest that opposing sides and

angles are of equal size in all parallelograms. You may

remember that this characteristic is called congruence. In

7th grade you learned that congruent sides and angles can

be transformed on one another by using congruency

mappings.

Nina and Tom remember some facts:

Nina: ‘‘When did we hear of angles and sides that have

the same size?’’

Tom: ‘‘In the 7th grade.’’

Nina: ‘‘Yes, when we learned about congruency

mappings.’’

What kind of congruency mappings do you remember?

Answer: ——

(c) The pictures on this page display several congruency

mappings. Figure out what kind of congruency mappings

are displayed and mark the congruent sides of the triangles.

II – c) The pictures on this page display several congruency mappings. Figure out what kind 

of congruency mappings are displayed and mark the congruent sides of the triangles. 

Congruency mapping: __________________________________ 

Congruency mapping: __________________________________ 
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Nina and Tom think about using the properties of con-

gruency mappings for parallelograms.

Tom: ‘‘So far, by using congruency mappings we got

new parallelograms.’’

Nina: ‘‘Now, what can we do with the congruency

mappings?’’

Tom: ‘‘We could transform all the figures in congruent

figures.’’

Nina: ‘‘But we don’t want to construct new parallelo-

grams. Rather we want to demonstrate that opposing sides

and angles are of equal sizes. Therefore we need to

transform the parallelogram on itself.’’

Try to detect all the symmetry axes, rotation centers, and

the center of the point of reflection of the parallelogram

and mark them in a figure.

III. Statement

So far it seems that Tom’s and Nina’s state-

ment was correct. Try to rephrase this statement in a

formula:

Prove what you wrote by filling in the gaps in the fol-

lowing text:

We know that a parallelogram is a ——, in which the

—— sides are parallel.

We claim:

If A, B, C, D are the—of a parallelogram and a, b, c, d
are its——, then you can say that:

— = —, — = —, — = —, — = — .

Compare your statement to the statement of Tom and

Nina on the first page.

IV. What do you know about quadrangles, parallel

straight lines and congruency transformations

There are a lot of arguments that could be important for

the proof of the conjecture. In particular, please try to

remember the following facts:

• Congruency mappings map

straight lines on ——,

circles on ——,

sections on ——with equal ——,

angles on —— of equal ——.

• The point of reflection is a rotation of —— degrees.

• The sum of angles in a quadrangle always is ——

degrees.

Tom: “We still need to prove our mathematical statement. Do you have an idea how 

we can do this?” 

 Nina: “I feel confused. Let’s write down everything we did so far.”

We need to think about 

what we know about 

quadrangles, parallel 

.....  Then we need to select those 

arguments out of all the 

arguments that could be 

important for our specific proof. 
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• In a point of reflection every point lies on a ——

with its image point and the ——.

The center is exactly ——

between —— and ——

——.

• The point of reflection maps straight lines on——

• With the line of reflection straight lines that are

orthographic to the axis of reflection are mapped on

the ——

• With the line of reflection straight lines that are

orthographic to the axis of reflection are mapped on

the ——

• Straight lines that are parallel to the axis of the

reflection are mapped on the ————.

V The Proof Idea

The length of a side and the size of an angle remain

unchanged when congruency mappings are applied. Thus,

if we find a mapping, which maps each side of a paral-

lelogram on the opposing side and each angle on the

opposing angle we will know that they are of equal size.

Have another look on section (d):

Where would the point of symmetry or the axis of

reflection have to be?

Try to extend your proof idea to a proof.

VI. Proving the Conjecture

ABCD is an arbitrary parallelogram with the angles a, b,

c, d. We draw the diagonal [AC] and call the middle of it

M, as in the figure.

Then A is mapped with a —— on M to A’ = —— and

C to C’ = ——, because M is the—— between A and C.

The straight-line AB is mapped to a —— straight-line,

which goes trough A’ = ____, so to _______. Also the

straight-line BC is mapped to a —— straight-line through

C’ = ——, so to ——.

Now we find B’, the image point of B. To do this we use

the fact that B is the point of intersection of the straight-

lines —— and ——. The image point of B has to be the

point of intersection of both image lines, that means the

point of intersection of—— and ——. This point of

intersection is —, that is why B’ = ——.

In the same way we conclude that D’ = ——. So the

—— on M maps the parallelogram to ——. This means

that the section [AB] is mapped to ——, and the section

[BC] is mapped to ——. Because the —— maps the sec-

tions to ——, it can be concluded that —— = —— and

—— = ——.

Furthermore it follows that a’ = —— and b’ = ——.

Because the —— maps angles to —— of —— size, we

conclude that —— = —— and —— = ——.
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